Zheng, Y.,
Jones, D.G.,
Billings, S.A.,
Mayhew, J.E.W.,
Frisby, J.P.,
Switcher: A Stereo Algorithm for Ground Plane Obstacle Detection,
IVC(8), No. 1, February 1990, pp. 57-62.
Elsevier DOI
BibRef
9002
Ellwood, G.J.,
Zheng, Y.,
Mayhew, J.E.W.,
Docking for mobile robots,
BMVC94(xx-yy).
PDF File.
9409
BibRef
Ellwood, G.J.,
Zheng, Y.,
Billings, S.A.,
Mayhew, J.E.W.,
Frisby, J.P.,
Ground Plane Motion Parameter Estimation for Non-circular Paths,
BMVC92(xx-yy).
PDF File.
9209
BibRef
Cornell, S.M.,
Porrill, J.,
Mayhew, J.E.W.,
Ground Plane Obstacle Detection Under Variable Camera Geometry Using a
Predictive Stereo Matcher,
BMVC92(xx-yy).
PDF File.
9209
BibRef
Shao, Y.,
Mayhew, J.E.W.,
Hippisley-Cox, S.D.,
Ground Plane Obstacle Detection of Stereo Vision under Variable Camera
Geometry Using Neural Nets,
BMVC95(xx-yy).
PDF File.
9509
BibRef
Xie, M.,
Trassoudaine, L.,
Alizon, J.,
Gallice, J.,
Road Obstacle Detection and Tracking by an Active and
Intelligent Sensing Strategy,
MVA(7), No. 3, 1994, pp. 165-177.
BibRef
9400
Xie, M.,
Trassoudaine, L.,
Alizon, J.,
Thonnat, M.,
Gallice, J.,
Active and intelligent sensing of road obstacles:
Application to the European Eureka-PROMETHEUS project,
ICCV93(616-623).
IEEE DOI
0403
BibRef
Russo, M.F.,
Petersen, J.,
Echols, M.,
Machine Vision for Error-Detection and Avoidance in
Laboratory Robotics,
LRobA(7), No. 3, June 1995, pp. 145-157.
BibRef
9506
Bhanu, B.,
Das, S.,
Roberts, B.,
Duncan, D.,
A System for Obstacle Detection During Rotorcraft Low-Altitude Flight,
AeroSys(32), No. 3, July 1996, pp. 875-897.
9608
BibRef
Earlier: A1, A3, A4, A2:
WACV92(92-99).
IEEE DOI
BibRef
Xie, M.,
Matching Free Stereovision for Detecting Obstacles on a Ground Plane,
MVA(9), No. 1, 1996, pp. 9-13.
Springer DOI
9608
BibRef
Maekawa, H.[Hiroko],
Image tracking device and image tracking method,
US_Patent5,530,771, Jun 25, 1996
WWW Link.
BibRef
9606
Zhang, Z.F.[Zhong-Fei],
Weiss, R.[Richard], and
Hanson, A.R.[Allen R.],
Obstacle Detection Based on Qualitative and
Quantitative 3D Reconstruction,
PAMI(19), No. 1, January 1997, pp. 15-26.
IEEE DOI
9702
BibRef
Earlier:
Obstacle Detection Based on Partial 3D Reconstruction,
ARPA94(II:1077-1082).
BibRef
And:
Qualitative Obstacle Detection,
CVPR94(554-559).
IEEE DOI
BibRef
And:
UMassCS-TR-94-20, March 1990.
PS File. Three algorithms using different assumptions. Two are qualitative,
only Yes or No regarding obstacles. One uses knowledge of the ground plane,
the second only assumes the ground plane is planar. The third is
quantitative, it estimates the ground plane and approximate (partial) 3D
structure by determining Height above the ground plane. Conclued Third is
superior.
See also 3D Reconstruction Based on Homography Mapping.
BibRef
Zhang, Z.F.[Zhong-Fei],
Weiss, R.[Richard], and
Hanson, A.R.[Allen R.],
Automatic Calibration and Visual Servoing for a Robot Navigation System,
UMassCS-TR-93-14, February 1993.
BibRef
9302
Earlier:
PS File.
Automatic Calibration for a Robot Navigation System,
UMassCS-TR-92-70, October 1992.
PS File.
BibRef
Griswold, N.C.,
Eem, J.,
Control for Mobile Robots in the Presence of Moving Objects,
RA(6), 1990, pp. 263-268.
BibRef
9000
Nishitani, K.[Katsuo],
Distance measuring apparatus of a target tracking type,
US_Patent5,515,448, May 7, 1996
WWW Link.
BibRef
9605
Fujimori, A.,
Nikiforuk, P.N.,
Gupta, M.M.,
Adaptive Navigation of Mobile Robots with Obstacle Avoidance,
RA(13), No. 4, August 1997, pp. 596-602.
9708
BibRef
Sargent, R.,
Bailey, B.,
Witty, C.,
Wright, A.,
Dynamic Object Capture Using Fast Vision Tracking,
AIMag(18), No. 1, Spring 1997, pp. 65-72.
9704
Robot Contest system.
BibRef
Asayama, Y.[Yoshiaki],
Obstacle detecting system for a motor vehicle,
US_Patent5,633,705, May 27, 1997
WWW Link. with stereo
BibRef
9705
Whittaker, W.L.[William L.],
West, J.H.[Jay H.],
Singh, S.J.[Sanjiv J.],
Lay, N.K.[Norman K.],
Devier, L.J.[Lonnie J.],
System and method for detecting obstacles in a road,
US_Patent5,680,313, Oct 21, 1997
WWW Link.
BibRef
9710
Bertozzi, M.[Massimo],
Broggi, A.[Alberto],
GOLD:
A Parallel Real-Time Stereo Vision System for
Generic Obstacle and Lane Detection,
IP(7), No. 1, January 1998, pp. 62-81.
IEEE DOI
9801
BibRef
Bertozzi, M.[Massimo],
Broggi, A.,
Fascioli, A.,
A Stereo Vision System for Real-Time Automotive Obstacle Detection,
ICIP96(II: 681-684).
IEEE DOI
BibRef
9600
Nair, D.,
Aggarwal, J.K.,
Moving Obstacle Detection from a Navigating Robot,
RA(14), No. 3, June 1998, pp. 404-416.
9806
BibRef
Earlier:
Detecting unexpected moving obstacles that appear in the path of a
navigating robot,
ICIP94(II: 311-315).
IEEE DOI
9411
BibRef
Stella, E.,
Lovergine, F.P.,
d'Orazio, T., and
Distante, A.,
A Visual Tracking Technique Suitable for Control of Convoys,
PRL(16), 1995, pp. 925-932.
BibRef
9500
Schneiderman, H.,
Nashman, M.,
A Discriminating Feature Tracker for Vision-Based Autonomous Driving,
RA(10), 1994, pp. 769-775.
BibRef
9400
Earlier:
Visual Processing for Autonomous Driving,
WACV92(164-171).
IEEE DOI
See also Vision-Based Robotic Convoy Driving.
BibRef
Raboisson, S.[Stephane],
Even, G.[Gilles],
Method of analyzing sequences of road images, device for implementing it
and its application to detecting obstacles,
US_Patent5,706,355, Jan 6, 1998
WWW Link.
BibRef
9801
Ruichek, Y.[Yassine],
Postaire, J.G.[Jack-Gérard],
A New Neural Real-Time Implementation for Obstacle Detection using
Linear Stereo Vision,
RealTimeImg(5), No. 2, April 1999, pp. 141-153.
See also Neural Matching Algorithm for 3-D Reconstruction from Stereo Pairs of Linear Images, A.
BibRef
9904
Ruichek, Y.[Yassine],
Multilevel- and Neural-Network-Based Stereo-Matching Method for
Real-Time Obstacle Detection Using Linear Cameras,
ITS(6), No. 1, March 2005, pp. 54-62.
IEEE Abstract.
0501
BibRef
Takeda, S.[Shu],
Tojima, M.[Masanori],
Takeda, K.[Koji],
Unmanned vehicle running system,
US_Patent6,321,147, Nov 20, 2001
WWW Link. Obstacle detection and other things.
BibRef
0111
Iwata, A.[Ayami],
Kato, K.[Kunihito],
Yamamoto, K.[Kazuhiko],
The Detection Of Obstacles By The Horizon View Camera,
IJIG(2), No. 2, April 2002, pp. 331-341.
0204
BibRef
Earlier:
The Detection of Obstacles Using Features by the Horizon View Camera,
VI02(133).
PDF File.
0208
BibRef
Hahn, S.[Stefan],
Stein, F.J.[Fridtjof J.],
System for optical acquisition of the road,
US_Patent6,067,111, 05/23/2000.
HTML Version.
BibRef
0005
Stiller, C.,
Hipp, J.,
Rössig, C.,
Ewald, A.,
Multisensor obstacle detection and tracking,
IVC(18), No. 5, April 2000, pp. 389-396.
Elsevier DOI
0003
BibRef
Franke, U.,
Heinrich, S.,
Fast obstacle detection for urban traffic situations,
ITS(3), No. 3, September 2002, pp. 173-181.
IEEE Abstract.
0402
BibRef
Franke, U.[Uwe],
Method for stereo image object detection,
US_Patent5,937,079, Aug 10, 1999
WWW Link.
BibRef
9908
Zhou, H.Y.[Hui-Yu],
Wallace, A.M.[Andrew M.],
Green, P.R.[Patrick R.],
A multistage filtering technique to detect hazards on the ground plane,
PRL(24), No. 9-10, June 2003, pp. 1453-1461.
Elsevier DOI
0304
BibRef
Nichani, S.[Sanjay],
Obstacle detection system,
US_Patent6,678,394, Jan 13, 2004
WWW Link.
BibRef
0401
And:
Lane detection system and apparatus,
US_Patent6,819,779, Nov 16, 2004
WWW Link.
BibRef
Gandhi, T.[Tarak],
Trivedi, M.M.[Mohan M.],
Parametric ego-motion estimation for vehicle surround analysis using an
omnidirectional camera,
MVA(16), No. 2, February 2005, pp. 85-95.
Springer DOI
0501
BibRef
Earlier:
Motion based vehicle surround analysis using an omni-directional camera,
IVS04(560-565).
IEEE DOI
0411
BibRef
Gandhi, T.[Tarak],
Trivedi, M.M.[Mohan M.],
Panoramic Appearance Map (PAM) for Multi-camera Based Person
Re-identification,
AVSBS06(78-78).
IEEE DOI
0611
BibRef
Earlier:
Dynamic Panoramic Surround Map:
Motivation and Omni Video Based Approach,
MVIV05(III: 61-61).
IEEE DOI
0507
BibRef
Earlier:
Vehicle Mounted Wide FOV Stereo for Traffic and Pedestrian Detection,
ICIP05(II: 121-124).
IEEE DOI
0512
BibRef
Huang, D.,
Leung, H.,
An Expectation-Maximization-Based Interacting Multiple Model Approach
for Cooperative Driving Systems,
ITS(6), No. 2, June 2005, pp. 206-228.
IEEE Abstract.
0506
BibRef
Belkhouche, F.,
Belkhouche, B.,
Rastgoufard, P.,
Line of Sight Robot Navigation Toward a Moving Goal,
SMC-B(36), No. 2, April 2006, pp. 255-267.
IEEE DOI
0604
BibRef
Oh, C.,
Oh, J.S.,
Ritchie, S.G.,
Real-Time Hazardous Traffic Condition Warning System:
Framework and Evaluation,
ITS(6), No. 3, September 2005, pp. 265-272.
IEEE DOI
0509
BibRef
Panwai, S.,
Dia, H.,
Comparative Evaluation of Microscopic Car-Following Behavior,
ITS(6), No. 3, September 2005, pp. 314-325.
IEEE DOI
0509
BibRef
Kawada, R.[Ryoichi],
Wada, M.[Masahiro],
Matsumoto, S.[Shuichi],
Detection apparatus for road obstructions,
US_Patent6,952,449, Oct 4, 2005
WWW Link.
BibRef
0510
Abdel-Aty, M.A.,
Pande, A.,
ATMS implementation system for identifying traffic conditions leading
to potential crashes,
ITS(7), No. 1, March 2006, pp. 78-91.
IEEE DOI
0604
BibRef
Chen, Z.Z.[Ze-Zhi],
Pears, N.E.[Nick E.],
Liang, B.J.[Bo-Jian],
Monocular obstacle detection using reciprocal-polar rectification,
IVC(24), No. 12, 1 December 2006, pp. 1301-1312.
Elsevier DOI
0610
Homography; Fundamental matrix; Segmentation;
Reciprocal-polar rectification; Image rectification
See also Mobile Robot Visual Navigation Using Multiple Features.
BibRef
Caraffi, C.,
Cattani, S.[Stefano],
Grisleri, P.,
Off-Road Path and Obstacle Detection Using Decision Networks and Stereo
Vision,
ITS(8), No. 4, December 2007, pp. 607-618.
IEEE DOI
0712
BibRef
Broggi, A.,
Caraffi, C.,
Fedriga, R.I.,
Grisleri, P.,
Obstacle Detection with Stereo Vision for Off-Road Vehicle Navigation,
MVIV05(III: 65-65).
IEEE DOI
0507
BibRef
Ahmed, J.[Javed],
Jafri, M.N.,
Shah, M.[Mubarak],
Akbar, M.[Muhammad],
Real-time edge-enhanced dynamic correlation and predictive open-loop
car-following control for robust tracking,
MVA(19), No. 1, January 2008, pp. 1-25.
Springer DOI
0801
BibRef
Ahmed, J.[Javed],
Jafri, M.N.[M. Noman],
Best-match rectangle adjustment algorithm for persistent and precise
correlation tracking,
ICMV07(91-96).
IEEE DOI
0712
BibRef
Zhang, W.,
Wu, Q.M.J.,
Yang, X.,
Fang, X.,
Multilevel Framework to Detect and Handle Vehicle Occlusion,
ITS(9), No. 1, March 2008, pp. 161-174.
IEEE DOI
0803
BibRef
Toulminet, G.[GwenaËlle],
Mousset, S.[StÉphane],
Bensrhair, A.[Abdelaziz],
Fast And Accurate Stereo Vision-based Estimation Of 3d Position And
Axial Motion Of Road Obstacles,
IJIG(4), No. 1, January 2004, pp. 99-125.
