Srivastava, G.[Gargi],
Srivastava, R.[Rajeev],
User-interactive salient object detection using YOLOv2, lazy snapping,
and gabor filters,
MVA(31), No. 3, March 2020, pp. Article17.
WWW Link.
2004
BibRef
Kim, M.[Munhyeong],
Jeong, J.[Jongmin],
Kim, S.[Sungho],
ECAP-YOLO: Efficient Channel Attention Pyramid YOLO for Small Object
Detection in Aerial Image,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Hui, T.[Tian],
Xu, Y.L.[Yue-Lei],
Jarhinbek, R.[Rasol],
Detail texture detection based on YOLOV4-tiny combined with attention
mechanism and bicubic interpolation,
IET-IPR(15), No. 12, 2021, pp. 2736-2748.
DOI Link
2109
BibRef
Amudhan, A.N.,
Sudheer, A.P.,
Lightweight and computationally faster Hypermetropic Convolutional
Neural Network for small size object detection,
IVC(119), 2022, pp. 104396.
Elsevier DOI
2202
Small-size object detection, Real-time, YOLO, Robotic vision,
Faster RCNN, Light-weight models
BibRef
Wang, G.B.[Guan-Bo],
Ding, H.W.[Hong-Wei],
Li, B.[Bo],
Nie, R.C.[Ren-Can],
Zhao, Y.F.[Yi-Fan],
Trident-YOLO: Improving the precision and speed of mobile device
object detection,
IET-IPR(16), No. 1, 2022, pp. 145-157.
DOI Link
2112
BibRef
Xing, Z.Q.[Zhi-Qiang],
Chen, X.[Xi],
Pang, F.Q.[Feng-Qian],
DD-YOLO: An object detection method combining knowledge distillation
and Differentiable Architecture Search,
IET-CV(16), No. 5, 2022, pp. 418-430.
DOI Link
2207
DARTS, high-efficiency detection, knowledge distillation, YOLOv4
BibRef
Wang, L.[Lili],
Ni, Q.H.[Qing-Hang],
Chen, C.[Chen],
Yang, H.[Hailu],
Lightweight target detection algorithm based on improved YOLOv4,
IET-IPR(16), No. 14, 2022, pp. 3805-3813.
DOI Link
2212
BibRef
Li, X.A.[Xi-Ang],
Deng, J.Y.[Jing-Yu],
Fang, Y.[Yi],
Few-Shot Object Detection on Remote Sensing Images,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI
2112
Object detection, Feature extraction, Remote sensing, Proposals,
Learning systems, Computer architecture, Training,
You-Only-Look-Once (YOLO)
BibRef
Wang, G.B.[Guan-Bo],
Ding, H.W.[Hong-Wei],
Yang, Z.J.[Zhi-Jun],
Li, B.[Bo],
Wang, Y.H.[Yi-Hao],
Bao, L.Y.[Li-Yong],
TRC-YOLO: A real-time detection method for lightweight targets based
on mobile devices,
IET-CV(16), No. 2, 2022, pp. 126-142.
DOI Link
2202
CBAM, dilated convolution, object detection,
receptive field block (RFB), TridentNet, YOLO
BibRef
Qu, Z.[Zhong],
Gao, L.Y.[Le-Yuan],
Wang, S.Y.[Sheng-Ye],
Yin, H.N.[Hao-Nan],
Yi, T.M.[Tu-Ming],
An improved YOLOv5 method for large objects detection with
multi-scale feature cross-layer fusion network,
IVC(125), 2022, pp. 104518.
Elsevier DOI
2208
Object detection, Feature extraction, Feature fusion, , Autoanchor mechanism
BibRef
Qu, Z.[Zhong],
Shang, X.[Xue],
Xia, S.F.[Shu-Fang],
Yi, T.M.[Tu-Ming],
Zhou, D.Y.[Dong-Yang],
A method of single-shot target detection with multi-scale feature
fusion and feature enhancement,
IET-IPR(16), No. 6, 2022, pp. 1752-1763.
DOI Link
2204
BibRef
Tian, D.X.[Da-Xin],
Lin, C.M.[Chun-Mian],
Zhou, J.S.[Jian-Shan],
Duan, X.T.[Xu-Ting],
Cao, Y.[Yue],
Zhao, D.Z.[De-Zong],
Cao, D.[Dongpu],
SA-YOLOv3: An Efficient and Accurate Object Detector Using
Self-Attention Mechanism for Autonomous Driving,
ITS(23), No. 5, May 2022, pp. 4099-4110.
