23.2.8.8.1 Forage Analysis, Forage Quality, Grassland, Rangeland

Chapter Contents (Back)
Classification. Forage Analysis. Grassland Classification. Forage. Pasture. 2507

See also Biomass Evaluations Pasture, Grassland, Rangeland, Savanna.

Knox, N.M.[Nichola M.], Skidmore, A.K.[Andrew K.], Prins, H.H.T.[Herbert H.T.], Heitkönig, I.M.A.[Ignas M.A.], Slotow, R.[Rob], van der Waal, C.[Cornelis], de Boer, W.F.[William F.],
Remote sensing of forage nutrients: Combining ecological and spectral absorption feature data,
PandRS(72), No. 1, August 2012, pp. 27-35.
Elsevier DOI 1209
Landscape; Modelling; Monitoring; Ecology; Resources; Hyperspectral BibRef

Roumiguié, A.[Antoine], Jacquin, A.[Anne], Sigel, G.[Grégoire], Poilvé, H.[Hervé], Hagolle, O.[Olivier], Daydé, J.[Jean],
Validation of a Forage Production Index (FPI) Derived from MODIS fCover Time-Series Using High-Resolution Satellite Imagery: Methodology, Results and Opportunities,
RS(7), No. 9, 2015, pp. 11525.
DOI Link 1511
BibRef

Gao, J.L.[Jin-Long], Meng, B.P.[Bao-Ping], Liang, T.G.[Tian-Gang], Feng, Q.S.[Qi-Sheng], Ge, J.[Jing], Yin, J.P.[Jian-Peng], Wu, C.X.[Cai-Xia], Cui, X.[Xia], Hou, M.J.[Meng-Jing], Liu, J.[Jie], Xie, H.J.[Hong-Jie],
Modeling alpine grassland forage phosphorus based on hyperspectral remote sensing and a multi-factor machine learning algorithm in the east of Tibetan Plateau, China,
PandRS(147), 2019, pp. 104-117.
Elsevier DOI 1901
Model, Forage nutrition, Hyperspectral remote sensing, Alpine grassland, Machine learning BibRef

Liu, H.[Han], Dahlgren, R.A.[Randy A.], Larsen, R.E.[Royce E.], Devine, S.M.[Scott M.], Roche, L.M.[Leslie M.], O'Geen, A.T.[Anthony T.], Wong, A.J.Y.[Andy J.Y.], Covello, S.[Sarah], Jin, Y.F.[Yu-Fang],
Estimating Rangeland Forage Production Using Remote Sensing Data from a Small Unmanned Aerial System (sUAS) and PlanetScope Satellite,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Gao, J.L.[Jin-Long], Liang, T.G.[Tian-Gang], Yin, J.P.[Jian-Peng], Ge, J.[Jing], Feng, Q.S.[Qi-Sheng], Wu, C.X.[Cai-Xia], Hou, M.J.[Meng-Jing], Liu, J.[Jie], Xie, H.J.[Hong-Jie],
Estimation of Alpine Grassland Forage Nitrogen Coupled with Hyperspectral Characteristics during Different Growth Periods on the Tibetan Plateau,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Podebradská, M.[Markéta], Wylie, B.K.[Bruce K.], Hayes, M.J.[Michael J.], Wardlow, B.D.[Brian D.], Bathke, D.J.[Deborah J.], Bliss, N.B.[Norman B.], Dahal, D.[Devendra],
Monitoring Drought Impact on Annual Forage Production in Semi-Arid Grasslands: A Case Study of Nebraska Sandhills,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Gao, J.L.[Jin-Long], Liang, T.G.[Tian-Gang], Liu, J.[Jie], Yin, J.P.[Jian-Peng], Ge, J.[Jing], Hou, M.J.[Meng-Jing], Feng, Q.S.[Qi-Sheng], Wu, C.X.[Cai-Xia], Xie, H.J.[Hong-Jie],
Potential of hyperspectral data and machine learning algorithms to estimate the forage carbon-nitrogen ratio in an alpine grassland ecosystem of the Tibetan Plateau,
PandRS(163), 2020, pp. 362-374.
Elsevier DOI 2005
Forage nutrition, Random forest, Absorption bands, Estimation model, Growth stage BibRef