0401
BibRef
Wang, C.,
Coifman, B.,
The Effect of Lane-Change Maneuvers on a Simplified Car-Following
Theory,
ITS(9), No. 3, September 2008, pp. 523-535.
IEEE DOI
0809
BibRef
Vasquez, D.[Dizan],
Fraichard, T.[Thierry],
Aycard, O.[Olivier],
Laugier, C.[Christian],
Intentional motion on-line learning and prediction,
MVA(19), No. 5-6, October 2008, pp. xx-yy.
Springer DOI
0810
BibRef
Vasquez, D.[Dizan],
Fraichard, T.[Thierry],
Laugier, C.[Christian],
Incremental Learning of Statistical Motion Patterns With Growing Hidden
Markov Models,
ITS(10), No. 3, September 2009, pp. 403-416.
IEEE DOI
0909
BibRef
Vasquez, D.,
Large, F.,
Fraichard, T.,
Laugier, C.,
Moving obstacles' motion prediction for autonomous navigation,
ICARCV04(I: 149-154).
IEEE DOI
0412
BibRef
Takeda, N.[Nobuyuki],
Hattori, H.[Hiroshi],
Onoguchi, K.[Kazunori],
System and method for detecting obstacle,
US_Patent7,349,581, Mar 25, 2008
WWW Link.
BibRef
0803
Nakai, H.,
Takeda, N.,
Hattori, H.,
Okamoto, Y.,
Onoguchi, K.,
A practical stereo scheme for obstacle detection in automotive use,
ICPR04(III: 346-350).
IEEE DOI
0409
BibRef
Darms, M.S.,
Rybski, P.E.,
Baker, C.,
Urmson, C.,
Obstacle Detection and Tracking for the Urban Challenge,
ITS(10), No. 3, September 2009, pp. 475-485.
IEEE DOI
0909
BibRef
Wedel, A.[Andreas],
Badino, H.,
Rabe, C.,
Loose, H.,
Franke, U.[Uwe],
Cremers, D.[Daniel],
B-Spline Modeling of Road Surfaces With an Application to Free-Space
Estimation,
ITS(10), No. 4, December 2009, pp. 572-583.
IEEE DOI
0912
BibRef
Wedel, A.[Andreas],
Franke, U.[Uwe],
Klappstein, J.[Jens],
Brox, T.[Thomas],
Cremers, D.[Daniel],
Realtime Depth Estimation and Obstacle Detection from Monocular Video,
DAGM06(475-484).
Springer DOI
0610
BibRef
Wedel, A.[Andreas],
Schoenemann, T.[Thomas],
Brox, T.[Thomas],
Cremers, D.[Daniel],
WarpCut: Fast Obstacle Segmentation in Monocular Video,
DAGM07(264-273).
Springer DOI
0709
BibRef
Vanholme, B.,
Gruyer, D.,
Lusetti, B.,
Glaser, S.,
Mammar, S.,
Highly Automated Driving on Highways Based on Legal Safety,
ITS(14), No. 1, March 2013, pp. 333-347.
IEEE DOI
1303
BibRef
Mulder, M.,
Pauwelussen, J.J.A.,
van Paassen, M.M.,
Mulder, M.,
Abbink, D.A.,
Active Deceleration Support in Car Following,
SMC-A(40), No. 6, November 2010, pp. 1271-1284.
IEEE DOI
1011
BibRef
Chen, C.L.[Chieh-Li],
Liao, Y.F.[Yan-Fa],
Tai, C.L.[Chung-Li],
Image-to-MIDI mapping based on dynamic fuzzy color segmentation for
visually impaired people,
PRL(32), No. 4, 1 March 2011, pp. 549-560.
Elsevier DOI
1102
Color segmentation; Dynamic fuzzy logic; Image-to-MIDI mapping; RGB
raito; Visually impaired people
Color space transformations. Road detection, turn into audio information
on position and size of obstacles.
BibRef
Milanes, V.,
Alonso, J.,
Bouraoui, L.,
Ploeg, J.,
Cooperative Maneuvering in Close Environments Among Cybercars and
Dual-Mode Cars,
ITS(12), No. 1, March 2011, pp. 15-24.
IEEE DOI
1103
BibRef
Mulder, M.,
Abbink, D.A.,
van Paassen, M.M.,
Mulder, M.,
Design of a Haptic Gas Pedal for Active Car-Following Support,
ITS(12), No. 1, March 2011, pp. 268-279.
IEEE DOI
1103
BibRef
Morales, N.[Nestor],
Toledo, J.T.[Jonay T.],
Acosta, L.[Leopoldo],
Arnay, R.[Rafael],
Real-time adaptive obstacle detection based on an image database,
CVIU(115), No. 9, September 2011, pp. 1273-1287.
Elsevier DOI
1107
Image registration; Feature matching; Obstacle detection; Image
database applications; Visually guided vehicles; Mobile robots
BibRef
Gurkahraman, K.,
Unsal, E.,
Cebi, Y.,
Omni-directional vision system with fibre grating device for obstacle
detection,
IET-CV(5), No. 5, 2011, pp. 267-281.
DOI Link
1110
BibRef
Biral, F.,
Lot, R.,
Rota, S.,
Fontana, M.,
Huth, V.,
Intersection Support System for Powered Two-Wheeled Vehicles:
Threat Assessment Based on a Receding Horizon Approach,
ITS(13), No. 2, June 2012, pp. 805-816.
IEEE DOI
1206
BibRef
Wen, S.,
Zheng, W.,
Zhu, J.,
Li, X.,
Chen, S.,
Elman Fuzzy Adaptive Control for Obstacle Avoidance of Mobile Robots
Using Hybrid Force/Position Incorporation,
SMC-C(42), No. 4, July 2012, pp. 603-608.
IEEE DOI
1206
BibRef
Dlotko, P.[Pawel],
A fast algorithm to compute cohomology group generators of orientable
2-manifolds,
PRL(33), No. 11, 1 August 2012, pp. 1468-1476.
Elsevier DOI
1206
Computational cohomology; Cohomology generators; Combinatorial
2-manifold
BibRef
Dlotko, P.[Pawel],
Kropatsch, W.G.[Walter G.],
Wagner, H.[Hubert],
Characterizing Obstacle-Avoiding Paths Using Cohomology Theory,
CAIP11(I: 310-317).
Springer DOI
1109
For assisted living.
BibRef
Khodayari, A.,
Ghaffari, A.,
Kazemi, R.,
Braunstingl, R.,
A Modified Car-Following Model Based on a Neural Network Model of the
Human Driver Effects,
SMC-A(42), No. 6, November 2012, pp. 1440-1449.
IEEE DOI
1210
BibRef
Szczurek, P.,
Xu, B.,
Wolfson, O.,
Lin, J.,
Estimating Relevance for the Emergency Electronic Brake Light
Application,
ITS(13), No. 4, December 2012, pp. 1638-1656.
IEEE DOI
1212
BibRef
Asamer, J.,
van Zuylen, H.J.,
Heilmann, B.,
Calibrating car-following parameters for snowy road conditions
in the microscopic traffic simulator VISSIM,
IET-ITS(7), No. 1, 2013, pp. 114-121.
DOI Link
1307
BibRef
Wang, Y.F.[Yi-Fei],
Gao, Y.[Yuan],
Achim, A.[Alin],
Dahnoun, N.[Naim],
Robust obstacle detection based on a novel disparity calculation
method and G-disparity,
CVIU(123), No. 1, 2014, pp. 23-40.
Elsevier DOI
1405
Obstacle detection
BibRef
Park, M.W.[Min Woo],
Jung, S.K.[Soon Ki],
Dynamic Obstacle Detection of Road Scenes using Equi-Height Mosaicking
Image,
ELCVIA(13), No. 2, 2014, pp. xx-yy.
DOI Link
1407
Ph.D.. Thesis.
BibRef
Park, J.,
Yoon, J.H.,
Park, M.G.,
Yoon, K.J.,
Dynamic Point Clustering with Line Constraints for Moving Object
Detection in DAS,
SPLetters(21), No. 10, October 2014, pp. 1255-1259.
IEEE DOI
1407
Clustering methods
Detecting moving objects in stereo image sequences.
Collision detection.
BibRef
Monteil, J.,
Billot, R.,
Sau, J.,
El Faouzi, N.E.,
Linear and Weakly Nonlinear Stability Analyses of Cooperative
Car-Following Models,
ITS(15), No. 5, October 2014, pp. 2001-2013.
IEEE DOI
1410
Korteweg-de Vries equation
BibRef
Jia, B.Z.[Bao-Zhi],
Liu, R.[Rui],
Zhu, M.[Ming],
Real-time obstacle detection with motion features using monocular
vision,
VC(31), No. 3, March 2015, pp. 281-293.
WWW Link.
1503
BibRef
Zhang, Z.,
Xu, H.,
Chao, Z.,
Li, X.,
Wang, C.,
A Novel Vehicle Reversing Speed Control Based on Obstacle Detection
and Sparse Representation,
ITS(16), No. 3, June 2015, pp. 1321-1334.
IEEE DOI
1506
Calibration
BibRef
Velasco, G.A.M.[G.A. Mercado],
Borst, C.,
Ellerbroek, J.,
van Paassen, M.M.,
Mulder, M.,
The Use of Intent Information in Conflict Detection and Resolution
Models Based on Dynamic Velocity Obstacles,
ITS(16), No. 4, August 2015, pp. 2297-2302.
IEEE DOI
1508
Approximation methods
BibRef
Rahman, M.,
Chowdhury, M.,
Khan, T.,
Bhavsar, P.,
Improving the Efficacy of Car-Following Models With a New Stochastic
Parameter Estimation and Calibration Method,
ITS(16), No. 5, October 2015, pp. 2687-2699.
IEEE DOI
1511
Bayes methods
BibRef
Wang, C.,
Fang, Y.,
Zhao, H.,
Guo, C.,
Mita, S.,
Zha, H.,
Probabilistic Inference for Occluded and Multiview On-road Vehicle
Detection,
ITS(17), No. 1, January 2016, pp. 215-229.
IEEE DOI
1601
Cameras
BibRef
Kristan, M.[Matej],
Kenk, V.S.[Vildana Sulic_],
Kovacic, S.[Stanislav],
Pers, J.,
Fast Image-Based Obstacle Detection From Unmanned Surface Vehicles,
Cyber(46), No. 3, March 2016, pp. 641-654.
IEEE DOI
1602
Cameras
BibRef
Huang, Y.,
Liu, S.,
Multi-class obstacle detection and classification using stereovision
and improved active contour models,
IET-ITS(10), No. 3, 2016, pp. 197-205.
DOI Link
1604
feature extraction
BibRef
Shi, Y.F.,
Yang, L.C.,
Hao, S.X.,
Liu, Q.,
Clustered car-following strategy for improving car-following
stability under Cooperative Vehicles Infrastructure Systems,
IET-ITS(10), No. 3, 2016, pp. 141-147.
DOI Link
1604
cooperative systems
BibRef
Wang, M.,
Daamen, W.,
Hoogendoorn, S.P.,
van Arem, B.,
Cooperative Car-Following Control: Distributed Algorithm and Impact
on Moving Jam Features,
ITS(17), No. 5, May 2016, pp. 1459-1471.
IEEE DOI
1605
Acceleration
BibRef
Liu, Z.,
Li, D.,
Wang, L.,
Dong, D.,
Synchronization of a Group of Mobile Agents With Variable Speeds Over
Proximity Nets,
Cyber(46), No. 7, July 2016, pp. 1579-1590.
IEEE DOI
1606
Analytical models
BibRef
Guan, K.,
Ai, B.,
Fricke, A.,
He, D.,
Zhong, Z.,
Matolak, D.W.,
Kürner, T.,
Excess Propagation Loss Modeling of Semiclosed Obstacles for
Intelligent Transportation System,
ITS(17), No. 8, August 2016, pp. 2171-2181.
IEEE DOI
1608
Computational modeling
BibRef
Jia, B.Z.[Bao-Zhi],
Feng, W.G.[Wei-Guo],
Zhu, M.[Ming],
Obstacle detection in single images with deep neural networks,
SIViP(10), No. 6, June 2016, pp. 1033-1040.
WWW Link.
1608
BibRef
Guo, J.,
Hu, P.,
Wang, R.,
Nonlinear Coordinated Steering and Braking Control of Vision-Based
Autonomous Vehicles in Emergency Obstacle Avoidance,
ITS(17), No. 11, November 2016, pp. 3230-3240.
IEEE DOI
1609
Autonomous automobiles
BibRef
Chen, T.,
Wang, R.,
Dai, B.,
Liu, D.,
Song, J.,
Likelihood-Field-Model-Based Dynamic Vehicle Detection and Tracking
for Self-Driving,
ITS(17), No. 11, November 2016, pp. 3142-3158.
IEEE DOI
1609
Computational modeling
BibRef
Li, Z.,
Filev, D.P.,
Kolmanovsky, I.,
Atkins, E.,
Lu, J.,
A New Clustering Algorithm for Processing GPS-Based Road Anomaly
Reports With a Mahalanobis Distance,
ITS(18), No. 7, July 2017, pp. 1980-1988.
IEEE DOI
1706
Algorithm design and analysis, Clustering algorithms,
Covariance matrices, Heuristic algorithms, Roads, Vehicles,
Evolving clustering algorithm, Mahalanobis distance,
Woodbury matrix inversion lemma, road, anomaly, report
BibRef
Schaub, A.,
Baumgartner, D.,
Burschka, D.,
Reactive Obstacle Avoidance for Highly Maneuverable Vehicles Based on
a Two-Stage Optical Flow Clustering,
ITS(18), No. 8, August 2017, pp. 2137-2152.
IEEE DOI
1708
Adaptive optics, Biomedical optical imaging, Cameras,
Collision avoidance, Dynamics, Optical imaging, Optical sensors,
Collision avoidance, image processing, intelligent vehicles,
optical feedback, optimization
BibRef
Huang, D.Y.[Deng-Yuan],
Chen, C.H.[Chao-Ho],
Chen, T.Y.[Tsong-Yi],
Hu, W.C.[Wu-Chih],
Feng, K.W.[Kai-Wei],
Vehicle detection and inter-vehicle distance estimation using
single-lens video camera on urban/suburb roads,
JVCIR(46), No. 1, 2017, pp. 250-259.
Elsevier DOI
1706
Vehicle, detection
BibRef
Suhr, J.K.,
Jung, H.G.,
Rearview Camera-Based Backover Warning System Exploiting a
Combination of Pose-Specific Pedestrian Recognitions,
ITS(19), No. 4, April 2018, pp. 1122-1129.