IEEE DOI
2205
Detectors, Feature extraction, Object detection, Convolution,
Computer architecture, Autonomous vehicles, Visualization,
intelligent transportation systems
BibRef
Lan, Y.[Yubin],
Lin, S.M.[Shao-Ming],
Du, H.[Hewen],
Guo, Y.Q.[Ya-Qi],
Deng, X.L.[Xiao-Ling],
Real-Time UAV Patrol Technology in Orchard Based on the Swin-T YOLOX
Lightweight Model,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Xia, R.Y.[Rui-Yang],
Li, G.Q.[Guo-Quan],
Huang, Z.W.[Zheng-Wen],
Meng, H.Y.[Hong-Ying],
Pang, Y.[Yu],
Bi-path Combination YOLO for Real-time Few-shot Object Detection,
PRL(165), 2023, pp. 91-97.
Elsevier DOI
2301
Few-shot object detection, Transfer learning, Real-time,
Bi-path Combination, You Only Look Once, Attentive DropBlock
BibRef
Zhao, Z.P.[Zuo-Peng],
He, C.[Chen],
Zhao, G.M.[Guang-Ming],
Zhou, J.[Jie],
Hao, K.[Kai],
RA-YOLOX: Re-parameterization align decoupled head and novel label
assignment scheme based on YOLOX,
PR(140), 2023, pp. 109579.
Elsevier DOI
WWW Link.
2305
Object detection, YOLO series, Decoupled head, Label assignment
BibRef
Wan, D.H.[Da-Hang],
Lu, R.S.[Rong-Sheng],
Wang, S.L.[Sai-Lei],
Shen, S.Y.[Si-Yuan],
Xu, T.[Ting],
Lang, X.L.[Xian-Li],
YOLO-HR: Improved YOLOv5 for Object Detection in High-Resolution
Optical Remote Sensing Images,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Wang, M.[Min],
Yang, W.Z.[Wen-Zhong],
Wang, L.[Liejun],
Chen, D.[Danny],
Wei, F.Y.[Fu-Yuan],
KeZiErBieKe, H.[HaiLaTi],
Liao, Y.Y.[Yuan-Yuan],
FE-YOLOv5: Feature enhancement network based on YOLOv5 for small
object detection,
JVCIR(90), 2023, pp. 103752.
Elsevier DOI
2301
Small object detection, Feature enhancement, Spatial-aware
BibRef
Zhao, Q.[Qi],
Liu, B.[Binghao],
Lyu, S.C.[Shu-Chang],
Wang, C.L.[Chun-Lei],
Zhang, H.[Hong],
TPH-YOLOv5++: Boosting Object Detection on Drone-Captured Scenarios
with Cross-Layer Asymmetric Transformer,
RS(15), No. 6, 2023, pp. 1687.
DOI Link
2304
BibRef
Mahaur, B.[Bharat],
Mishra, K.K.,
Small-object detection based on YOLOv5 in autonomous driving systems,
PRL(168), 2023, pp. 115-122.
Elsevier DOI
2304
Architectural changes, Deep learning, Autonomous driving,
Small object detection, YOLOv5
BibRef
Hnewa, M.[Mazin],
Radha, H.[Hayder],
Integrated Multiscale Domain Adaptive YOLO,
IP(32), 2023, pp. 1857-1867.
IEEE DOI
2303
BibRef
Earlier:
Multiscale Domain Adaptive YOLO for Cross-Domain Object Detection,
ICIP21(3323-3327)
IEEE DOI
2201
Detectors, Feature extraction, Object detection, Training,
Adaptive systems, Proposals, Object detection, domain adaptation,
multiscale.
Training, Instruments, Feature extraction, Real-time systems, Domain shift
BibRef
Li, W.S.[Wei-Sheng],
Huang, L.[Lin],
YOLOSA:
Object detection based on 2D local feature superimposed self-attention,
PRL(168), 2023, pp. 86-92.
Elsevier DOI
2304
BibRef
Bacea, D.S.[Dan-Sebastian],
Oniga, F.[Florin],
Single stage architecture for improved accuracy real-time object
detection on mobile devices,
IVC(130), 2023, pp. 104613.
Elsevier DOI
2301
Deep learning, Convolutional neural networks,
Lightweight object detectors, YOLO, Mobile devices
BibRef
Jiang, Y.[Yue],
Li, W.J.[Wen-Jing],
Zhang, J.[Jun],
Li, F.[Fang],
Wu, Z.C.[Zhong-Cheng],
YOLOv4-dense: A smaller and faster YOLOv4 for real-time edge-device
based object detection in traffic scene,
IET-IPR(17), No. 2, 2023, pp. 570-580.
