Knox, N.M.[Nichola M.],
Skidmore, A.K.[Andrew K.],
Prins, H.H.T.[Herbert H.T.],
Heitkönig, I.M.A.[Ignas M.A.],
Slotow, R.[Rob],
van der Waal, C.[Cornelis],
de Boer, W.F.[William F.],
Remote sensing of forage nutrients:
Combining ecological and spectral absorption feature data,
PandRS(72), No. 1, August 2012, pp. 27-35.
Elsevier DOI
1209
Landscape; Modelling; Monitoring; Ecology; Resources; Hyperspectral
BibRef
Roumiguié, A.[Antoine],
Jacquin, A.[Anne],
Sigel, G.[Grégoire],
Poilvé, H.[Hervé],
Hagolle, O.[Olivier],
Daydé, J.[Jean],
Validation of a Forage Production Index (FPI) Derived from MODIS
fCover Time-Series Using High-Resolution Satellite Imagery:
Methodology, Results and Opportunities,
RS(7), No. 9, 2015, pp. 11525.
DOI Link
1511
BibRef
Gao, J.L.[Jin-Long],
Meng, B.P.[Bao-Ping],
Liang, T.G.[Tian-Gang],
Feng, Q.S.[Qi-Sheng],
Ge, J.[Jing],
Yin, J.P.[Jian-Peng],
Wu, C.X.[Cai-Xia],
Cui, X.[Xia],
Hou, M.J.[Meng-Jing],
Liu, J.[Jie],
Xie, H.J.[Hong-Jie],
Modeling alpine grassland forage phosphorus based on hyperspectral
remote sensing and a multi-factor machine learning algorithm in the
east of Tibetan Plateau, China,
PandRS(147), 2019, pp. 104-117.
Elsevier DOI
1901
Model, Forage nutrition, Hyperspectral remote sensing,
Alpine grassland, Machine learning
BibRef
Liu, H.[Han],
Dahlgren, R.A.[Randy A.],
Larsen, R.E.[Royce E.],
Devine, S.M.[Scott M.],
Roche, L.M.[Leslie M.],
O'Geen, A.T.[Anthony T.],
Wong, A.J.Y.[Andy J.Y.],
Covello, S.[Sarah],
Jin, Y.F.[Yu-Fang],
Estimating Rangeland Forage Production Using Remote Sensing Data from
a Small Unmanned Aerial System (sUAS) and PlanetScope Satellite,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Gao, J.L.[Jin-Long],
Liang, T.G.[Tian-Gang],
Yin, J.P.[Jian-Peng],
Ge, J.[Jing],
Feng, Q.S.[Qi-Sheng],
Wu, C.X.[Cai-Xia],
Hou, M.J.[Meng-Jing],
Liu, J.[Jie],
Xie, H.J.[Hong-Jie],
Estimation of Alpine Grassland Forage Nitrogen Coupled with
Hyperspectral Characteristics during Different Growth Periods on the
Tibetan Plateau,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Podebradská, M.[Markéta],
Wylie, B.K.[Bruce K.],
Hayes, M.J.[Michael J.],
Wardlow, B.D.[Brian D.],
Bathke, D.J.[Deborah J.],
Bliss, N.B.[Norman B.],
Dahal, D.[Devendra],
Monitoring Drought Impact on Annual Forage Production in Semi-Arid
Grasslands: A Case Study of Nebraska Sandhills,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Gao, J.L.[Jin-Long],
Liang, T.G.[Tian-Gang],
Liu, J.[Jie],
Yin, J.P.[Jian-Peng],
Ge, J.[Jing],
Hou, M.J.[Meng-Jing],
Feng, Q.S.[Qi-Sheng],
Wu, C.X.[Cai-Xia],
Xie, H.J.[Hong-Jie],
Potential of hyperspectral data and machine learning algorithms to
estimate the forage carbon-nitrogen ratio in an alpine grassland
ecosystem of the Tibetan Plateau,
PandRS(163), 2020, pp. 362-374.