IEEE DOI
1804
Alarm systems, Cameras, Distortion, Feature extraction, Head, Lenses,
Optical distortion, Backover warning system,
rearview camera
BibRef
Al-Mayyahi, A.[Auday],
Wang, W.J.[Wei-Ji],
Birch, P.[Phil],
Hussien, A.[Alaa],
Obstacle detection system based on colour segmentation using monocular
vision for an unmanned ground vehicle,
IJCVR(8), No. 3, 2018, pp. 241-266.
DOI Link
1807
BibRef
Rozsa, Z.[Zoltan],
Sziranyi, T.[Tamas],
Obstacle Prediction for Automated Guided Vehicles Based on Point
Clouds Measured by a Tilted LIDAR Sensor,
ITS(19), No. 8, August 2018, pp. 2708-2720.
IEEE DOI
1808
Laser radar, Robot sensing systems,
Shape, Autonomous vehicles,
bag of features
BibRef
Rozsa, Z.[Zoltan],
Sziranyi, T.[Tamas],
Temporal Up-Sampling of LIDAR Measurements Based on a Mono Camera,
CIAP22(II:51-64).
Springer DOI
2205
BibRef
Liu, W.[Wei],
Cheng, D.[Dayu],
Yin, P.C.[Peng-Cheng],
Yang, M.Y.[Meng-Yuan],
Li, E.[Erzhu],
Xie, M.[Meng],
Zhang, L.P.[Lian-Peng],
Small Manhole Cover Detection in Remote Sensing Imagery with Deep
Convolutional Neural Networks,
IJGI(8), No. 1, 2019, pp. xx-yy.
DOI Link
1901
BibRef
Su, I.F.[I-Fang],
Chen, D.L.[Ding-Li],
Lee, C.A.[Chi-Ang],
Chung, Y.C.[Yu-Chi],
Finding Visible kNN Objects in the Presence of Obstacles within the
User's View Field,
IJGI(8), No. 3, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Jia, Y.,
Cebon, D.,
Measuring the Motion of Vulnerable Road Users Relative to Moving HGVs,
ITS(20), No. 4, April 2019, pp. 1404-1415.
IEEE DOI
1904
Acoustics, Sensor arrays, Motion measurement, Temperature sensors,
Ultrasonic variables measurement, Quadratic programming,
vulnerable road users
BibRef
Burnett, K.,
Samavi, S.,
Waslander, S.L.,
Barfoot, T.D.,
Schoellig, A.P.,
aUToTrack: A Lightweight Object Detection and Tracking System for the
SAE AutoDrive Challenge,
CRV19(209-216)
IEEE DOI
1908
Detectors,
Object detection, Laser radar, Benchmark testing,
Object Recognition and Detection
BibRef
Corcoran, G.,
Clark, J.,
Traffic Risk Assessment:
A Two-Stream Approach Using Dynamic-Attention,
CRV19(166-173)
IEEE DOI
1908
Vehicles, Visualization, Videos, Accidents, Risk management, Hazards,
Traffic rick assessment, dynamic-attention,
optical flow
BibRef
Fraga-Lamas, P.[Paula],
Ramos, L.[Lucía],
Mondéjar-Guerra, V.[Víctor],
Fernández-Caramés, T.M.[Tiago M.],
A Review on IoT Deep Learning UAV Systems for Autonomous Obstacle
Detection and Collision Avoidance,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Lin, C.,
Cross Domain Adaptation for on-Road Object Detection Using Multimodal
Structure-Consistent Image-to-Image Translation,
ICIP19(3029-3030)
IEEE DOI
1910
generative adversarial network, domain adaptation, image-to-image translation
BibRef
Chen, J.Y.[Jun-Ying],
Bai, T.Y.[Tong-Yao],
SAANet: Spatial adaptive alignment network for object detection in
automatic driving,
IVC(94), 2020, pp. 103873.
Elsevier DOI
2003
Object detection, Fusion-based deep framework,
Local orientation encoding, Spatial adaptive alignment, Autonomous driving
BibRef
Santana, M.C.S.[Marcos C. S.],
Passos Júnior, L.A.[Leandro Aparecido],
Moreira, T.P.[Thierry P.],
Colombo, D.[Danilo],
de Albuquerque, V.H.C.[Victor Hugo C.],
Papa, J.P.[João Paulo],
A Novel Siamese-Based Approach for Scene Change Detection With
Applications to Obstructed Routes in Hazardous Environments,
IEEE_Int_Sys(35), No. 1, January 2020, pp. 44-53.
IEEE DOI
2004
Decoding, Image segmentation, Semantics, Training data,
Neural networks, Intelligent systems, Task analysis,
Route Obstruction Detection
BibRef
Brambilla, M.,
Nicoli, M.,
Soatti, G.,
Deflorio, F.,
Augmenting Vehicle Localization by Cooperative Sensing of the Driving
Environment: Insight on Data Association in Urban Traffic Scenarios,
ITS(21), No. 4, April 2020, pp. 1646-1663.
IEEE DOI
2004
Global navigation satellite system, Sensors,
Vehicle-to-everything, Feature extraction, Roads, Standards,
controlled arterials
BibRef
Leng, J.,
Liu, Y.,
Du, D.,
Zhang, T.,
Quan, P.,
Robust Obstacle Detection and Recognition for Driver Assistance
Systems,
ITS(21), No. 4, April 2020, pp. 1560-1571.
IEEE DOI
2004
Obstacle location, obstacle recognition, U-V disparity map,
neural network, road extraction
BibRef
Shen, C.[Chao],
Zhao, X.M.[Xiang-Mo],
Liu, Z.W.[Zhan-Wen],
Gao, T.[Tao],
Xu, J.[Jiang],
Joint vehicle detection and distance prediction via monocular depth
estimation,
IET-ITS(14), No. 7, July 2020, pp. 753-763.
DOI Link
2006
BibRef
Gao, M.[Ming],
Jin, L.S.[Li-Sheng],
Jiang, Y.Y.[Yu-Ying],
Bie, J.[Jing],
Multiple object tracking using a dual-attention network for autonomous
driving,
IET-ITS(14), No. 8, August 2020, pp. 842-848.
DOI Link
2007
BibRef
Li, J.[Jing],
Shi, X.X.[Xin-Xin],
Wang, J.Z.[Jun-Zheng],
Yan, M.[Min],
Adaptive road detection method combining lane line and obstacle
boundary,
IET-IPR(14), No. 10, August 2020, pp. 2216-2226.
DOI Link
2008
BibRef
Lin, Y.X.[Yong-Xiang],
Tan, D.S.[Daniel Stanley],
Chen, Y.Y.[Yung-Yao],
Huang, C.C.[Ching-Chun],
Hua, K.L.[Kai-Lung],
Domain Adaptation With Foreground/Background Cues and Gated
Discriminators,
MultMedMag(27), No. 3, July 2020, pp. 44-53.
IEEE DOI
2009
Image segmentation, Semantics, Adaptation models, Logic gates,
Automobiles, Training data, Computer science, Autonmous automobiles
BibRef
Xue, F.,
Ming, A.,
Zhou, Y.,
Tiny Obstacle Discovery by Occlusion-Aware Multilayer Regression,
IP(29), 2020, pp. 9373-9386.
IEEE DOI
1806
Image edge detection, Proposals, Nonhomogeneous media, Roads,
Cameras, Training, Obstacle discovery,
regression
BibRef
Prasad, D.K.,
Dong, H.,
Rajan, D.,
Quek, C.,
Are Object Detection Assessment Criteria Ready for Maritime Computer
Vision?,
ITS(21), No. 12, December 2020, pp. 5295-5304.
IEEE DOI
2012
Measurement, Object detection, Sensors, Indexes,
Image edge detection, Artificial intelligence, Object detection,
performance evaluation
BibRef
Chen, L.,
Zou, Q.,
Pan, Z.,
Lai, D.,
Zhu, L.,
Hou, Z.,
Wang, J.,
Cao, D.,
Surrounding Vehicle Detection Using an FPGA Panoramic Camera and Deep
CNNs,
ITS(21), No. 12, December 2020, pp. 5110-5122.
IEEE DOI
2012
Cameras, Videos, Vehicle detection, Lenses,
Field programmable gate arrays, Real-time systems,
autonomous vehicle
BibRef
Hnewa, M.,
Radha, H.,
Object Detection Under Rainy Conditions for Autonomous Vehicles: A
Review of State-of-the-Art and Emerging Techniques,
SPMag(38), No. 1, January 2021, pp. 53-67.
IEEE DOI
2012
Training, Visualization, Object detection, Data models, Safety,
Autonomous vehicles, Testing
BibRef
Chen, S.,
Liu, B.,
Feng, C.,
Vallespi-Gonzalez, C.,
Wellington, C.,
3D Point Cloud Processing and Learning for Autonomous Driving:
Impacting Map Creation, Localization, and Perception,
SPMag(38), No. 1, January 2021, pp. 68-86.
IEEE DOI
2012
Laser radar, Tools, Sensors,
Autonomous vehicles, Surface treatment, Videos
BibRef
Carranza-García, M.[Manuel],
Torres-Mateo, J.[Jesús],
Lara-Benítez, P.[Pedro],
García-Gutiérrez, J.[Jorge],
On the Performance of One-Stage and Two-Stage Object Detectors in
Autonomous Vehicles Using Camera Data,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Shekar, A.K.[Arvind Kumar],
Gou, L.[Liang],
Ren, L.[Liu],
Wendt, A.[Axel],
Label-Free Robustness Estimation of Object Detection CNNs for
Autonomous Driving Applications,
IJCV(129), No. 4, April 2021, pp. 1185-1201.
Springer DOI
2104
BibRef
Li, X.[Xi],
Ma, H.M.[Hui-Min],
Yi, S.[Sheng],
Chen, Y.X.[Yan-Xian],
Ma, H.B.[Hong-Bing],
Single annotated pixel based weakly supervised semantic segmentation
under driving scenes,
PR(116), 2021, pp. 107979.
Elsevier DOI
2106
Weakly supervised condition, Semantic segmentation,
Complex driving scenes, Optimal feature setting
BibRef
Lee, H.[Hojoon],
Yoon, J.[Jeongsik],
Jeong, Y.[Yonghwan],
Yi, K.[Kyongsu],
Moving Object Detection and Tracking Based on Interaction of Static
Obstacle Map and Geometric Model-Free Approachfor Urban Autonomous
Driving,
ITS(22), No. 6, June 2021, pp. 3275-3284.
IEEE DOI
2106
Radar tracking, Laser radar,
Real-time systems, Estimation, Target tracking, LiDAR
BibRef
Wu, Y.N.[Ya-Nan],
Feng, S.H.[Song-He],
Huang, X.K.[Xian-Kai],
Wu, Z.Z.[Zi-Zhang],
L4Net: An anchor-free generic object detector with attention
mechanism for autonomous driving,
IET-CV(15), No. 1, 2021, pp. 36-46.
DOI Link
2106
BibRef
Liu, Y.Z.[Ya-Zhou],
Cao, S.[Sen],
Lasang, P.[Pongsak],
Shen, S.[Shengmei],
Modular Lightweight Network for Road Object Detection Using a Feature
Fusion Approach,
SMCS(51), No. 8, August 2021, pp. 4716-4728.
IEEE DOI
2107
Object detection, Feature extraction, Computational modeling,
Convolution, Task analysis, Deep learning, Roads,
object detection
BibRef
Ke, X.[Xiao],
Li, J.P.[Jian-Ping],
U-FPNDet: A one-shot traffic object detector based on U-shaped
feature pyramid module,
IET-IPR(15), No. 10, 2021, pp. 2146-2156.
DOI Link
2108
Include vehicles and pedestrians.
BibRef
Ren, J.[Jia],
Zhang, J.[Jing],
Cui, Y.[Yani],
Autonomous Obstacle Avoidance Algorithm for Unmanned Surface Vehicles
Based on an Improved Velocity Obstacle Method,
IJGI(10), No. 9, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Lu, Q.[Qun],
Zhang, D.[Dan],
Ye, W.J.[Wen-Jun],
Fan, J.Y.[Jing-Yu],
Liu, S.[Steven],
Su, C.Y.[Chun-Yi],
Targeting Posture Control With Dynamic Obstacle Avoidance of
Constrained Uncertain Wheeled Mobile Robots Including Unknown
Skidding and Slipping,
SMCS(51), No. 11, November 2021, pp. 6650-6659.
IEEE DOI
2110
Wheels, Mobile robots, Uncertainty, Collision avoidance,
Trajectory tracking, Kinematics, Input saturation,
wheeled mobile robots (WMRs)
BibRef
Cai, Y.F.[Ying-Feng],
Dai, L.[Lei],
Wang, H.[Hai],
Li, Z.X.[Zhi-Xiong],
Multi-Target Pan-Class Intrinsic Relevance Driven Model for Improving
Semantic Segmentation in Autonomous Driving,
IP(30), 2021, pp. 9069-9084.
IEEE DOI
2112
Semantics, Feature extraction, Context modeling, Automobiles,
Image segmentation, Convolution, Buildings, semantic segmentation
BibRef
Zhang, P.P.[Ping-Ping],
Liu, W.[Wei],
Lei, Y.J.[Yin-Jie],
Lu, H.C.[Hu-Chuan],
Semantic Scene Labeling via Deep Nested Level Set,
ITS(22), No. 11, November 2021, pp. 6853-6865.
IEEE DOI
2112
Assisted driving.
Level set, Semantics, Labeling, Feature extraction, Deep learning,
Image segmentation, Intelligent transportation systems,
fully convolutional network
BibRef
Yang, K.L.[Kai-Lun],
Hu, X.X.[Xin-Xin],
Fang, Y.C.[Yi-Cheng],
Wang, K.W.[Kai-Wei],
Stiefelhagen, R.[Rainer],
Omnisupervised Omnidirectional Semantic Segmentation,
ITS(23), No. 2, February 2022, pp. 1184-1199.
IEEE DOI
2202
Semantics, Image segmentation, Training, Data models, Sensors,
Task analysis, Cameras, Intelligent vehicles, scene understanding,
omnidirectional images
BibRef
Kim, Y.[Youngjun],
Hwang, H.Y.[Hyek-Young],
Shin, J.[Jitae],
Robust object detection under harsh autonomous-driving environments,
IET-IPR(16), No. 4, 2022, pp. 958-971.