DOI Link
2302
BibRef
Cheng, Y.[Yong],
Wang, W.[Wei],
Zhang, W.J.[Wen-Jie],
Yang, L.[Ling],
Wang, J.[Jun],
Ni, H.[Huan],
Guan, T.Z.[Ting-Zhao],
He, J.X.[Jia-Xin],
Gu, Y.K.[Ya-Kang],
Tran, N.N.[Ngoc Nguyen],
A Multi-Feature Fusion and Attention Network for Multi-Scale Object
Detection in Remote Sensing Images,
RS(15), No. 8, 2023, pp. 2096.
DOI Link
2305
BibRef
Huo, L.[Lina],
Hou, J.Y.[Jia-Yue],
Feng, J.[Jie],
Wang, W.[Wei],
Liu, J.S.[Jin-Sheng],
Global and Multiscale Aggregate Network for Saliency Object Detection
in Optical Remote Sensing Images,
RS(16), No. 4, 2024, pp. 624.
DOI Link
2402
BibRef
Wang, P.[Peng],
Wang, J.D.[Jing-Dong],
Zeng, G.[Gang],
Feng, J.[Jie],
Zha, H.B.[Hong-Bin],
Li, S.P.[Shi-Peng],
Salient object detection for searched web images via global saliency,
CVPR12(3194-3201).
IEEE DOI
1208
BibRef
Xie, T.Y.[Tian-Yi],
Han, W.[Wen],
Xu, S.[Sheng],
YOLO-RS: A More Accurate and Faster Object Detection Method for
Remote Sensing Images,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Zhao, X.F.[Xiao-Feng],
Xia, Y.T.[Yu-Ting],
Zhang, W.W.[Wen-Wen],
Zheng, C.[Chao],
Zhang, Z.L.[Zhi-Li],
YOLO-ViT-Based Method for Unmanned Aerial Vehicle Infrared Vehicle
Target Detection,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Cao, F.[Feng],
Xing, B.[Bing],
Luo, J.C.[Jian-Cheng],
Li, D.Y.[De-Yu],
Qian, Y.H.[Yu-Hua],
Zhang, C.[Chao],
Bai, H.X.[He-Xiang],
Zhang, H.[Hu],
An Efficient Object Detection Algorithm Based on Improved YOLOv5 for
High-Spatial-Resolution Remote Sensing Images,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Ding, Q.Q.[Qi-Qi],
Li, P.[Peng],
Yan, X.F.[Xue-Feng],
Shi, D.[Ding],
Liang, L.[Luming],
Wang, W.M.[Wei-Ming],
Xie, H.R.[Hao-Ran],
Li, J.[Jonathan],
Wei, M.Q.[Ming-Qiang],
CF-YOLO: Cross Fusion YOLO for Object Detection in Adverse Weather
with a High-Quality Real Snow Dataset,
ITS(24), No. 10, October 2023, pp. 10749-10759.
IEEE DOI
2310
BibRef
Wang, Y.M.[Yu-Ming],
Zou, H.[Hua],
Yin, M.[Ming],
Zhang, X.[Xining],
SMFF-YOLO: A Scale-Adaptive YOLO Algorithm with Multi-Level Feature
Fusion for Object Detection in UAV Scenes,
RS(15), No. 18, 2023, pp. 4580.
DOI Link
2310
BibRef
Cao, J.S.[Jin-Shan],
Bao, W.S.[Wen-Shu],
Shang, H.X.[Hai-Xing],
Yuan, M.[Ming],
Cheng, Q.[Qian],
GCL-YOLO: A GhostConv-Based Lightweight YOLO Network for UAV Small
Object Detection,
RS(15), No. 20, 2023, pp. 4932.
DOI Link
2310
BibRef
Zhang, J.R.[Jia-Rui],
Chen, Z.H.[Zhi-Hua],
Yan, G.X.[Guo-Xu],
Wang, Y.[Yi],
Hu, B.[Bo],
Faster and Lightweight: An Improved YOLOv5 Object Detector for Remote
Sensing Images,
RS(15), No. 20, 2023, pp. 4974.
DOI Link
2310
BibRef
Xu, W.[Wei],
Ma, W.[Wenchen],
Wang, S.W.[Shi-Wei],
Gu, X.D.[Xu-Dong],
Ni, B.B.[Bin-Bin],
Cheng, W.[Wen],
Feng, J.Y.[Jing-Yuan],
Wang, Q.S.[Qing-Shan],
Hu, M.Y.[Meng-Yao],
Automatic Detection of VLF Tweek Signals Based on the YOLO Model,
RS(15), No. 20, 2023, pp. 5019.
DOI Link
2310
BibRef
Shi, H.W.[Hou-Wang],
Yang, W.Z.[Wen-Zhong],
Chen, D.[Danni],
Wang, M.[Min],
CPA-YOLOv7: Contextual and pyramid attention-based improvement of
YOLOv7 for drones scene target detection,
JVCIR(97), 2023, pp. 103965.