Elsevier DOI
2005
Forage nutrition, Random forest, Absorption bands,
Estimation model, Growth stage
BibRef
Gao, J.L.[Jin-Long],
Liu, J.[Jie],
Liang, T.G.[Tian-Gang],
Hou, M.J.[Meng-Jing],
Ge, J.[Jing],
Feng, Q.S.[Qi-Sheng],
Wu, C.X.[Cai-Xia],
Li, W.L.[Wen-Long],
Mapping the Forage Nitrogen-Phosphorus Ratio Based on Sentinel-2 MSI
Data and a Random Forest Algorithm in an Alpine Grassland Ecosystem
of the Tibetan Plateau,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
BibRef
Wijesingha, J.[Jayan],
Astor, T.[Thomas],
Schulze-Brüninghoff, D.[Damian],
Wengert, M.[Matthias],
Wachendorf, M.[Michael],
Predicting Forage Quality of Grasslands Using UAV-Borne Imaging
Spectroscopy,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Smith, C.[Chaya],
Karunaratne, S.[Senani],
Badenhorst, P.[Pieter],
Cogan, N.[Noel],
Spangenberg, G.[German],
Smith, K.[Kevin],
Machine Learning Algorithms to Predict Forage Nutritive Value of In
Situ Perennial Ryegrass Plants Using Hyperspectral Canopy Reflectance
Data,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Michez, A.[Adrien],
Philippe, L.[Lejeune],
David, K.[Knoden],
Sébastien, C.[Cremer],
Christian, D.[Decamps],
Bindelle, J.[Jérôme],
Can Low-Cost Unmanned Aerial Systems Describe the Forage Quality
Heterogeneity? Insight from a Timothy Pasture Case Study in Southern
Belgium,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
DiMaggio, A.M.[Alexandria M.],
Perotto-Baldivieso, H.L.[Humberto L.],
Ortega-S, J.A.[J. Alfonso],
Walther, C.[Chase],
Labrador-Rodriguez, K.N.[Karelys N.],
Page, M.T.[Michael T.],
de la Luz Martinez, J.[Jose],
Rideout-Hanzak, S.[Sandra],
Hedquist, B.C.[Brent C.],
Wester, D.B.[David B.],
A Pilot Study to Estimate Forage Mass from Unmanned Aerial Vehicles
in a Semi-Arid Rangeland,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Minch, C.[Cameron],
Dvorak, J.[Joseph],
Jackson, J.[Josh],
Sheffield, S.T.[Stuart Tucker],
Creating a Field-Wide Forage Canopy Model Using UAVs and
Photogrammetry Processing,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
Alfalfa canopy structure.
BibRef
de Swaef, T.[Tom],
Maes, W.H.[Wouter H.],
Aper, J.[Jonas],
Baert, J.[Joost],
Cougnon, M.[Mathias],
Reheul, D.[Dirk],
Steppe, K.[Kathy],
Roldán-Ruiz, I.[Isabel],
Lootens, P.[Peter],
Applying RGB- and Thermal-Based Vegetation Indices from UAVs for
High-Throughput Field Phenotyping of Drought Tolerance in Forage
Grasses,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Podebradská, M.[Markéta],
Wylie, B.K.[Bruce K.],
Bathke, D.J.[Deborah J.],
Bayissa, Y.A.[Yared A.],
Dahal, D.[Devendra],
Derner, J.D.[Justin D.],
Fay, P.A.[Philip A.],
Hayes, M.J.[Michael J.],
Schacht, W.H.[Walter H.],
Volesky, J.D.[Jerry D.],
Wagle, P.[Pradeep],
Wardlow, B.D.[Brian D.],
Monitoring Climate Impacts on Annual Forage Production across U.S.