DOI Link
2203
BibRef
Qiao, J.J.[Jian-Jun],
Wu, X.[Xiao],
He, J.Y.[Jun-Yan],
Li, W.[Wei],
Peng, Q.[Qiang],
SWNet: A Deep Learning Based Approach for Splashed Water Detection on
Road,
ITS(23), No. 4, April 2022, pp. 3012-3025.
IEEE DOI
2204
Roads, Meteorology, Semantics, Deep learning, Accidents,
Image segmentation, Water, Splashed water detection, deep learning
BibRef
Singh, A.S.P.[Amrik Singh Phuman],
Nishihara, O.[Osamu],
Trajectory Tracking and Integrated Chassis Control for Obstacle
Avoidance With Minimum Jerk,
ITS(23), No. 5, May 2022, pp. 4625-4641.
IEEE DOI
2205
Tires, Trajectory, Collision avoidance, Force, Friction,
Mathematical model, Trajectory tracking, Autonomous vehicle,
sliding mode control
BibRef
Geisler, S.[Simon],
Cunha, C.[Carlos],
Satzoda, R.K.[Ravi Kumar],
Better, Faster Small Hazard Detection:
Instance-Aware Techniques, Metrics and Benchmarking,
ITS(23), No. 7, July 2022, pp. 9062-9077.
IEEE DOI
2207
Hazards, Semantics, Roads, Image segmentation, Object detection,
Measurement, Benchmark testing, Small hazard detection, disparity
BibRef
Zhou, W.[Weina],
Huang, X.X.[Xin-Xin],
Zeng, X.Y.[Xiao-Yang],
Obstacle Detection for Unmanned Surface Vehicles by Fusion Refinement
Network,
IEICE(E105-D), No. 8, August 2022, pp. 1393-1400.
WWW Link.
2207
BibRef
Pano, B.[Béatrice],
Chevrel, P.[Philippe],
Claveau, F.[Fabien],
Sentouh, C.[Chouki],
Mars, F.[Franck],
Obstacle Avoidance in Highly Automated Cars: Can Progressive Haptic
Shared Control Make it Safer and Smoother?,
HMS(52), No. 4, August 2022, pp. 547-556.
IEEE DOI
2208
Vehicles, Torque, Manuals, Wheels, Roads, Haptic interfaces,
Autonomous vehicles, Autonomous vehicles, driver behavior,
multiobjective ( H_2/H_inf ) control
BibRef
Badrloo, S.[Samira],
Varshosaz, M.[Masood],
Pirasteh, S.[Saied],
Li, J.[Jonathan],
Image-Based Obstacle Detection Methods for the Safe Navigation of
Unmanned Vehicles: A Review,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Song, P.F.[Peng-Fei],
Fan, H.[Hui],
Li, J.J.[Jin-Jiang],
Hua, F.[Feng],
Attention-Based Multi-Scale Feature Fusion for Free-Space Detection,
IET-ITS(16), No. 9, 2022, pp. 1222-1235.
DOI Link
2208
BibRef
Zhang, H.[Hui],
Luo, G.[Guiyang],
Li, J.L.[Jing-Lin],
Wang, F.Y.[Fei-Yue],
C2FDA: Coarse-to-Fine Domain Adaptation for Traffic Object Detection,
ITS(23), No. 8, August 2022, pp. 12633-12647.
IEEE DOI
2208
Feature extraction, Object detection, Adaptation models, Proposals,
Meteorology, Visualization, Detectors, Object detection,
intelligent visual perception
BibRef
Feng, D.[Di],
Wang, Z.N.[Zi-Ning],
Zhou, Y.Y.[Yi-Yang],
Rosenbaum, L.[Lars],
Timm, F.[Fabian],
Dietmayer, K.[Klaus],
Tomizuka, M.[Masayoshi],
Zhan, W.[Wei],
Labels are Not Perfect: Inferring Spatial Uncertainty in Object
Detection,
ITS(23), No. 8, August 2022, pp. 9981-9994.
IEEE DOI
2208
Uncertainty, Object detection, Laser radar, Measurement,
Probabilistic logic, Detectors, Uncertainty estimation,
deep learning
BibRef
Liao, J.C.[Jia-Cai],
Cao, L.[Libo],
Luo, X.L.[Xiao-Le],
Sun, X.[Xu],
Duan, C.[Cong],
Li, J.H.[Jian-Hua],
Yuan, F.[Feng],
Road Garbage Segmentation With Deep Supervision and High Fusion
Network for Cleaning Vehicles,
ITS(23), No. 8, August 2022, pp. 11190-11204.
IEEE DOI
2208
Roads, Image segmentation, Cleaning, Semantics, Feature extraction,
Deep learning, Training, Semantic segmentation,
intelligent vehicle
BibRef
Bovcon, B.[Borja],
Muhovic, J.[Jon],
Vranac, D.[Duško],
Mozetic, D.[Dean],
Perš, J.[Janez],
Kristan, M.[Matej],
MODS: A USV-Oriented Object Detection and Obstacle Segmentation
Benchmark,
ITS(23), No. 8, August 2022, pp. 13403-13418.
IEEE DOI
2208
Visualization, Object detection, Benchmark testing,
Image segmentation, Training, Sea measurements, Surveillance, benchmark
BibRef
Song, T.J.[Taek-Jin],
Jeong, J.[Jongoh],
Kim, J.H.[Jong-Hwan],
End-to-End Real-Time Obstacle Detection Network for Safe Self-Driving
via Multi-Task Learning,
ITS(23), No. 9, September 2022, pp. 16318-16329.
IEEE DOI
2209
Semantics, Feature extraction, Roads, Real-time systems,
Task analysis, Image segmentation, Point cloud compression,
real-time perception
BibRef
Shepel, I.[Ilya],
Adeshkin, V.[Vasily],
Belkin, I.[Ilya],
Yudin, D.A.[Dmitry A.],
Occupancy Grid Generation With Dynamic Obstacle Segmentation in
Stereo Images,
ITS(23), No. 9, September 2022, pp. 14779-14789.
IEEE DOI
2209
Semantics, Point cloud compression, Laser radar, Cameras,
Image segmentation, Sensors, Heuristic algorithms, Occupancy grid,
unmanned ground vehicle
BibRef
Su, Q.H.[Qing-Hua],
Wang, H.D.[Hao-Dong],
Xie, M.[Min],
Song, Y.[Yue],
Ma, S.B.[Shao-Bo],
Li, B.X.[Bo-Xiong],
Yang, Y.[Ying],
Wang, L.[Liyong],
Real-time traffic cone detection for autonomous driving based on
YOLOv4,
IET-ITS(16), No. 10, 2022, pp. 1380-1390.
DOI Link
2209
BibRef
Raja, G.[Gunasekaran],
Anbalagan, S.[Sudha],
Senthilkumar, S.[Senbagapriya],
Dev, K.[Kapal],
Qureshi, N.M.F.[Nawab Muhammad Faseeh],
SPAS: Smart Pothole-Avoidance Strategy for Autonomous Vehicles,
ITS(23), No. 10, October 2022, pp. 19827-19836.
IEEE DOI
2210
Roads, Speech recognition, Computational modeling,
Convolutional neural networks, Autonomous vehicles,
speech and gesture recognition
BibRef
Li, X.X.[Xiao-Xiao],
Xu, Z.H.[Zhi-Hao],
Li, S.[Shuai],
Su, Z.R.[Ze-Rong],
Zhou, X.F.[Xue-Feng],
Simultaneous Obstacle Avoidance and Target Tracking of Multiple
Wheeled Mobile Robots With Certified Safety,
Cyber(52), No. 11, November 2022, pp. 11859-11873.
IEEE DOI
2211
Robots, Collision avoidance, Mobile robots, Target tracking, Wheels,
Manipulators, Safety, Collision avoidance, motion planning,
quadratic programming
BibRef
Li, X.X.[Xiao-Xiao],
Xu, Z.H.[Zhi-Hao],
Su, Z.R.[Ze-Rong],
Wang, H.P.[Hong-Peng],
Li, S.[Shuai],
Distance- and Velocity-Based Simultaneous Obstacle Avoidance and
Target Tracking for Multiple Wheeled Mobile Robots,
ITS(25), No. 2, February 2024, pp. 1736-1748.
IEEE DOI
2402
Robots, Collision avoidance, Mobile robots, Wheels, Kinematics,
Task analysis, Safety, Collision avoidance, trajectory tracking,
optimization
BibRef
Mosbah, R.[Ramzi],
Guezouli, L.[Larbi],
Convolutional neural networks for obstacle detection on the road and
driving assistance,
IJCVR(12), No. 5, 2022, pp. 573-594.
DOI Link
2211
BibRef
Liu, C.L.[Cheng-Long],
Nie, T.[Tong],
Du, Y.C.[Yu-Chuan],
Cao, J.[Jing],
Wu, D.F.[Di-Fei],
Li, F.[Feng],
A Response-Type Road Anomaly Detection and Evaluation Method for
Steady Driving of Automated Vehicles,
ITS(23), No. 11, November 2022, pp. 21984-21995.
IEEE DOI
2212
Roads, Anomaly detection, Vibrations, Vehicle dynamics, Estimation,
Automobiles, Tires, Road anomaly detection, automated vehicles,
comfort evaluation
BibRef
Ramli, M.F.[Muhammad Faiz],
Shamsudin, S.S.[Syariful Syafiq],
Obstacle detection technique to solve poor texture appearance of the
obstacle by categorising image's region using cues from expansion of
feature points for small UAV,
IJCVR(13), No. 1, 2023, pp. 91-115.
DOI Link
2212
BibRef
Jiang, J.[Jianwu],
Li, F.[Fuda],
Yang, J.T.[Jun-Tao],
Kang, Z.Z.[Zhi-Zhong],
Li, J.W.[Jing-Wen],
Construction of indoor obstacle element map based on scene-aware
priori obstacle rules,
PandRS(195), 2023, pp. 43-64.
Elsevier DOI
2301
Obstacle element map, Obstacle mobility recognition,
Obstacle extraction, Scene recognition, Point cloud semantic segmentation
BibRef
Li, F.,
Wang, H.,
Akwensi, P.H.,
Kang, Z.Z.[Zhi-Zhong],
Construction of Obstacle Element Map Based On Indoor Scene Recognition,
Indoor3D19(819-825).
DOI Link
1912
BibRef
Ding, J.C.[Jian-Chuan],
Gao, L.P.[Ling-Ping],
Liu, W.X.[Wen-Xi],
Piao, H.[Haiyin],
Pan, J.[Jia],
Du, Z.J.[Zhen-Jun],
Yang, X.[Xin],
Yin, B.C.[Bao-Cai],
Monocular Camera-Based Complex Obstacle Avoidance via Efficient Deep
Reinforcement Learning,
CirSysVideo(33), No. 2, February 2023, pp. 756-770.
IEEE DOI
2302
Collision avoidance, Robots, Robot sensing systems, Semantics,
Measurement by laser beam, Cameras, Sensors, robot navigation
BibRef
Luo, Z.P.[Zhi-Peng],
Gao, L.P.[Li-Peng],
Xiang, H.D.[Hao-Dong],
Li, J.[Jonathan],
Road object detection for HD map: Full-element survey, analysis and
perspectives,
PandRS(197), 2023, pp. 122-144.
Elsevier DOI
2303
High-Definition map, Autonomous driving,
Road surface information extraction, Road object detection, 3D point clouds
BibRef
Chen, Y.L.[Yi-Lun],
Huang, S.[Shijia],
Liu, S.[Shu],
Yu, B.[Bei],
Jia, J.Y.[Jia-Ya],
DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D
Detectors,
PAMI(45), No. 4, April 2023, pp. 4416-4429.
IEEE DOI
2303
Feature extraction, Detectors, Cameras, Sensors, Costs, Solid modeling,
3D object detection, stereo matching, autonomous driving
BibRef
Gao, X.S.[Xiao-Shan],
Yan, L.[Liang],
Li, Z.J.[Zhi-Jun],
Wang, G.[Gang],
Chen, I.M.[I-Ming],
Improved Deep Deterministic Policy Gradient for Dynamic Obstacle
Avoidance of Mobile Robot,
SMCS(53), No. 6, June 2023, pp. 3675-3682.
IEEE DOI
2305
Mobile robots, Collision avoidance, Heuristic algorithms,
Q-learning, Navigation, Fuzzy logic, Force,
obstacle avoidance
BibRef
Chen, C.[Chen],
Yao, G.R.[Guo-Run],
Liu, L.[Lei],
Pei, Q.Q.[Qing-Qi],
Song, H.B.[Hou-Bing],
Dustdar, S.[Schahram],
A Cooperative Vehicle-Infrastructure System for Road Hazards
Detection With Edge Intelligence,
ITS(24), No. 5, May 2023, pp. 5186-5198.
IEEE DOI
2305
Roads, Image edge detection, Feature extraction, Accidents,
Data models, Task analysis, Training,
knowledge distillation
BibRef
Nguyen, V.D.[Vinh Dinh],
Trinh, T.D.[Thong Duc],
Tran, H.N.[Hoang Ngoc],
A Robust Triangular Sigmoid Pattern-Based Obstacle Detection
Algorithm in Resource-Limited Devices,
ITS(24), No. 6, June 2023, pp. 5936-5945.
IEEE DOI
2306
Feature extraction, Object detection, Roads,
Classification algorithms, Lighting, Charge coupled devices,
deep learning model
BibRef
Wang, Y.T.[Yi-Tian],
Lin, J.[Jun],
Zhang, L.[Liu],
Wang, T.H.[Tian-Hao],
Xu, H.[Hao],
Qi, Y.[Yuehan],
Zhang, G.[Guanyu],
Liu, Y.[Yang],
Stable Obstacle Avoidance Strategy for Crawler-Type Intelligent
Transportation Vehicle in Non-Structural Environment Based on
Attention-Learning,
ITS(24), No. 7, July 2023, pp. 7813-7830.
IEEE DOI
2307
Collision avoidance, Deep learning, Autonomous vehicles, Acoustics,
Humanoid robots, Stability criteria, Roads, Attention-LSTM,
obstacle avoidance strategy
BibRef
Fu, Y.J.[Yong-Jian],
Gao, D.[Dingli],
Liu, T.[Ting],
Zheng, H.[Hang],
Hao, D.[Dayang],
Pan, Z.J.[Zhi-Jie],
Evolving Into a Transformer: From a Training-Free Retrieval-Based
Method for Anomaly Obstacle Segmentation,
IP(32), 2023, pp. 6195-6209.