Elsevier DOI
2312
Deep learning, Small target detection, Multi-scale feature fusion,
Attention mechanism, Loss function
BibRef
Cao, S.[Shihai],
Wang, T.[Ting],
Li, T.[Tao],
Mao, Z.[Zehui],
UAV small target detection algorithm based on an improved YOLOv5s
model,
JVCIR(97), 2023, pp. 103936.
Elsevier DOI
2312
UAV, Small target detection, Deep learning, Attention mechanism, YOLOv5
BibRef
Duan, S.[Siyao],
Wang, T.[Ting],
Li, T.[Tao],
Yang, W.K.[Wan-Kou],
M-YOLOv8s: An improved small target detection algorithm for UAV
aerial photography,
JVCIR(104), 2024, pp. 104289.
Elsevier DOI
2411
UAV, Small object detection, YOLOv8, Deep learning,
Multi-scale fusion, Attention mechanism
BibRef
Ahmed, M.[Mahmoud],
El-Sheimy, N.[Naser],
Leung, H.[Henry],
Moussa, A.[Adel],
Enhancing Object Detection in Remote Sensing: A Hybrid YOLOv7 and
Transformer Approach with Automatic Model Selection,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Hu, D.[Deao],
Yu, M.[Mei],
Wu, X.Y.[Xian-Yong],
Hu, J.B.[Jing-Bo],
Sheng, Y.Y.[Yu-Yang],
Jiang, Y.J.[Yag-Jing],
Huang, C.[Chongjing],
Zheng, Y.[Yuelin],
DGW-YOLOv8: A small insulator target detection algorithm based on
deformable attention backbone and WIoU loss function,
IET-IPR(18), No. 4, 2024, pp. 1096-1108.
DOI Link
2403
image recognition, insulators, object detection
BibRef
Lang, K.Q.[Kai-Qi],
Cui, J.[Jie],
Yang, M.Y.[Ming-Yu],
Wang, H.Y.[Han-Yu],
Wang, Z.L.[Zi-Long],
Shen, H.H.[Hong-Hai],
A Convolution with Transformer Attention Module Integrating Local and
Global Features for Object Detection in Remote Sensing Based on
YOLOv8n,
RS(16), No. 5, 2024, pp. 906.
DOI Link
2403
BibRef
Wang, S.B.[Shao-Bo],
Chen, R.[Renhai],
Wu, H.Y.[Hong-Yue],
Li, X.Z.[Xiao-Zhe],
Feng, Z.Y.[Zhi-Yong],
YOLOH: You Only Look One Hourglass for Real-Time Object Detection,
IP(33), 2024, pp. 2104-2115.
IEEE DOI
2403
Feature extraction, Convolution, Object detection,
MISO communication, Semantics, Computational modeling, Training,
single-shot network
BibRef
Shin, Y.[Yeonha],
Shin, H.[Heesub],
Ok, J.[Jaewoo],
Back, M.Y.[Min-Young],
Youn, J.[Jaehyuk],
Kim, S.[Sungho],
DCEF2-YOLO: Aerial Detection YOLO with Deformable
Convolution-Efficient Feature Fusion for Small Target Detection,
RS(16), No. 6, 2024, pp. 1071.
DOI Link
2403
BibRef
Zhou, J.[Jie],
Yang, D.[Degang],
Song, T.T.[Ting-Ting],
Ye, Y.C.[Yi-Chen],
Zhang, X.[Xin],
Song, Y.Z.[Ying-Ze],
Improved YOLOv7 models based on modulated deformable convolution and
swin transformer for object detection in fisheye images,
IVC(144), 2024, pp. 104966.
Elsevier DOI Code:
WWW Link.
2404
Fisheye image, YOLOv7, Modulated deformable convolution,
Swin transformer, Object detection
BibRef
Gao, X.H.[Xing-Hua],
Yu, A.[Anning],
Tan, J.[Jia],
Gao, X.Z.[Xing-Zhong],
Zeng, X.P.[Xiao-Ping],
Wu, C.[Chen],
GSD-YOLOX: Lightweight and more accurate object detection models,
JVCIR(98), 2024, pp. 104009.
Elsevier DOI
2402
Vehicle detection, Lightweight, Detection accuracy,
Detection speed, CCVTDB dataset
BibRef
Shaikh, S.A.[Shakil A.],
Chopade, J.J.[Jayant J.],
Sardey, M.P.[Mohini Pramod],
Real-Time Multi-Object Detection Using Enhanced Yolov5-7S on Multi-GPU
for High-Resolution Video,
IJIG(24), No. 2, March 2024, pp. 2450019.