Gao, J.L.[Jin-Long], Liu, J.[Jie], Liang, T.G.[Tian-Gang], Hou, M.J.[Meng-Jing], Ge, J.[Jing], Feng, Q.S.[Qi-Sheng], Wu, C.X.[Cai-Xia], Li, W.L.[Wen-Long],
Mapping the Forage Nitrogen-Phosphorus Ratio Based on Sentinel-2 MSI Data and a Random Forest Algorithm in an Alpine Grassland Ecosystem of the Tibetan Plateau,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Wijesingha, J.[Jayan], Astor, T.[Thomas], Schulze-Brüninghoff, D.[Damian], Wengert, M.[Matthias], Wachendorf, M.[Michael],
Predicting Forage Quality of Grasslands Using UAV-Borne Imaging Spectroscopy,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Smith, C.[Chaya], Karunaratne, S.[Senani], Badenhorst, P.[Pieter], Cogan, N.[Noel], Spangenberg, G.[German], Smith, K.[Kevin],
Machine Learning Algorithms to Predict Forage Nutritive Value of In Situ Perennial Ryegrass Plants Using Hyperspectral Canopy Reflectance Data,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Michez, A.[Adrien], Philippe, L.[Lejeune], David, K.[Knoden], Sébastien, C.[Cremer], Christian, D.[Decamps], Bindelle, J.[Jérôme],
Can Low-Cost Unmanned Aerial Systems Describe the Forage Quality Heterogeneity? Insight from a Timothy Pasture Case Study in Southern Belgium,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link 2006
BibRef

DiMaggio, A.M.[Alexandria M.], Perotto-Baldivieso, H.L.[Humberto L.], Ortega-S, J.A.[J. Alfonso], Walther, C.[Chase], Labrador-Rodriguez, K.N.[Karelys N.], Page, M.T.[Michael T.], de la Luz Martinez, J.[Jose], Rideout-Hanzak, S.[Sandra], Hedquist, B.C.[Brent C.], Wester, D.B.[David B.],
A Pilot Study to Estimate Forage Mass from Unmanned Aerial Vehicles in a Semi-Arid Rangeland,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Minch, C.[Cameron], Dvorak, J.[Joseph], Jackson, J.[Josh], Sheffield, S.T.[Stuart Tucker],
Creating a Field-Wide Forage Canopy Model Using UAVs and Photogrammetry Processing,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link 2107
Alfalfa canopy structure. BibRef

de Swaef, T.[Tom], Maes, W.H.[Wouter H.], Aper, J.[Jonas], Baert, J.[Joost], Cougnon, M.[Mathias], Reheul, D.[Dirk], Steppe, K.[Kathy], Roldán-Ruiz, I.[Isabel], Lootens, P.[Peter],
Applying RGB- and Thermal-Based Vegetation Indices from UAVs for High-Throughput Field Phenotyping of Drought Tolerance in Forage Grasses,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link 2101
BibRef

Podebradská, M.[Markéta], Wylie, B.K.[Bruce K.], Bathke, D.J.[Deborah J.], Bayissa, Y.A.[Yared A.], Dahal, D.[Devendra], Derner, J.D.[Justin D.], Fay, P.A.[Philip A.], Hayes, M.J.[Michael J.], Schacht, W.H.[Walter H.], Volesky, J.D.[Jerry D.], Wagle, P.[Pradeep], Wardlow, B.D.[Brian D.],
Monitoring Climate Impacts on Annual Forage Production across U.S. Semi-Arid Grasslands,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Frank, T.[Thiago], Smith, A.[Anne], Houston, B.[Bill], Lindsay, E.[Emily], Guo, X.[Xulin],
Differentiation of Six Grassland/Forage Types in Three Canadian Ecoregions Based on Spectral Characteristics,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Irisarri, J.G.N.[Jorge Gonzalo N.], Durante, M.[Martin], Derner, J.D.[Justin D.], Oesterheld, M.[Martin], Augustine, D.J.[David J.],
Remotely Sensed Spatiotemporal Variation in Crude Protein of Shortgrass Steppe Forage,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Sangjan, W.[Worasit], McGee, R.J.[Rebecca J.], Sankaran, S.[Sindhuja],
Optimization of UAV-Based Imaging and Image Processing Orthomosaic and Point Cloud Approaches for Estimating Biomass in a Forage Crop,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Tian, Y.[Yuan], Fu, G.[Gang],
Quantifying Plant Species alpha-Diversity Using Normalized Difference Vegetation Index and Climate Data in Alpine Grasslands,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Han, F.S.[Fu-Song], Fu, G.[Gang], Yu, C.Q.[Cheng-Qun], Wang, S.H.[Shao-Hua],
Modeling Nutrition Quality and Storage of Forage Using Climate Data and Normalized-Difference Vegetation Index in Alpine Grasslands,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Liu, Y.L.[Yi-Lei], Liu, J.P.[Jiang-Ping], Zhao, X.[Xuanhe], Pan, X.[Xin], Yan, W.H.[Wei-Hong],
Research on identification and classification of grassland forage based on deep learning and attention mechanisms,
IET-IPR(17), No. 9, 2023, pp. 2628-2639.
DOI Link 2307
agricultural engineering, data analysis, image recognition BibRef