IEEE DOI
2311
BibRef
Vitale, F.[Francesco],
Roncoli, C.[Claudio],
Reference Tracking Optimization With Obstacle Avoidance via Task
Prioritization for Automated Driving,
ITS(25), No. 2, February 2024, pp. 1200-1214.
IEEE DOI
2402
Task analysis, Trajectory, Collision avoidance,
Behavioral sciences, Safety, Vehicle dynamics, Planning, mixed traffic
BibRef
Shi, Y.[Yi],
Zhao, S.X.[Shi-Xuan],
Wu, J.[Jiang],
Wu, Z.B.[Zhang-Bi],
Yan, H.M.[Hong-Mei],
Fixated Object Detection Based on Saliency Prior in Traffic Scenes,
CirSysVideo(34), No. 3, March 2024, pp. 1413-1426.
IEEE DOI Code:
WWW Link.
2403
Object detection, Visualization, Task analysis,
Computational modeling, Predictive models, Safety, Vehicles, deep learning
BibRef
Kuang, J.J.[Jian-Jie],
Tan, G.F.[Gang-Feng],
Guo, X.X.[Xue-Xun],
Pei, X.F.[Xiao-Fei],
Peng, D.Z.[Deng-Zhi],
Research of obstacle vehicles avoidance for automated heavy vehicle
platoon by switching the formation,
IET-ITS(18), No. 4, 2024, pp. 630-644.
DOI Link
2404
automated driving and intelligent vehicles, collision avoidance,
decision making, path planning, velocity control
BibRef
Zhang, X.Z.[Xi-Zheng],
Cao, X.[Xu],
Zhang, H.[Hui],
Shen, Y.P.[Yong-Peng],
Yuan, X.F.[Xiao-Fang],
Cui, Z.J.[Zi-Jian],
Lu, Z.Y.[Zhang-Yu],
An Intelligent Obstacle Detection for Autonomous Mining
Transportation With Electric Locomotive via Cellular
Vehicle-to-Everything and Vehicular Edge Computing,
ITS(25), No. 3, March 2024, pp. 3177-3190.
IEEE DOI
2405
Feature extraction, 6G mobile communication, Transportation,
Image edge detection, Edge computing, Detection algorithms,
attention mechanism
BibRef
Sun, B.Y.[Bang-Yong],
Ma, M.[Ming],
Yuan, N.Z.[Nian-Zeng],
Li, J.H.[Jun-Huai],
Yu, T.[Tao],
Detecting the Background-Similar Objects in Complex Transportation
Scenes,
ITS(25), No. 3, March 2024, pp. 2920-2932.
IEEE DOI
2405
Feature extraction, Task analysis, Semantics, Roads,
Object detection, Meteorology, Transportation, guide-learning
BibRef
Ding, M.[Meng],
Guan, S.[Song],
Liu, H.[Hao],
Yu, K.[Kuaikuai],
TIR-YOLO-ADAS: A thermal infrared object detection framework for
advanced driver assistance systems,
IET-ITS(18), No. 5, 2024, pp. 822-834.
DOI Link
2405
advanced driver assistance systems, infrared detectors, object detection
BibRef
Zhu, Y.[Yuan],
Xu, R.D.[Rui-Dong],
Tao, C.[Chongben],
An, H.[Hao],
Wang, H.[Huaide],
Sun, Z.P.[Zhi-Peng],
Lu, K.[Ke],
DS-Trans: A 3D Object Detection Method Based on a Deformable
Spatiotemporal Transformer for Autonomous Vehicles,
RS(16), No. 9, 2024, pp. 1621.
DOI Link
2405
BibRef
Du, B.[Bin],
Xie, W.[Wei],
Zhang, W.D.[Wei-Dong],
Chen, H.T.[Hong-Tian],
A Target Tracking Guidance for Unmanned Surface Vehicles in the
Presence of Obstacles,
ITS(25), No. 5, May 2024, pp. 4102-4115.
IEEE DOI Code:
WWW Link.
2405
Target tracking, Navigation, Collision avoidance, Vehicle dynamics,
Rivers, Reinforcement learning, Marine vehicles, obstacle avoidance
BibRef
Liu, Y.Z.[Ya-Zhou],
Wei, X.Y.[Xiang-Yu],
Lasang, P.[Pongsak],
Pranata, S.[Sugiri],
Subramanian, K.[Karthikk],
Seow, H.[Hocktong],
Ensemble Uncertainty Guided Road Scene Anomaly Detection:
A Simple Meta-Learning Approach,
ITS(25), No. 9, September 2024, pp. 10754-10765.
IEEE DOI Code:
WWW Link.
2409
Uncertainty, Roads, Anomaly detection, Training data, Data models, Training,
Task analysis, Anomaly detection, semantic segmentation, meta learning
BibRef
Fan, J.[Jiayu],
Murgovski, N.[Nikolce],
Liang, J.[Jun],
Elawad, A.[Amal],
Exact Obstacle Avoidance for Autonomous Vehicles in Polygonal Domains,
SMCS(54), No. 10, October 2024, pp. 5964-5976.
IEEE DOI
2410
Collision avoidance, Autonomous vehicles, Trajectory planning,
Planning, Shape, Trajectory, Vectors, Autonomous vehicles,
nonconvex vehicles and obstacles
BibRef
Zeng, S.[Shuai],
Zheng, W.Z.[Wen-Zhao],
Lu, J.W.[Ji-Wen],
Yan, H.B.[Hai-Bin],
Hardness-Aware Scene Synthesis for Semi-Supervised 3D Object
Detection,
MultMed(26), 2024, pp. 9644-9656.
IEEE DOI
2410
Object detection, Point cloud compression, Training,
Semisupervised learning, Data models, Predictive models,
autonomous driving
BibRef
Gratzer, A.L.[Alexander L.],
Broger, M.M.[Maximilian M.],
Schirrer, A.[Alexander],
Jakubek, S.[Stefan],
Two-Layer MPC Architecture for Efficient Mixed-Integer-Informed
Obstacle Avoidance in Real-Time,
ITS(25), No. 10, October 2024, pp. 13767-13784.
IEEE DOI
2410
Collision avoidance, Real-time systems, Predictive models,
Computer architecture, Computational modeling, Vehicle dynamics,
single-track model
BibRef
Zhang, H.C.[Han-Cheng],
Hu, Y.Y.[Yuan-Yuan],
Qian, Z.D.[Zhen-Dong],
Sha, J.[Jirui],
Xie, M.[Min],
Wan, Y.Y.[Yu-Yang],
Liu, P.F.[Peng-Fei],
Enhancing Rare Object Detection on Roadways Through Conditional
Diffusion Models for Data Augmentation,
ITS(25), No. 11, November 2024, pp. 19018-19029.
IEEE DOI
2411
Diffusion models, Training, Object detection, Accuracy, Roads,
Noise measurement, Gaussian noise, Traffic scene perception,
data augmentation
BibRef
Chen, H.[Hao],
Min, B.W.[Byung-Won],
Zhang, H.[Haifei],
A study on a target detection model for autonomous driving tasks,
IET-IPR(18), No. 12, 2024, pp. 3447-3459.
DOI Link
2411
image classification, image processing, learning (artificial intelligence)
BibRef
Song, Z.[Ziying],
Liu, L.[Lin],
Jia, F.[Feiyang],
Luo, Y.[Yadan],
Jia, C.Y.[Cai-Yan],
Zhang, G.X.[Guo-Xin],
Yang, L.[Lei],
Wang, L.[Li],
Robustness-Aware 3D Object Detection in Autonomous Driving: A Review
and Outlook,
ITS(25), No. 11, November 2024, pp. 15407-15436.
IEEE DOI
2411
Robustness, Object detection, Autonomous vehicles, Accuracy, Sensors,
Noise, 3D object detection, perception, robustness, autonomous driving
BibRef
Lin, J.P.[Jin-Peng],
Liang, Z.H.[Zhi-Hao],
Deng, S.[Shengheng],
Cai, L.[Lile],
Jiang, T.[Tao],
Li, T.R.[Tian-Rui],
Jia, K.[Kui],
Xu, X.[Xun],
Exploring Diversity-Based Active Learning for 3D Object Detection in
Autonomous Driving,
ITS(25), No. 11, November 2024, pp. 15454-15466.
IEEE DOI
2411
Object detection, Costs, Annotations, Detectors, Uncertainty,
Diversity reception, Feature extraction, Autonomous vehicles,
autonomous driving
BibRef
Tang, P.[Pin],
Wang, Z.D.[Zhong-Dao],
Wang, G.Q.[Guo-Qing],
Zheng, J.[Jilai],
Ren, X.X.[Xiang-Xuan],
Feng, B.[Bailan],
Ma, C.[Chao],
SparseOcc: Rethinking Sparse Latent Representation for Vision-Based
Semantic Occupancy Prediction,
CVPR24(15035-15044)
IEEE DOI
2410
Interpolation, Technological innovation, Solid modeling, Sparse approximation,
Scalability, Semantics, Occupancy Prediction, Autonomous Driving
BibRef
Huang, K.C.[Kuan-Chih],
Lyu, W.J.[Wei-Jie],
Yang, M.H.[Ming-Hsuan],
Tsai, Y.H.[Yi-Hsuan],
PTT: Point-Trajectory Transformer for Efficient Temporal 3D Object
Detection,
CVPR24(14938-14947)
IEEE DOI Code:
WWW Link.
2410
Point cloud compression, Representation learning, Runtime,
Memory management, Object detection, Detectors,
Autonomous Driving
BibRef
Xia, Y.[Yan],
Shi, L.[Letian],
Ding, Z.[Zifeng],
Henriques, J.F.[João F.],
Cremers, D.[Daniel],
Text2Loc: 3D Point Cloud Localization from Natural Language,
CVPR24(14958-14967)
IEEE DOI Code:
WWW Link.
2410
Location awareness, Point cloud compression, Visualization,
Accuracy, Semantics, Pipelines, 3D localization, point cloud, text,
autonomous driving
BibRef
Shoeb, Y.,
Chan, R.,
Schwalbe, G.,
Nowzad, A.,
Güney, F.,
Gottschalk, H.,
Have We Ever Encountered This Before? Retrieving Out-of-Distribution
Road Obstacles from Driving Scenes,
WACV24(7381-7391)
IEEE DOI
2404
Image segmentation, Roads, Training data, Streaming media, Safety,
Recording, Task analysis, Applications, Autonomous Driving,
Vision + language and/or other modalities
BibRef
Tong, W.W.[Wen-Wen],
Sima, C.[Chonghao],
Wang, T.[Tai],
Chen, L.[Li],
Wu, S.[Silei],
Deng, H.M.[Han-Ming],
Gu, Y.[Yi],
Lu, L.W.[Le-Wei],
Luo, P.[Ping],
Lin, D.[Dahua],
Li, H.Y.[Hong-Yang],
Scene as Occupancy,
ICCV23(8372-8381)
IEEE DOI
2401
BibRef
Wei, Y.[Yi],
Zhao, L.Q.[Lin-Qing],
Zheng, W.Z.[Wen-Zhao],
Zhu, Z.[Zheng],
Zhou, J.[Jie],
Lu, J.W.[Ji-Wen],
SurroundOcc: Multi-Camera 3D Occupancy Prediction for Autonomous
Driving,
ICCV23(21672-21683)
IEEE DOI Code:
WWW Link.
2401
BibRef
Agro, B.[Ben],
Sykora, Q.[Quinlan],
Casas, S.[Sergio],
Urtasun, R.[Raquel],
Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving,
CVPR23(1379-1388)
IEEE DOI
2309
BibRef
Choe, T.E.[Tae Eun],
Wu, J.[Jane],
Lin, X.L.[Xiao-Lin],
Kwon, K.[Karen],
Park, M.W.[Min-Woo],
HazardNet: Road Debris Detection by Augmentation of Synthetic Models,
WAD23(161-171)
IEEE DOI
2309
BibRef
Lambert, R.[Reeve],
Li, J.W.[Jian-Wen],
Chavez-Galaviz, J.[Jalil],
Mahmoudian, N.[Nina],
A Survey on the Deployability of Semantic Segmentation Networks for
Fluvial Navigation,
Maritime23(255-264)
IEEE DOI
2302
Training, Embedded systems, Navigation, Semantic segmentation,
Semantics, Neural networks, Training data
BibRef
Tian, Y.[Yu],
Liu, Y.Y.[Yu-Yuan],
Pang, G.S.[Guan-Song],
Liu, F.[Fengbei],
Chen, Y.H.[Yuan-Hong],
Carneiro, G.[Gustavo],
Pixel-Wise Energy-Biased Abstention Learning for Anomaly Segmentation
on Complex Urban Driving Scenes,
ECCV22(XXIX:246-263).
Springer DOI
2211
BibRef
Li, K.[Kaican],
Chen, K.[Kai],
Wang, H.Y.[Hao-Yu],
Hong, L.Q.[Lan-Qing],
Ye, C.Q.[Chao-Qiang],
Han, J.H.[Jian-Hua],
Chen, Y.[Yukuai],
Zhang, W.[Wei],
Xu, C.J.[Chun-Jing],
Yeung, D.Y.[Dit-Yan],
Liang, X.D.[Xiao-Dan],
Li, Z.G.[Zhen-Guo],
Xu, H.[Hang],
CODA: A Real-World Road Corner Case Dataset for Object Detection in
Autonomous Driving,
ECCV22(XXXVIII:406-423).