DOI Link
2404
BibRef
Liu, K.[Kun],
Qi, Y.S.[Yue-Shuang],
Xu, G.F.[Guo-Feng],
Li, J.L.[Jiang-Long],
YOLOv5s maritime distress target detection method based on swin
transformer,
IET-IPR(18), No. 5, 2024, pp. 1258-1267.
DOI Link
2404
image processing, object detection, object recognition
BibRef
Liu, K.[Kun],
Ma, H.[Hongru],
Xu, G.F.[Guo-Feng],
Li, J.L.[Jiang-Long],
Maritime distress target detection algorithm based on YOLOv5s-EFOE
network,
IET-IPR(18), No. 10, 2024, pp. 2614-2624.
DOI Link
2408
object detection
BibRef
Xiao, Y.[Yun],
Liao, H.[Hai],
LIDA-YOLO: An unsupervised low-illumination object detection based on
domain adaptation,
IET-IPR(18), No. 5, 2024, pp. 1178-1188.
DOI Link
2404
image enhancement, object detection, unsupervised learning
BibRef
Shao, Y.H.[Yan-Hua],
Huang, Q.[Qimeng],
Mei, y.[yanying],
Chu, h.[hongyu],
MOD-YOLO: Multispectral object detection based on transformer
dual-stream YOLO,
PRL(183), 2024, pp. 26-34.
Elsevier DOI
2406
Feature fusion, Multispectral object detection, Transformer, Lightweight model
BibRef
Jooshin, H.K.[Hadi Khodaei],
Nangir, M.[Mahdi],
Seyedarabi, H.[Hadi],
Inception-YOLO: Computational cost and accuracy improvement of the
YOLOv5 model based on employing modified CSP, SPPF, and inception
modules,
IET-IPR(18), No. 8, 2024, pp. 1985-1999.
DOI Link
2406
convolutional neural nets, image processing, object detection
BibRef
Chaurasia, D.[Divyansh],
Patro, B.D.K.,
Detection of objects in satellite and aerial imagery using channel
and spatially attentive YOLO-CSL for surveillance,
IVC(147), 2024, pp. 105070.
Elsevier DOI
2406
Remote sensing, Channel attention,
Spatial attention, Rotational object detection, Circular smooth label
BibRef
Duan, Z.Q.[Zi-Qiang],
Xie, T.[Ting],
Wang, L.[Lucai],
Chen, Y.[Yang],
Wu, J.[Jie],
Microalgae detection based on improved YOLOv5,
IET-IPR(18), No. 10, 2024, pp. 2602-2613.
DOI Link
2408
image processing, object detection
BibRef
Tang, Z.X.[Zi-Xuan],
Zhang, W.[Wei],
Li, J.L.[Jun-Lin],
Liu, R.[Ran],
Xu, Y.S.[Yan-Song],
Chen, S.[Siyu],
Fang, Z.Y.[Zhi-Yue],
Zhao, F.C.L.[Fu-Cheng-Long],
LTSCD-YOLO: A Lightweight Algorithm for Detecting Typical Satellite
Components Based on Improved YOLOv8,
RS(16), No. 16, 2024, pp. 3101.
DOI Link
2408
BibRef
Cheng, A.[Aonan],
Xiao, J.C.[Jin-Cheng],
Li, Y.C.[Ying-Cheng],
Sun, Y.M.[Yi-Ming],
Ren, Y.F.[Ya-Feng],
Liu, J.L.[Jian-Li],
Enhancing Remote Sensing Object Detection with K-CBST YOLO:
Integrating CBAM and Swin-Transformer,
RS(16), No. 16, 2024, pp. 2885.
DOI Link
2408
BibRef
Zhao, D.[Dewei],
Shao, F.[Faming],
Liu, Q.[Qiang],
Zhang, H.[Heng],
Zhang, Z.[Zihan],
Yang, L.[Li],
Improved Architecture and Training Strategies of YOLOv7 for Remote
Sensing Image Object Detection,
RS(16), No. 17, 2024, pp. 3321.
DOI Link
2409
BibRef
Fei, X.[Xuan],
Guo, M.Y.[Meng-Yao],
Li, Y.[Yan],
Yu, R.P.[Ren-Ping],
Sun, L.[Le],
ACDF-YOLO: Attentive and Cross-Differential Fusion Network for
Multimodal Remote Sensing Object Detection,
RS(16), No. 18, 2024, pp. 3532.
DOI Link
2410
BibRef
Liu, S.Y.[Shuo-Yan],
Li, C.[Chao],
Liu, Y.X.[Yu-Xin],
Wang, Y.Q.[Yan-Qiu],
SH-YOLO: Small Target High Performance YOLO for Abnormal Behavior
Detection in Escalator Scene,
IEICE(E108-D), No. 11, November 2024, pp. 1468-1471.