Luns-Hatum-de Almeida, S.[Samira], Costa-Souza, J.B.[Jarlyson Brunno], Nogueira, S.F.[Sandra Furlan], Macedo-Pezzopane, J.R.[José Ricardo], de Castro-Teixeira, A.H.[Antônio Heriberto], Bosi, C.[Cristiam], Adami, M.[Marcos], Zerbato, C.[Cristiano], de Campos-Bernardi-Carlos, A.[Alberto], Bayma, G.[Gustavo], Pereira-da Silva, R.[Rouverson],
Forage Mass Estimation in Silvopastoral and Full Sun Systems: Evaluation through Proximal Remote Sensing Applied to the SAFER Model,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link 2302
BibRef

Zhao, X.[Xia], Wu, B.[Bo], Xue, J.X.[Jin-Xin], Shi, Y.[Yue], Zhao, M.Y.[Meng-Ying], Geng, X.Q.[Xiao-Qing], Yan, Z.B.[Zheng-Bing], Shen, H.H.[Hai-Hua], Fang, J.Y.[Jing-Yun],
Mapping Forage Biomass and Quality of the Inner Mongolia Grasslands by Combining Field Measurements and Sentinel-2 Observations,
RS(15), No. 8, 2023, pp. 1973.
DOI Link 2305
BibRef

Chen, J.[Jiang], Yu, T.[Tong], Cherney, J.H.[Jerome H.], Zhang, Z.[Zhou],
Optimal Integration of Optical and SAR Data for Improving Alfalfa Yield and Quality Traits Prediction: New Insights into Satellite-Based Forage Crop Monitoring,
RS(16), No. 5, 2024, pp. 734.
DOI Link 2403
BibRef

Amputu, V.[Vistorina], Männer, F.[Florian], Tielbörger, K.[Katja], Knox, N.[Nichola],
Spatio-Temporal Transferability of Drone-Based Models to Predict Forage Supply in Drier Rangelands,
RS(16), No. 11, 2024, pp. 1842.
DOI Link 2406
BibRef

Shi, J.[Jiancong], Zhang, A.[Aiwu], Wang, J.[Juan], Gao, X.W.[Xin-Wang], Hu, S.X.[Shao-Xing], Chai, S.[Shatuo],
Mapping Seasonal Spatiotemporal Dynamics of Alpine Grassland Forage Phosphorus Using Sentinel-2 MSI and a DRL-GP-Based Symbolic Regression Algorithm,
RS(16), No. 21, 2024, pp. 4086.
DOI Link 2411
BibRef

Hu, C.[Chenlu], Tian, Y.C.[Yi-Chen], Yin, K.[Kai], Huang, H.P.[Hui-Ping], Li, L.P.[Li-Ping], Chen, Q.[Qiang],
Research on Forage-Livestock Balance in the Three-River-Source Region Based on Improved CASA Model,
RS(16), No. 20, 2024, pp. 3857.
DOI Link 2411
BibRef

Urquizo, J.[Julio], Ccopi, D.[Dennis], Ortega, K.[Kevin], Castańeda, I.[Italo], Patricio, S.[Solanch], Passuni, J.[Jorge], Figueroa, D.[Deyanira], Enriquez, L.[Lucia], Ore, Z.[Zoila], Pizarro, S.[Samuel],
Estimation of Forage Biomass in Oat (Avena sativa) Using Agronomic Variables through UAV Multispectral Imaging,
RS(16), No. 19, 2024, pp. 3720.
DOI Link 2410
BibRef

Ali, A.[Abid], Kaul, H.P.[Hans-Peter],
Monitoring Yield and Quality of Forages and Grassland in the View of Precision Agriculture Applications: A Review,
RS(17), No. 2, 2025, pp. 279.
DOI Link 2502
BibRef

Noushahi, H.A.[Hamza Armghan], Inostroza, L.[Luis], Barahona, V.[Viviana], Espinoza, S.[Soledad], Ovalle, C.[Carlos], Quitral, K.[Katherine], Lobos, G.A.[Gustavo A.], Guerra, F.P.[Fernando P.], Kefauver, S.C.[Shawn C.], del Pozo, A.[Alejandro],
Selecting High Forage-Yielding Alfalfa Populations in a Mediterranean Drought-Prone Environment Using High-Throughput Phenotyping,
RS(17), No. 9, 2025, pp. 1517.
DOI Link 2505
BibRef


Bareth, G., Lussem, U., Menne, J., Hollberg, J., Schellberg, J.,
Potential of Non-calibrated Uav-based Rgb Imagery for Forage Monitoring: Case Study At The Rengen Long-term Grassland Experiment (RGE), Germany,
UAV-g19(203-206).
DOI Link 1912
BibRef

Possoch, M., Bieker, S., Hoffmeister, D., Bolten, A., Schellberg, J., Bareth, G.,
Multi-temporal Crop Surface Models Combined with the RGB Vegetation Index From UAV-based Images for Forage Monitoring In Grassland,
ISPRS16(B1: 991-998).
DOI Link 1610
BibRef

Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Pasture, Grassland, Rangeland, Change, Degradation, Temporal .


Last update:Oct 6, 2025 at 14:07:43