Springer DOI
2211
BibRef
Luo, C.X.[Chen-Xu],
Yang, X.D.[Xiao-Dong],
Yuille, A.L.[Alan L.],
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving,
ICCV21(10468-10477)
IEEE DOI
2203
Point cloud compression, Solid modeling, Pediatrics, Laser radar,
Tracking, Motion estimation, Motion and tracking,
BibRef
Jung, S.[Sanghun],
Lee, J.[Jungsoo],
Gwak, D.[Daehoon],
Choi, S.[Sungha],
Choo, J.[Jaegul],
Standardized Max Logits: A Simple yet Effective Approach for
Identifying Unexpected Road Obstacles in Urban-Scene Segmentation,
ICCV21(15405-15414)
IEEE DOI
2203
Training, Image segmentation, Visualization, Smoothing methods,
Roads, Semantics, Vision for robotics and autonomous vehicles,
grouping and shape
BibRef
Žust, L.[Lojze],
Kristan, M.[Matej],
Learning Maritime Obstacle Detection from Weak Annotations by
Scaffolding,
WACV22(1888-1897)
IEEE DOI
2202
Training, Costs, Annotations, Image edge detection,
Sea measurements, Labeling, Vision for Robotics
BibRef
Robinet, F.[François],
Parera, C.[Claudia],
Hundt, C.[Christian],
Frank, R.[Raphaël],
Weakly-Supervised Free Space Estimation through Stochastic
Co-Teaching,
Hazards22(618-627)
IEEE DOI
2202
Training, Image segmentation, Adaptation models, Annotations,
Stochastic processes, Estimation, Training data
BibRef
Liu, P.[Pei],
Yang, G.R.[Guo-Run],
Li, P.X.[Pei-Xuan],
Wang, Z.[Zhe],
Shi, J.P.[Jian-Ping],
Deng, Z.D.[Zhi-Dong],
Qiao, Y.[Yu],
MP-Mono: Monocular 3D Detection Using Multiple Priors for Autonomous
Driving,
3DV21(535-544)
IEEE DOI
2201
Geometry, Shape, Clustering algorithms, Object detection,
Inference algorithms, Proposals
BibRef
Karakostas, I.[Iason],
Mygdalis, V.[Vasileios],
Pitas, I.[Ioannis],
Adversarial Optimization Scheme for Online Tracking Model Adaptation
In Autonomous Systems,
ICIP21(3358-3362)
IEEE DOI
2201
Training, Adaptation models, Visualization, Target tracking,
Embedded systems, Computational modeling, Computer architecture,
autonomous systems
BibRef
Kishore, A.[Aman],
Choe, T.E.[Tae Eun],
Kwon, J.[Junghyun],
Park, M.W.[Min-Woo],
Hao, P.F.[Peng-Fei],
Mittel, A.[Akshita],
Synthetic Data Generation using Imitation Training,
AVVision21(3071-3079)
IEEE DOI
2112
Training, Measurement, Deep learning, Machine learning algorithms,
Estimation, Object detection
BibRef
Besnier, V.[Victor],
Picard, D.[David],
Briot, A.[Alexandre],
Learning Uncertainty for Safety-Oriented Semantic Segmentation in
Autonomous Driving,
ICIP21(3353-3357)
IEEE DOI
2201
Training, Uncertainty, Measurement uncertainty, Semantics,
Estimation, Training data, Observers, Uncertainty, Segmentation,
Autonomous Driving
BibRef
Duong, L.H.[Le Hoang],
Trung, H.T.[Huynh Thanh],
Tam, P.M.[Pham Minh],
Ko, G.[Gwangzeen],
Moon, J.I.[Jung Ick],
Jo, J.[Jun],
Hung, N.Q.V.[Nguyen Quoc Viet],
ODAR: A Lightweight Object Detection Framework for Autonomous Driving
Robots,
DICTA21(01-08)
IEEE DOI
2201
Deep learning, Wireless communication, Computational modeling,
Object detection, Detectors, Feature extraction, Real-time systems,
deep neural network
BibRef
Sagar, A.[Abhinav],
Soundrapandiyan, R.[RajKumar],
Semantic Segmentation With Multi Scale Spatial Attention For Self
Driving Cars,
VSPW21(2650-2656)
IEEE DOI
2112
Measurement, Training, Image segmentation, Semantics, Neural networks
BibRef
Agarwal, A.[Ashutosh],
Majee, A.[Anay],
Subramanian, A.[Anbumani],
Arora, C.[Chetan],
Attention Guided Cosine Margin to Overcome Class-Imbalance in
Few-Shot Road Object Detection,
Novelty22(221-230)
IEEE DOI
2202
Measurement, Head, Roads, Detectors, Object detection, Benchmark testing
BibRef
Tambwekar, A.[Anuj],
Agrawal, K.[Kshitij],
Majee, A.[Anay],
Subramanian, A.[Anbumani],
Few-Shot Batch Incremental Road Object Detection via Detector Fusion,
AVVision21(3063-3070)
IEEE DOI
2112
Deep learning, Roads, Object detection,
Detectors, Robustness
BibRef
Reuse, M.[Matthias],
Simon, M.[Martin],
Sick, B.[Bernhard],
About the Ambiguity of Data Augmentation for 3D Object Detection in
Autonomous Driving,
ERCVAD21(979-987)
IEEE DOI
2112
Training, Manifolds,
Detectors, Object detection
BibRef
Plebe, A.[Alice],
Kooij, J.F.P.[Julian F. P.],
Papini, G.P.R.[Gastone Pietro Rosati],
da Lio, M.[Mauro],
Occupancy Grid Mapping with Cognitive Plausibility for Autonomous
Driving Applications,
AVVision21(2934-2941)
IEEE DOI
2112
Visualization, Navigation,
Information filters, Cognition, Vehicle dynamics
BibRef
Fugošic, K.[Kristijan],
Šaric, J.[Josip],
Šegvic, S.[Siniša],
Multimodal Semantic Forecasting Based on Conditional Generation of
Future Features,
GCPR20(474-487).
Springer DOI
2110
BibRef
Rahman, Q.M.[Quazi Marufur],
Sünderhauf, N.[Niko],
Dayoub, F.[Feras],
Per-frame mAP Prediction for Continuous Performance Monitoring of
Object Detection During Deployment,
WACVW21(152-160) Autonomous Vehicle Vision
IEEE DOI
2105
Measurement, Deep learning, Object detection, Detectors, Feature extraction
BibRef
Wang, W.[Wei],
Zhou, S.[Shibo],
Li, J.X.[Jing-Xi],
Li, X.H.[Xiao-Hua],
Yuan, J.S.[Jun-Song],
Jin, Z.P.[Zhan-Peng],
Temporal Pulses Driven Spiking Neural Network for Time and Power
Efficient Object Recognition in Autonomous Driving,
ICPR21(6359-6366)
IEEE DOI
2105
Laser radar, Power demand, Computational modeling, Neural networks,
Vision sensors, Real-time systems, Object recognition
BibRef
Tian, K.[Kun],
Zhou, T.[Tong],
Xiang, S.M.[Shi-Ming],
Pan, C.H.[Chun-Hong],
Forground-Guided Vehicle Perception Framework,
ICPR21(8015-8020)
IEEE DOI
2105
Training, Deep learning, Visualization, Vehicle detection,
Pattern recognition, Task analysis, attention
BibRef
Metzger, K.A.[Kai A.],
Mortimer, P.[Peter],
Wuensche, H.J.[Hans-Joachim],
A Fine-Grained Dataset and its Efficient Semantic Segmentation for
Unstructured Driving Scenarios,
ICPR21(7892-7899)
IEEE DOI
2105
Semantics, Vegetation mapping, Lighting,
Autonomous vehicles, Meteorology, vegetation dataset,
efficient
BibRef
Ohgushi, T.[Toshiaki],
Horiguchi, K.[Kenji],
Yamanaka, M.[Masao],
Road Obstacle Detection Method Based on an Autoencoder with Semantic
Segmentation,
ACCV20(VI:223-238).
Springer DOI
2103
BibRef
Li, P.X.[Pei-Xuan],
Zhao, H.[Huaici],
Liu, P.F.[Peng-Fei],
Cao, F.[Feidao],
RTM3D: Real-time Monocular 3d Detection from Object Keypoints for
Autonomous Driving,
ECCV20(III:644-660).
Springer DOI
2012
BibRef
Wang, J.[Jun],
Lan, S.Y.[Shi-Yi],
Gao, M.F.[Ming-Fei],
Davis, L.S.[Larry S.],
Infofocus: 3d Object Detection for Autonomous Driving with Dynamic
Information Modeling,
ECCV20(X:405-420).
Springer DOI
2011
BibRef
Varghese, S.,
Bayzidi, Y.,
Bär, A.,
Kapoor, N.,
Lahiri, S.,
Schneider, J.D.,
Schmidt, N.,
Schlicht, P.,
Hüger, F.,
Fingscheidt, T.,
Unsupervised Temporal Consistency Metric for Video Segmentation in
Highly-Automated Driving,
SAIAD20(1369-1378)
IEEE DOI
2008
Semantics, Measurement, Image segmentation, Optical imaging,
Video sequences, Adaptive optics, Nonlinear optics
BibRef
Walsh, S.[Sean],
Ku, J.[Jason],
Pon, A.D.[Alex D.],
Waslander, S.L.[Steven L.],
Leveraging Temporal Data for Automatic Labelling of Static Vehicles,
CRV20(134-141)
IEEE DOI
2006
The vehicle maps to the same location each frame.
labelling, object detection, dataset, 3D
BibRef
Chen, N.F.Y.,
Pseudo-Labels for Supervised Learning on Dynamic Vision Sensor Data,
Applied to Object Detection Under Ego-Motion,
ECVW18(757-75709)
IEEE DOI
1812
Vision sensors, Cameras, Vehicle dynamics, Object detection,
Voltage control, Supervised learning, Automobiles
BibRef
Khodabandeh, M.[Mehran],
Vahdat, A.[Arash],
Ranjbar, M.[Mani],
Macready, W.[William],
A Robust Learning Approach to Domain Adaptive Object Detection,
ICCV19(480-490)
IEEE DOI
2004
learning (artificial intelligence), object detection,
domain shift, unconstrained road environments, Computational modeling
BibRef
Choi, H.M.[Hee Min],
Kang, H.[Hyoa],
Hyun, Y.[Yoonsuk],
Multi-View Reprojection Architecture for Orientation Estimation,
ADW19(2357-2366)
IEEE DOI
2004
geometry, image motion analysis, image reconstruction,
object detection, pose estimation, regression analysis,
MVRA
BibRef
Ma, X.,
Wang, Z.,
Li, H.,
Zhang, P.,
Ouyang, W.,
Fan, X.,
Accurate Monocular 3D Object Detection via Color-Embedded 3D
Reconstruction for Autonomous Driving,
ICCV19(6850-6859)
IEEE DOI
2004
driver information systems, feature extraction,
image colour analysis, image fusion, image reconstruction, Transforms
BibRef
Blum, H.,
Sarlin, P.,
Nieto, J.,
Siegwart, R.,
Cadena, C.,
Fishyscapes:
A Benchmark for Safe Semantic Segmentation in Autonomous Driving,
ADW19(2403-2412)
IEEE DOI
2004
Bayes methods, image segmentation,
learning (artificial intelligence), mobile robots,
deep learning for robotics
BibRef
Hua, M.,
Nan, Y.,
Lian, S.,
Small Obstacle Avoidance Based on RGB-D Semantic Segmentation,
CVRSUAD19(886-894)
IEEE DOI
2004
cameras, collision avoidance, image capture, image colour analysis,
image segmentation, image sensors, image sequences,
motion blur
BibRef
Dahal, A.,
Hossen, J.,
Sumanth, C.,
Sistu, G.,
Malhan, K.,
Amasha, M.,
Yogamani, S.,
DeepTrailerAssist: Deep Learning Based Trailer Detection, Tracking
and Articulation Angle Estimation on Automotive Rear-View Camera,
ADW19(2339-2346)
IEEE DOI
2004
cameras, driver information systems, embedded systems,
learning (artificial intelligence), neural nets,
Deep Learning
BibRef
Orsic, M.[Marin],
Kreso, I.[Ivan],
Bevandic, P.[Petra],
Segvic, S.[Sinisa],
In Defense of Pre-Trained ImageNet Architectures for Real-Time Semantic
Segmentation of Road-Driving Images,
CVPR19(12599-12608).
IEEE DOI
2002
BibRef
Yang, J.,
Kang, Z.,
A Gradient-region Constrained Level Set Method for Autonomous Rock
Detection From Mars Rover Image,
PRSM19(1479-1485).
DOI Link
1912
Rocks. On the surface.
BibRef
Wang, Y.,
Peng, M.,
Di, K.,
Wan, W.,
Liu, Z.,
Yue, Z.,
Xing, Y.,
Mao, X.,
Teng, B.,
Vision Based Obstacle Detection Using Rover Stereo Images,
PRSM19(1471-1477).
DOI Link
1912
BibRef
Hashimoto, S.,
Mori, K.,
System Construction for Both Lunar Obstacle Detection and Annotation
Support Based on Neurons' Decision Validity,
ICIP19(3447-3451)
IEEE DOI
1910
Deep learning, lunar crater, annotation
BibRef
Liu, R.,
Luo, F.,
Yuan, Z.,
Beyond Bounding Box: Fine-Grained Vehicle Detection via Single Stage
Detector with Hierarchical output,
ICIP19(3950-3954)
IEEE DOI
1910
vehicle detection, beyond bounding box, autonomous driving, deep learning
BibRef
Kiran, B.R.[B. Ravi],
Roldão, L.[Luis],
Irastorza, B.[Beñat],
Verastegui, R.[Renzo],
Süss, S.[Sebastian],
Yogamani, S.[Senthil],
Talpaert, V.[Victor],
Lepoutre, A.[Alexandre],
Trehard, G.[Guillaume],
Real-Time Dynamic Object Detection for Autonomous Driving Using Prior
3D-Maps,
AutoNUE18(V:567-582).
Springer DOI
1905
BibRef
Hsu, Y.,
Zhong, K.,
Perng, J.,
Yin, T.,
Chen, C.,
Developing an On-Road Obstacle Detection System Using Monovision,
IVCNZ18(1-9)
IEEE DOI
1902
Feature extraction, Classification algorithms, Automobiles,
Motorcycles, Support vector machines, Cameras, Object recognition,
object recognition
BibRef
Saleem, N.H.,
Griffin, A.,
Klette, R.,
Monocular Stixels: A LIDAR-guided Approach,
IVCNZ18(1-6)
IEEE DOI
1902
Laser radar, Cameras, Roads, Estimation,
Sensors, Interpolation
BibRef
Garcia, A.S.,
Figueroa, H.R.,
Hernandez, A.M.,
Ramirez, E.R.,
Uribe, D.O.,
Finding learned obstacles to avoid collisions in autonomous robotic
navigation,
IVCNZ17(1-5)
IEEE DOI
1902
collision avoidance, image colour analysis, image segmentation,
image sequences, learning (artificial intelligence),
Apparent size
BibRef
Li, P.L.[Pei-Liang],
Qin, T.[Tong],
Shen, S.J.[Shao-Jie],
Stereo Vision-Based Semantic 3D Object and Ego-Motion Tracking for
Autonomous Driving,
ECCV18(II: 664-679).