WWW Link.
2411
BibRef
Nan, G.Z.[Guo-Zheng],
Zhao, Y.[Yue],
Lin, C.X.[Cheng-Xing],
Ye, Q.L.[Qiao-Lin],
General Optimization Methods for YOLO Series Object Detection in
Remote Sensing Images,
SPLetters(31), 2024, pp. 2860-2864.
IEEE DOI
2411
Semantics, Feature extraction, YOLO, Convolution, Remote sensing,
Information retrieval, Training, Forestry, Vegetation, Testing,
semantics information
BibRef
Hong, S.H.[Sung-Hoon],
Park, D.[Daejin],
Differential Image-Based Scalable YOLOv7-Tiny Implementation for
Clustered Embedded Systems,
ITS(25), No. 11, November 2024, pp. 16036-16047.
IEEE DOI
2411
Detectors, Convolution, Accuracy, Computational complexity,
Real-time systems, Feature extraction,
fast convolution
BibRef
Guo, G.B.[Guang-Bin],
Wang, R.[Rui],
Guo, L.X.[Li-Xin],
Research on Radar Target Detection Based on the Electromagnetic
Scattering Imaging Algorithm and the YOLO Network,
RS(16), No. 20, 2024, pp. 3807.
DOI Link
2411
BibRef
Zhang, D.T.[Dong-Ting],
Ma, H.B.[Hong-Bin],
YOLODCC: Improved YOLOv8 combined with dynamic confidence
compensation for lightweight moving object detection,
IET-IPR(18), No. 12, 2024, pp. 3699-3715.
DOI Link
2411
image motion analysis, image processing, mobile computing,
neural net architecture, target tracking
BibRef
Tang, P.[Pei],
Ding, Z.Y.[Zhen-Yu],
Lv, M.[Mao],
Jiang, M.[Minnan],
Xu, W.[Weikai],
YOLO-RSFM: An efficient road small object detection method,
IET-IPR(18), No. 13, 2024, pp. 4263-4274.
DOI Link
2411
image classification, image matching, image recognition
BibRef
Yue, S.Q.[Shi-Qin],
Zhang, Z.[Ziyi],
Shi, Y.[Ying],
Cai, Y.H.[Yong-Hua],
WGS-YOLO: A real-time object detector based on YOLO framework for
autonomous driving,
CVIU(249), 2024, pp. 104200.
Elsevier DOI
2412
Autonomous driving, Object detection, Spatial pyramid pooling,
Efficient layer aggregation network
BibRef
Doherty, J.[John],
Gardiner, B.[Bryan],
Kerr, E.[Emmett],
Siddique, N.[Nazmul],
BiFPN-YOLO: One-stage object detection integrating Bi-Directional
Feature Pyramid Networks,
PR(160), 2025, pp. 111209.
Elsevier DOI
2501
Object detection, Neural networks, YOLO
BibRef
Zhao, Y.W.[Ya-Wen],
Yang, D.[Defu],
Cao, S.[Sheng],
Cai, B.[Bingyu],
Maryamah, M.[Maryamah],
Solihin, M.I.[Mahmud Iwan],
Object detection in smart indoor shopping using an enhanced YOLOv8n
algorithm,
IET-IPR(18), No. 14, 2024, pp. 4745-4759.
DOI Link
2501
image recognition,
learning (artificial intelligence), object detection, supervised learning
BibRef
Qiu, Y.J.[Yi-Juan],
Xue, J.F.[Jie-Feng],
Zhang, G.[Gang],
Hao, X.Y.[Xu-Ying],
Lei, T.[Tao],
Jiang, P.[Ping],
RS-FeatFuseNet: An Integrated Remote Sensing Object Detection Model
with Enhanced Feature Extraction,
RS(17), No. 1, 2025, pp. 61.
DOI Link
2501
YOLOv8.
BibRef
Hu, J.M.[Jian-Ming],
Wei, Y.Y.[Yang-Yu],
Chen, W.B.[Wen-Bin],
Zhi, X.Y.[Xi-Yang],
Zhang, W.[Wei],
CM-YOLO: Typical Object Detection Method in Remote Sensing Cloud and
Mist Scene Images,
RS(17), No. 1, 2025, pp. 125.
DOI Link
2501
BibRef
Mukherjee, S.[Shubhabrata],
Beard, C.[Cory],
Li, Z.[Zhu],
MODIPHY: Multimodal Obscured Detection for IoT using PHantom
Convolution-Enabled Faster YOLO,
ICIP24(2613-2619)
IEEE DOI Code:
WWW Link.