Springer DOI
1810
BibRef
Patra, S.,
Maheshwari, P.,
Yadav, S.,
Banerjee, S.,
Arora, C.,
A Joint 3D-2D Based Method for Free Space Detection on Roads,
WACV18(643-652)
IEEE DOI
1806
SLAM (robots), cameras, feature extraction, image classification,
image representation, image segmentation, image sequences,
BibRef
Anisimov, D.,
Khanova, T.,
Towards lightweight convolutional neural networks for object
detection,
AVSS17(1-8)
IEEE DOI
1806
feature extraction, inference mechanisms, object detection,
road vehicles, self-organising feature maps,
Real-time systems
BibRef
Wolcott, R.[Ryan],
Eustice, R.[Ryan],
Probabilistic Obstacle Partitioning of Monocular Video for Autonomous
Vehicles,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Lin, C.T.,
Santoso, P.S.,
Chen, S.P.,
Lin, H.J.,
Lai, S.H.,
Fast Vehicle Detector for Autonomous Driving,
CVRoads17(222-229)
IEEE DOI
1802
Detectors, Feature extraction, Object detection, Proposals,
Real-time systems, Training, Vehicle detection
BibRef
Garnett, N.,
Silberstein, S.,
Oron, S.,
Fetaya, E.,
Verner, U.,
Ayash, A.,
Goldner, V.,
Cohen, R.,
Horn, K.,
Levi, D.,
Real-Time Category-Based and General Obstacle Detection for
Autonomous Driving,
CVRoads17(198-205)
IEEE DOI
1802
Laser radar, Neurons, Object detection, Pose estimation,
Training
BibRef
Kostavelis, I.[Ioannis],
Kargakos, A.[Andreas],
Giakoumis, D.[Dimitrios],
Tzovaras, D.[Dimitrios],
Robot's Workspace Enhancement with Dynamic Human Presence for
Socially-Aware Navigation,
CVS17(279-288).
Springer DOI
1711
Other obstacles are people.
BibRef
Lee, S.[Sinjae],
Kee, S.C.[Seok-Cheol],
The New Detection Algorithm for an Obstacle's Information in Low Speed
Vehicles,
CVS17(427-436).
Springer DOI
1711
BibRef
Franzius, M.,
Dunn, M.,
Einecke, N.,
Dirnberger, R.,
Embedded Robust Visual Obstacle Detection on Autonomous Lawn Mowers,
ECVW17(361-369)
IEEE DOI
1709
Cameras, Collision avoidance, Image color analysis,
Image segmentation, Robots, Robustness, Sun
BibRef
Gaisser, F.,
Jonker, P.P.,
Road user detection with convolutional neural networks:
An application to the autonomous shuttle WEpod,
MVA17(101-104)
DOI Link
1708
Cameras, Radar detection, Roads, Sensors, Vehicle dynamics, Visualization
BibRef
El Mikaty, M.,
Stathaki, T.,
Detection of cars in complex urban areas,
MVA17(105-108)
DOI Link
1708
Automobiles, Covariance matrices, Eigenvalues and eigenfunctions,
Feature extraction, Histograms, Image, color, analysis
BibRef
Carrillo, D.A.P.,
Sutherland, A.,
Fast Obstacle Detection Using Sparse Edge-Based Disparity Maps,
3DV16(66-72)
IEEE DOI
1701
image segmentation
BibRef
Saleh, K.,
Hossny, M.,
Nahavandi, S.,
Kangaroo Vehicle Collision Detection Using Deep Semantic Segmentation
Convolutional Neural Network,
DICTA16(1-7)
IEEE DOI
1701
Cameras
BibRef
Sadhu, T.,
Albu, A.B.,
Hoeberechts, M.,
Wisernig, E.,
Wyvill, B.,
Obstacle Detection for Image-Guided Surface Water Navigation,
CRV16(45-52)
IEEE DOI
1612
linear regression
BibRef
Kovács, L.,
Visual Monocular Obstacle Avoidance for Small Unmanned Vehicles,
ECVW16(877-884)
IEEE DOI
1612
BibRef
Levi, D.[Dan],
Garnett, N.[Noa],
Fetaya, E.[Ethan],
StixelNet:
A Deep Convolutional Network for Obstacle Detection and Road Segmentation,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Jafari, M.[Mohammad],
Sengupta, S.[Shamik],
La, H.M.[Hung Manh],
Adaptive Flocking Control of Multiple Unmanned Ground Vehicles by Using
a UAV,
ISVC15(II: 628-637).
Springer DOI
1601
BibRef
Alhamwi, A.[Ali],
Vandeportaele, B.[Bertrand],
Piat, J.[Jonathan],
Real Time Vision System for Obstacle Detection and Localization on FPGA,
CVS15(80-90).
Springer DOI
1507
BibRef
Ruhle, J.[Johannes],
Rodner, E.[Erik],
Denzler, J.[Joachim],
Beyond thinking in common categories:
Predicting obstacle vulnerability using large random codebooks,
MVA15(198-201)
IEEE DOI
1507
Cameras
BibRef
Schauerte, B.[Boris],
Koester, D.[Daniel],
Martinez, M.[Manel],
Stiefelhagen, R.[Rainer],
Way to Go! Detecting Open Areas Ahead of a Walking Person,
ACVR14(349-360).
Springer DOI
1504
BibRef
Mittal, A.[Ajay],
Bensrhair, A.[Abdelaziz],
Hancock, E.R.[Edwin R.],
Obstacle detection by means of stereo feature matching,
ICIP14(1618-1622)
IEEE DOI
1502
Cameras
BibRef
Nguyen, T.[Thang],
La, H.M.[Hung Manh],
Formation Control of Multiple Rectangular Agents with Limited
Communication Ranges,
ISVC14(II: 915-924).
Springer DOI
1501
BibRef
Chen, H.T.[Hua-Tsung],
Lai, C.Y.[Chun-Yu],
Hsu, C.C.[Chun-Chieh],
Lee, S.Y.[Suh-Yin],
Lin, B.S.P.[Bao-Shuh Paul],
Ho, C.P.[Chien-Peng],
Vision-Based Road Bump Detection Using a Front-Mounted Car Camcorder,
ICPR14(4537-4542)
IEEE DOI
1412
Cameras
BibRef
Song, S.Y.[Shi-Yu],
Chandraker, M.[Manmohan],
Robust Scale Estimation in Real-Time Monocular SFM for Autonomous
Driving,
CVPR14(1566-1573)
IEEE DOI
1409
Autonomous driving; Object localization; Structure from motion
BibRef
Shrivastava, P.,
Das, S.,
Fast area of contact computation for collision detection of a
deformable object using FEM,
NCVPRIPG13(1-4)
IEEE DOI
1408
finite element analysis
BibRef
Irki, Z.[Zohir],
Oussar, A.[Abdelatif],
Hamdi, M.[Mohamed],
Seddi, F.[Fatah],
A Fuzzy UV-disparity based approach for obstacles avoidance,
WSSIP14(67-70)
1406
Algorithm design and analysis
BibRef
Jayalath, A.N.,
Wang, Z.P.[Zheng-Ping],
Vision based inter-vehicle distance estimation with extended outlier
correspondence,
IVCNZ13(323-327)
IEEE DOI
1402
computer vision
BibRef
Holz, D.,
Nieuwenhuisen, M.,
Droeschel, D.,
Schreiber, M.,
Behnke, S.,
Towards Multimodal Omnidirectional Obstacle Detection for Autonomous
Unmanned Aerial Vehicles,
UAV-g13(201-206).
DOI Link
1311
BibRef
Haghighi, R.[Reza],
Cheah, C.C.[Chien Chern],
Distributed shape formation of multi-agent systems,
ICARCV12(1466-1471).
IEEE DOI
1304
robots in formation within a region.
BibRef
Wang, H.[Han],
Wei, Z.[Zhuo],
Ow, C.S.[Chek Seng],
Ho, K.T.[Kah Tong],
Feng, B.[Benjamin],
Huang, J.J.[Jun-Jie],
Improvement in real-time obstacle detection system for USV,
ICARCV12(1317-1322).
IEEE DOI
1304
BibRef
Dong, Y.[Yi],
Huang, J.[Jie],
Leader-following rendezvous with connectivity preservation of
single-integrator multi-agent systems,
ICARCV12(1686-1690).
IEEE DOI
1304
BibRef
Stein, P.,
Spalanzani, A.,
Laugier, C.,
Santos, V.,
Leader selection and following in dynamic environments,
ICARCV12(124-129).
IEEE DOI
1304
BibRef
Huang, J.Y.[Jing-Yi],
Yao, J.[Jing],
Sun, J.[Jian],
Wang, J.[Jun],
A new coupled map car-following model under inter-vehicle communication,
ICARCV12(430-435).
IEEE DOI
1304
BibRef
Ronen, R.,
Arogeti, S.,
Coordinated path following control for a group of car-like vehicles,
ICARCV12(719-724).
IEEE DOI
1304
BibRef
Molineros, J.[Jose],
Cheng, S.Y.[Shinko Y.],
Owechko, Y.[Yuri],
Levi, D.[Dan],
Zhang, W.[Wende],
Monocular Rear-View Obstacle Detection Using Residual Flow,
CVVT12(II: 504-514).
Springer DOI
1210
BibRef
Kyutoku, H.[Haruya],
Deguchi, D.[Daisuke],
Takahashi, T.[Tomokazu],
Mekada, Y.[Yoshito],
Ide, I.[Ichiro],
Murase, H.[Hiroshi],
Subtraction-Based Forward Obstacle Detection Using Illumination
Insensitive Feature for Driving-Support,
CVVT12(II: 515-525).
Springer DOI
1210
BibRef
Iyidir, I.K.[Ibrahim K.],
Tek, F.B.[F. Boray],
Klrcali, D.[Dogan],
Adaptive Visual Obstacle Detection for Mobile Robots Using Monocular
Camera and Ultrasonic Sensor,
CVVT12(II: 526-535).
Springer DOI
1210
BibRef
Broten, G.[Gregory],
Mackay, D.[David],
Collier, J.[Jack],
Probabilistic Obstacle Detection Using 2 1/2 D Terrain Maps,
CRV12(17-23).
IEEE DOI
1207
BibRef
Wijnhoven, R.G.J.[Rob G.J.],
de With, P.H.N.[Peter H.N.],
Unsupervised sub-categorization for object detection:
Finding cars from a driving vehicle,
CVVT11(2077-2083).
IEEE DOI
1201
BibRef
Kanitkar, A.[Aditya],
Bharti, B.[Brijendra],
Hivarkar, U.N.[Umesh N.],
Vision based preceding vehicle detection using self shadows and
structural edge features,
ICIIP11(1-6).
IEEE DOI
1112
BibRef
Hou, A.L.[A-Lin],
Cui, X.[Xue],
Geng, Y.[Ying],
Yuan, W.J.[Wen-Ju],
Hou, J.[Jie],
Measurement of Safe Driving Distance Based on Stereo Vision,
ICIG11(902-907).
IEEE DOI
1109
BibRef
Ibrahim, A.W.N.,
Ching, P.W.[Pang Wee],
Seet, G.L.G.,
Lau, W.S.M.,
Czajewski, W.,
Moving Objects Detection and Tracking Framework for UAV-based
Surveillance,
PSIVT10(456-461).
IEEE DOI
1011
BibRef
Tsai, Y.M.[Yi-Min],
Huang, K.Y.[Keng-Yen],
Tsai, C.C.[Chih-Chung],
Chen, L.G.[Liang-Gee],
An exploration of on-road vehicle detection using hierarchical scaling
schemes,
ICIP10(3937-3940).
IEEE DOI
1009
BibRef
Teshima, T.[Tomoaki],
Saito, H.[Hideo],
Shimizu, M.[Masayoshi],
Taguchi, A.[Akinori],
Classification of Wet/Dry Area Based on the Mahalanobis Distance of
Feature from Time Space Image Analysis,
MVA09(467-).
PDF File.
0905
On a road. Water leads to reflections.
BibRef
Tomita, M.[Masaaki],
Yamamoto, M.[Motoji],
A Sensor Based Navigation Algorithm for Moving Obstacles Assuring
Convergence Property,
MVA09(295-).
PDF File.
0905
BibRef
Kocamaz, M.K.[Mehmet Kemal],
Rasmussen, C.[Christopher],
Automatic Refinement of Foreground Regions for Robot Trail Following,
ICPR10(4077-4080).
IEEE DOI
1008
BibRef
Arora, S.[Sankalp],
Indu, S.,
A Novel Time Decaying Approach to Obstacle Avoidance,
PReMI09(543-548).
Springer DOI
0912
BibRef
Tang, R.,
Green, R.,
Obstacle avoidance on a mobile inverted pendulum robot,
IVCNZ09(254-259).
IEEE DOI
0911
BibRef
Fazli, S.[Saeid],
Dehnavi, H.M.[Hajar Mohammadi],
Moallem, P.[Payman],
A Robust Obstacle Detection Method in Highly Textured Environments
Using Stereo Vision,
ICMV09(97-100).
IEEE DOI
0912
BibRef
Chavez, A.[Aaron],
Gustafson, D.[David],
Vision-Based Obstacle Avoidance Using SIFT Features,
ISVC09(II: 550-557).
Springer DOI
0911
BibRef
Naroditsky, O.[Oleg],
Zhu, Z.W.[Zhi-Wei],
Das, A.[Aveek],
Samarasekera, S.[Supun],
Oskiper, T.[Taragay],
Kumar, R.[Rakesh],
VideoTrek: A vision system for a tag-along robot,
CVPR09(1101-1108).
IEEE DOI
0906
BibRef
Klein, J.[John],
Lecomte, C.[Christele],
Miche, P.[Pierre],
Preceding car tracking using belief functions and a particle filter,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Rass, S.[Stefan],
Fuchs, S.[Simone],
Kyamakya, K.[Kyandoghere],
A Game-Theoretic Approach to Co-operative Context-Aware Driving with
Partially Random Behavior,
SSC08(154-167).
Springer DOI
0810
BibRef
Ramisa, A.[Arnau],
Vasudevan, S.[Shrihari],
Scaramuzza, D.[Davide],
de Mántaras, R.L.[Ramón López],
Siegwart, R.[Roland],
A Tale of Two Object Recognition Methods for Mobile Robots,
CVS08(xx-yy).
Springer DOI
0805
BibRef
Foggia, P.,
Jolion, J.M.[Jean-Michel],
Limongiello, A.,
Vento, M.,
Stereo Vision for Obstacle Detection: A Graph-Based Approach,
GbRPR07(37-48).
Springer DOI
0706
BibRef
Suvonvorn, N.[Nikom],
Le Coat, F.[Francois],
Marrying Level-Line Junctions for Obstacle Detection,
ICIP07(IV: 305-308).
IEEE DOI
0709
BibRef
Suvonvorn, N.[Nikom],
Bouchafa, S.[Samia],
Zavidovique, B.[Bertrand],
Marrying Level Lines for Stereo or Motion,
ICIAR05(391-398).
Springer DOI
0509
BibRef
Cucchiara, R.[Rita],
Perini, E.[Emanuele],
Pistoni, G.[Giuliano],
Efficient Stereo Vision for Obstacle Detection and AGV Navigation,
CIAP07(291-296).
IEEE DOI
0709
BibRef
Zanin, M.[Michele],
Localization of ahead vehicles with on-board stereo cameras,
CIAP07(111-116).
IEEE DOI
0709
BibRef
Pacheco, L.[Lluís],
Cufí, X.[Xavier],
Cobos, J.[Javi],
Constrained Monocular Obstacle Perception with Just One Frame,
IbPRIA07(I: 611-619).
Springer DOI
0706
BibRef
Wen, X.Z.[Xue-Zhi],
Zhao, H.[Hong],
Wang, N.[Nan],
Yuan, H.[Huai],
A Rear-Vehicle Detection System for Static Images Based on Monocular
Vision,
ICARCV06(1-4).
IEEE DOI
0612
BibRef
Shmaglit, A.,
Rinat, K.,
Brand, Z.,
Fischler, A.,
Velger, M.,
Autonomous Vehicle Control and Obstacle Avoidance Concepts Oriented to
Meet the Challenging Requirements of Realistic Missions,
ICARCV06(1-6).
IEEE DOI
0612
BibRef
Shih, M.Y.[Ming-Yu],
Fu, B.C.[Bwo-Chau],
Robust Moving Object Detection on Moving Platforms,
PSIVT06(591-600).
Springer DOI
0612
BibRef
Wang, W.H.[Wen-Hao],
Wu, R.C.[Ruei-Cheng],
Fusion of Luma and Chroma GMMs for HMM-Based Object Detection,
PSIVT06(573-581).
Springer DOI
0612
BibRef
Chen, C.H.[Chung-Hao],
Cheng, C.[Chang],
Page, D.L.[David L.],
Koschan, A.F.[Andreas F.],
Abidi, M.A.[Mongi A.],
A Moving Object Tracked by A Mobile Robot with Real-Time Obstacles
Avoidance Capacity,
ICPR06(III: 1091-1094).
IEEE DOI
0609
BibRef
Broggi, A.,
Cerri, P.,
Ghidoni, S.,
A Correlation-Based Approach to Recognition and Localization of the
Preceding Vehicle in Highway Environments,
CIAP05(1166-1173).
Springer DOI
0509
BibRef
Dang, T.[Thao],
Hoffmann, C.[Christian],
Fast Object Hypotheses Generation Using 3D Position and 3D Motion,
MVIV05(III: 56-56).
IEEE DOI
0507
BibRef
Vincent, C.Y.,
Tjahjadi, T.,
Planar Direct Method: A New Framework for Stereo Vision Based Guidance
and Obstacle Detection,
ICIP05(III: 381-384).
IEEE DOI
0512
BibRef
Shang, W.[Wen],
Ma, X.D.[Xu-Dong],
Dai, X.Z.[Xian-Zhong],
3D objects detection with Bayesian networks for vision-guided mobile
robot navigation,
ICARCV04(II: 1134-1139).
IEEE DOI
0412
BibRef
Tang, L.[Li],
Fang, L.J.[Li-Jin],
Wang, H.G.[Hong-Guang],
Obstacle-navigation control for a mobile robot suspended on overhead
ground wires,
ICARCV04(III: 2082-2087).
IEEE DOI
0412
BibRef
Sluzek, A.,
Seong, T.C.[Tan Ching],
Visual detection of 3D obstacles using gated images,
ICARCV04(I: 92-97).
IEEE DOI
0412
BibRef
And:
A feasibility study on a novel method of visual obstacle detection,
ICIP04(IV: 2447-2450).
IEEE DOI
0505
BibRef
Furukawa, K.,
Okada, R.,
Taniguchi, Y.,
Onoguchi, K.,
Onboard surveillance system for automobiles using image processing LSI,
IVS04(555-559).
IEEE DOI
0411
Three cameras to detect near by cars.
BibRef
Janssen, H.,
Niehsen, W.,
Vehicle surround sensing based on information fusion of monocular video
and digital map,
IVS04(244-249).
IEEE DOI
0411
BibRef
Techmer, A.,
Real time motion analysis for monitoring the rear and lateral road,
IVS04(704-709).
IEEE DOI
0411
BibRef
Matuszyk, L.,
Zelinsky, A.,
Nilsson, L.,
Rilbe, M.,
Stereo panoramic vision for monitoring vehicle blind-spots,
IVS04(31-36).
IEEE DOI
0411
BibRef
ten Kate, T.K.,
van Leewen, M.B.,
Moro-Ellenberger, S.E.,
Driessen, B.J.F.,
Versluis, A.H.G.,
Groen, F.C.A.,
Mid-range and distant vehicle detection with a mobile camera,
IVS04(72-77).
IEEE DOI
0411
BibRef
Tokoro, S.,
Moriizumi, K.,
Kawasaki, T.,
Nagao, T.,
Abe, K.,
Fujita, K.,
Sensor fusion system for pre-crash safety system,
IVS04(945-950).
IEEE DOI
0411
BibRef
Gietelink, O.J.,
Verburg, D.J.,
Labibes, K.,
Oostendorp, A.F.,
Pre-crash system validation with PRESCAN and VEHIL,
IVS04(913-918).
IEEE DOI
0411
BibRef
Rebut, J.,
Toulminet, G.,
Bensrhair, A.,
Road obstacles detection using a self-adaptive stereo vision sensor: a
contribution to the ARCOS French project,
IVS04(738-743).
IEEE DOI
0411
BibRef
Demonceaux, C.,
Kachi-Akkouche, D.,
Fast motion estimation and motion segmentation using multi-scale
approach,
ICIP04(I: 377-380).
IEEE DOI
0505
BibRef
And:
Robust obstacle detection with monocular vision based on motion
analysis,
IVS04(527-532).
IEEE DOI
0411
BibRef
Sadou, M.,
Polotski, V.,
Cohen, P.,
Occlusions in obstacle detection for safe navigation,
IVS04(716-721).
IEEE DOI
0411
BibRef
Puhlmann, I.,
Schussler, S.,
Hulin, B.,
Improvements on obstacle detection in the pantograph gauge due to the
recognition of steady arms,
IVS04(518-521).
IEEE DOI
0411
BibRef
Chang, P.[Peng],
Hirvonen, D.,
Camus, T.,
Southall, B.,
Stereo-Based Object Detection, Classification, and Quantitative
Evaluation with Automotive Applications,
MVIV05(III: 62-62).
IEEE DOI
0507
BibRef
Bansal, M.,
Jain, A.,
Camus, T.,
Das, A.,
Towards a Practical Stereo Vision Sensor,
MVIV05(III: 63-63).
IEEE DOI
0507
BibRef
Large, F.,
Vasquez, D.,
Fraichard, T.,
Laugier, C.,
Avoiding cars and pedestrians using velocity obstacles and motion
prediction,
IVS04(375-379).
IEEE DOI
0411
BibRef
Guermeur, P.,
A new integrative approach to time varying image interpretation,
CRV04(120-128).
IEEE DOI
0408
BibRef
Garibotto, G.B.,
Corvi, M.,
Cibei, C.,
Sciarrino, S.,
3DMODS 3D moving obstacle detection system,
CIAP03(618-623).
IEEE DOI
0310
BibRef
Okada, R.,
Taniguchi, Y.,
Furukawa, K.,
Onoguchi, K.,
Obstacle detection using projective invariant and vanishing lines,
ICCV03(330-337).
IEEE DOI
0311
BibRef
Leuck, H.[Holger],
Nagel, H.H.[Hans-Hellmut],
Automatic Differentiation Facilitates OF-Integration into
Steering-Angle-Based Road Vehicle Tracking,
CVPR99(II: 360-365).
IEEE DOI Monitor traffic.
BibRef
9900
Shioyama, T.[Tadayoshi],
Wu, H.Y.[Hai-Yuan],
Takebe, M.[Masaya],
Shimaoka, N.[Naoya],
Segmentation and Free Space Detection Using Gabor Filters,
SCIA03(311-319).
Springer DOI
0310
Road without obstacle.
BibRef
Shioyama, T.[Tadayoshi],
Wu, H.Y.[Hai-Yuan],
Iwai, A.[Atsushi],
Detection of Vehicles Using Gabor Filters and Affine Moment Invariants
from an Image,
SCIA03(942-952).
Springer DOI
0310
BibRef
Shioyama, T.[Tadayoshi],
Wu, H.Y.[Hai Yuan],
Mitani, S.[Shigetomo],
Object Detection with Gabor Filters and Cumulative Histograms,
ICPR00(Vol I: 704-707).
IEEE DOI
0009
BibRef
Earlier:
Segmentation and object detection with Gabor filters and cumulative
histograms,
CIAP99(412-417).
IEEE DOI
9909
BibRef
Shioyama, T.,
Wu, H.Y.,
Yamazoe, M.,
Object Recognition Based on 3-D Moment Invariants from Monocular
Intensity Image,
SCIA99(Computer Vision).
BibRef
9900
Shioyama, T.[Tadayoshi],
Wu, H.Y.[Hai Yuan],
Jiang, W.B.[Wen Biao],
Terauchi, S.[Susumu],
3-D object positioning from monocular image brightnesses,
CIAP97(I: 628-635).
Springer DOI
9709
BibRef
Huber, R.[Reinhold],
Biber, J.[Jürgen],
Nowak, C.[Christoph],
Spatzek, B.[Bernhard],
Recognition of Obstacles on Structured 3D Background,
CVS03(111 ff).
Springer DOI
0306
BibRef
Sakaino, H.,
Nonlinear robust velocity estimation of vehicles from a snowfall
traffic scene,
ICPR02(IV: 60-63).
IEEE DOI
0211
BibRef
And:
Moving vehicle velocity estimation from obscure falling snow scenes
based on brightness and contrast model,
ICIP02(III: 905-908).
IEEE DOI
0210
BibRef
Yoshioka, T.[Tohru],
Uemura, H.[Hiroki],
Development of Detection Algorithm for Vehicles Using Multi-line CCD
Sensor,
ICIP99(IV:21-24).
IEEE DOI
BibRef
9900
Yuille, A.L.,
Coughlan, J.M.[James M.],
High-Level and Generic Models for Visual Search:
When Does High Level Knowledge Help?,
CVPR99(II: 631-637).
IEEE DOI Detecting a road target in clutter.
BibRef
9900
Wu, D.H.[Dong-Hui],
Ye, X.Q.[Xiu-Qin],
Gu, W.K.[Wei-Kang],
Tracking vehicles in image sequence for avoiding obstacles,
CIAP99(286-290).
IEEE DOI
9909
BibRef
Tsunashima, N.,
Nakajima, M.,
Detection of the Front Vehicle from the
Stereoscopic Image Using Hierarchy Process,
MVA98(xx-yy).
BibRef
9800
Lourakis, M.I.A., and
Orphanoudakis, S.C.,
Visual Detection of Obstacles Assuming a Locally Planar Ground,
ACCV98(II: 527-534)
PS File.
BibRef
9800
Thorpe, C.E.[Chuck E.],
Mixed Traffic and Automated Highways,
DARPA97(367-374).
BibRef
9700
Ng, K.C.[Kim C.],
Trivedi, M.M.,
Multirobot convoying using neuro-fuzzy control,
ICPR96(IV: 417-421).
IEEE DOI
9608
Ultrasonic scanner.
(Univ. of California, San Diego, USA)
BibRef
Gourley, C., and
Trivedi, M.M.,
Fast Obstacle Avoidance Algorithm for Mobile Robots,
CRA94(1306-1311).
Generation of 3-D maps of scene.
BibRef
9400
Badal, S.,
Ravela, S.[Srinivas],
Draper, B.A., and
Hanson, A.R.,
A Practical Obstacle Detection and Avoidance System,
WACV94(97-104).
IEEE Abstract.
BibRef
9400
And:
UMassCS-TR-95-29, April 1995.
BibRef
Yakovleff, A.J.S.,
Obstacle Avoidance and Visually-Induced Navigation,
CAMP95(xx).
BibRef
9500
Sull, S.,
Sridhar, B.,
Model-based obstacle detection from image sequences,
ICIP95(II: 647-650).
IEEE DOI
9510
BibRef
Grandjean, P.,
Matthies, L.H.,
Perception Control for Obstacle Detection by a Cross Country Rover,
CRA93(20-27).
9701
BibRef
Storjohann, K.,
Zielke, T.,
Mallot, H.A., and
von Seelen, W.,
Visual Obstacle Detection for Automatically Guided Vehicles,
CRA90(xx).
BibRef
9000
Olin, K.E.,
Daily, M.J.,
Harris, J.G.,
Vilnrotter, F.M.,
Knowledge-Based Vision Technology Overview for
Obstacle Detection and Avoidance,
DARPA89(134-143).
BibRef
8900
Olin, K.E.,
Vilnrotter, F.M.,
Daily, M.J., and
Reiser, K.,
Developments in Knowledge-Based Vision for
Obstacle Detection and Avoidance,
DARPA87(78-86).
BibRef
8700
Daily, M.J.,
Harris, J.G., and
Reiser, K.,
Detecting Obstacles in Range Imagery,
DARPA87(87-97).
BibRef
8700
Chen, Q.[Qian],
Asada, M.,
Tsuji, S.,
A new 2-D world representation system for mobile robots,
ICPR88(I: 604-606).
IEEE DOI
8811
BibRef
Tsuji, S.,
Yagi, Y.,
Asada, M.,
Finding of Objects Moving in a Pathway by a Moving Observer,
ICPR86(1103-1106).
BibRef
8600
Chapter on Active Vision, Camera Calibration, Mobile Robots, Navigation, Road Following continues in
Path Planning for Obstacle Avoidance .