2411
YOLO, Accuracy, Convolution, Computational modeling,
Transfer learning, Phantoms, Real-time systems, Phantom Convolution
BibRef
Gupta, K.[Kartik],
Asthana, A.[Akshay],
Reducing the Side-Effects of Oscillations in Training of Quantized
YOLO Networks,
WACV24(2440-2449)
IEEE DOI
2404
YOLO, Training, Quantization (signal), Image edge detection,
Semantic segmentation, Memory management, Algorithms,
Image recognition and understanding
BibRef
Chen, L.F.[Lun-Feng],
Luo, C.Z.[Cheng-Zhi],
Li, X.[Xiao],
Xiao, J.X.[Ji-Xiang],
Rotating target detection algorithm in remote sensing images based on
improved YOLOv5s,
CVIDL23(180-184)
IEEE DOI
2403
Training, Deep learning, Computational modeling, Semantics,
Object detection, Predictive models, Feature extraction, component,
attention mechanism
BibRef
Feng, S.X.[Shu-Xuan],
Lu, J.[Jun],
Research on image recognition based on neural network model learning
algorithm,
CVIDL23(21-24)
IEEE DOI
2403
Training, Deep learning, Image recognition, Head,
Computational modeling, Neural networks, Object Detection, YOLOv5s,
Attention Mechanism
BibRef
Dou, X.K.[Xin-Ke],
Wang, T.[Ting],
Shao, S.L.[Shi-Liang],
A Lightweight YOLOv5 Model Integrating GhostNet and Attention
Mechanism,
CVIDL23(348-352)
IEEE DOI
2403
Training, Deep learning, Computational modeling, Neural networks,
Object detection, Detectors, Feature extraction, YOLOv5, Ghost, NAM, CBAM
BibRef
Kumar, P.[Piyush],
Kumar, V.[Vimal],
Exploring the Frontier of Object Detection: A Deep Dive into YOLOv8
and the COCO Dataset,
ICCVMI23(1-6)
IEEE DOI
2403
YOLO, Measurement, Analytical models, Reviews,
Annotations, Computer architecture, YOLO8
BibRef
Lazarevich, I.[Ivan],
Grimaldi, M.[Matteo],
Kumar, R.[Ravish],
Mitra, S.[Saptarshi],
Khan, S.[Shahrukh],
Sah, S.[Sudhakar],
YOLOBench: Benchmarking Efficient Object Detectors on Embedded
Systems,
REDLCV23(1161-1170)
IEEE DOI Code:
WWW Link.
2401
BibRef
Campos, F.[Filipe],
Cerqueira, F.G.[Francisco Gonçalves],
Cruz, R.P.M.[Ricardo P. M.],
Cardoso, J.S.[Jaime S.],
YOLOMM: You Only Look Once for Multi-modal Multi-tasking,
CIARP23(I:564-574).
Springer DOI
2312
BibRef
Wang, C.Y.[Chien-Yao],
Bochkovskiy, A.[Alexey],
Liao, H.Y.M.[Hong-Yuan Mark],
YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for
Real-Time Object Detectors,
CVPR23(7464-7475)
IEEE DOI
2309
BibRef
Li, G.[Guofa],
Zhang, Y.J.[Ying-Jie],
Ouyang, D.[Delin],
Qu, X.D.[Xing-Da],
An Improved Lightweight Network Based on Yolov5s for Object Detection
in Autonomous Driving,
AVVision22(585-601).
Springer DOI
2304
BibRef
Nanlin, W.[Wei],
Wei, H.[Huang],
Research on Unmanned Vehicle Detection Method Based on Improved
YOLOv4_Tiny,
ICRVC22(129-135)
IEEE DOI
2301
Training, Image segmentation, Computational modeling, Data models,
Automobiles, Autonomous vehicles, YOLOv4_Tiny, data augmentation, feature scale
BibRef
Wang, Y.Z.[Yun-Zhen],
Ma, H.B.[Hong-Bing],
Li, L.L.[Liang-Liang],
Road Traffic Vehicle Detection Method Using Lightweight YOLOv5 and
Attention Mechanism,
ICIVC22(201-207)
IEEE DOI
2301
Convolution, Computational modeling, Roads, Object detection,
Data models, Intelligent transportation systems, Testing,
depthwise separable convolution
BibRef
Cao, K.Y.[Kai-Yang],
Cui, X.[Xu],
Piao, J.C.[Jin-Chun],
Smaller Target Detection Algorithms Based on YOLOv5 in Safety Helmet
Wearing Detection,
ICRVC22(154-158)
IEEE DOI
2301
Head, Computational modeling, Robot kinematics, Object detection,
Safety, Task analysis, Deep learning, Activation function
BibRef
Han, R.[Rong],
Liu, X.H.[Xiao-Hong],
Chen, T.[Ting],
Yolo-SG: Salience-Guided Detection Of Small Objects In Medical Images,
ICIP22(4218-4222)
IEEE DOI
2211
Deep learning, Analytical models, Image resolution,
Object detection, Medical services, Lesions, Data mining, object detection
BibRef
Wang, C.Z.[Chun-Zhi],
Tong, X.[Xin],
Zhu, J.H.[Jia-Hui],
Gao, R.[Rong],
Ghost-YOLOX: A Lightweight and Efficient Implementation of Object
Detection Model,
ICPR22(4552-4558)
IEEE DOI
2212
Training, Image segmentation, Costs, Convolution, Fuses,
Computational modeling, Object detection, Object detection,
Multi-scale pyramidal convolution
BibRef
Ganesh, P.[Prakhar],
Chen, Y.[Yao],
Yang, Y.[Yin],
Chen, D.[Deming],
Winslett, M.[Marianne],
YOLO-ReT: Towards High Accuracy Real-time Object Detection on Edge
GPUs,
WACV22(1311-1321)
IEEE DOI
2202
Performance evaluation, Deep learning,
Image edge detection, Transfer learning, Neural networks,
Object Detection/Recognition/Categorization Vision Systems and Applications
BibRef
Javed, M.G.[Muhammad Gohar],
Raza, M.[Minahil],
Ghaffar, M.M.[Muhammad Mohsin],
Weis, C.[Christian],
Wehn, N.[Norbert],
Shahzad, M.[Muhammad],
Shafait, F.[Faisal],
QuantYOLO: A High-Throughput and Power-Efficient Object Detection
Network for Resource and Power Constrained UAVs,
DICTA21(01-08)
IEEE DOI
2201
Quantization (signal), Power demand, Network topology,
Object detection, Throughput, Topology,
Real-Time and Power-Efficient Architecture
BibRef
Li, J.Q.[Jia-Qi],
Zhao, Y.[Yanan],
Gao, L.[Li],
Cui, F.[Feng],
Compression of YOLOv3 via Block-Wise and Channel-Wise Pruning for
Real-Time and Complicated Autonomous Driving Environment Sensing
Applications,
ICPR21(5107-5114)
IEEE DOI
2105
Training, Solid modeling, Visualization, Pipelines, Object detection,
Real-time systems, Sensors
BibRef
Wang, Y.[Ya],
Zell, A.[Andreas],
Yolo+FPN: 2D and 3D Fused Object Detection With an RGB-D Camera,
ICPR21(4657-4664)
IEEE DOI
2105
Training, Visualization, Fuses,
Object detection, Benchmark testing, Cameras
BibRef
Li, L.W.[Long-Wei],
Xi, J.B.[Jiang-Bo],
Jiang, W.D.[Wan-Dong],
Cong, M.[Ming],
Han, L.[Ling],
Yang, Y.[Yun],
Multi-scale Fast Detection of Objects in High Resolution Remote
Sensing Images,
ICIVC20(5-10)
IEEE DOI
2009
Remote sensing, Feature extraction, Image resolution,
Object detection, Machine learning, Data models,
YOLOv3
BibRef
Koksal, A.,
Ince, K.G.,
Alatan, A.A.[A. Aydin],
Effect of Annotation Errors on Drone Detection with YOLOv3,
Anti-UAV20(4439-4447)
IEEE DOI
2008
Detectors, Training, Feature extraction, Labeling, Real-time systems,
Measurement, Drones
BibRef
Choi, J.,
Chun, D.,
Kim, H.,
Lee, H.,
Gaussian YOLOv3: An Accurate and Fast Object Detector Using
Localization Uncertainty for Autonomous Driving,
ICCV19(502-511)
IEEE DOI
2004
object detection, road safety, traffic engineering computing,
object detection algorithms, Gaussian YOLOv3, Feature extraction
BibRef
Simon, M.[Martin],
Milz, S.[Stefan],
Amende, K.[Karl],
Gross, H.M.[Horst-Michael],
Complex-YOLO: An Euler-Region-Proposal for Real-Time 3D Object
Detection on Point Clouds,
CVRoads18(I:197-209).
Springer DOI
1905
Lidar, automated driving.
BibRef
Redmon, J.[Joseph],
Farhadi, A.[Ali],
YOLO9000: Better, Faster, Stronger,
CVPR17(6517-6525)
IEEE DOI
1711
Award, CVPR, HM. Detectors, Feature extraction, Image resolution, Object detection,
Real-time systems, Training
Real time, 9000 object categories.
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
SWIN Transformer .