Semi-Arid Grasslands,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Frank, T.[Thiago],
Smith, A.[Anne],
Houston, B.[Bill],
Lindsay, E.[Emily],
Guo, X.[Xulin],
Differentiation of Six Grassland/Forage Types in Three Canadian
Ecoregions Based on Spectral Characteristics,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Irisarri, J.G.N.[Jorge Gonzalo N.],
Durante, M.[Martin],
Derner, J.D.[Justin D.],
Oesterheld, M.[Martin],
Augustine, D.J.[David J.],
Remotely Sensed Spatiotemporal Variation in Crude Protein of
Shortgrass Steppe Forage,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Sangjan, W.[Worasit],
McGee, R.J.[Rebecca J.],
Sankaran, S.[Sindhuja],
Optimization of UAV-Based Imaging and Image Processing Orthomosaic
and Point Cloud Approaches for Estimating Biomass in a Forage Crop,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Tian, Y.[Yuan],
Fu, G.[Gang],
Quantifying Plant Species alpha-Diversity Using Normalized Difference
Vegetation Index and Climate Data in Alpine Grasslands,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Han, F.S.[Fu-Song],
Fu, G.[Gang],
Yu, C.Q.[Cheng-Qun],
Wang, S.H.[Shao-Hua],
Modeling Nutrition Quality and Storage of Forage Using Climate Data
and Normalized-Difference Vegetation Index in Alpine Grasslands,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Liu, Y.L.[Yi-Lei],
Liu, J.P.[Jiang-Ping],
Zhao, X.[Xuanhe],
Pan, X.[Xin],
Yan, W.H.[Wei-Hong],
Research on identification and classification of grassland forage
based on deep learning and attention mechanisms,
IET-IPR(17), No. 9, 2023, pp. 2628-2639.
DOI Link
2307
agricultural engineering, data analysis, image recognition
BibRef
Luns-Hatum-de Almeida, S.[Samira],
Costa-Souza, J.B.[Jarlyson Brunno],
Nogueira, S.F.[Sandra Furlan],
Macedo-Pezzopane, J.R.[José Ricardo],
de Castro-Teixeira, A.H.[Antônio Heriberto],
Bosi, C.[Cristiam],
Adami, M.[Marcos],
Zerbato, C.[Cristiano],
de Campos-Bernardi-Carlos, A.[Alberto],
Bayma, G.[Gustavo],
Pereira-da Silva, R.[Rouverson],
Forage Mass Estimation in Silvopastoral and Full Sun Systems:
Evaluation through Proximal Remote Sensing Applied to the SAFER Model,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Zhao, X.[Xia],
Wu, B.[Bo],
Xue, J.X.[Jin-Xin],
Shi, Y.[Yue],
Zhao, M.Y.[Meng-Ying],
Geng, X.Q.[Xiao-Qing],
Yan, Z.B.[Zheng-Bing],
Shen, H.H.[Hai-Hua],
Fang, J.Y.[Jing-Yun],
Mapping Forage Biomass and Quality of the Inner Mongolia Grasslands
by Combining Field Measurements and Sentinel-2 Observations,
RS(15), No. 8, 2023, pp. 1973.
DOI Link
2305
BibRef
Chen, J.[Jiang],
Yu, T.[Tong],
Cherney, J.H.[Jerome H.],
Zhang, Z.[Zhou],
Optimal Integration of Optical and SAR Data for Improving Alfalfa
Yield and Quality Traits Prediction: New Insights into
Satellite-Based Forage Crop Monitoring,
RS(16), No. 5, 2024, pp. 734.
DOI Link
2403
BibRef
Amputu, V.[Vistorina],
Männer, F.[Florian],
Tielbörger, K.[Katja],
Knox, N.[Nichola],
Spatio-Temporal Transferability of Drone-Based Models to Predict
Forage Supply in Drier Rangelands,
RS(16), No. 11, 2024, pp. 1842.
DOI Link
2406
BibRef
Shi, J.[Jiancong],
Zhang, A.[Aiwu],
Wang, J.[Juan],
Gao, X.W.[Xin-Wang],
Hu, S.X.[Shao-Xing],
Chai, S.[Shatuo],
Mapping Seasonal Spatiotemporal Dynamics of Alpine Grassland Forage
Phosphorus Using Sentinel-2 MSI and a DRL-GP-Based Symbolic
Regression Algorithm,
RS(16), No. 21, 2024, pp. 4086.
DOI Link
2411
BibRef
Hu, C.[Chenlu],
Tian, Y.C.[Yi-Chen],
Yin, K.[Kai],
Huang, H.P.[Hui-Ping],
Li, L.P.[Li-Ping],
Chen, Q.[Qiang],
Research on Forage-Livestock Balance in the Three-River-Source Region
Based on Improved CASA Model,
RS(16), No. 20, 2024, pp. 3857.
DOI Link
2411
BibRef
Urquizo, J.[Julio],
Ccopi, D.[Dennis],
Ortega, K.[Kevin],
Castańeda, I.[Italo],
Patricio, S.[Solanch],
Passuni, J.[Jorge],
Figueroa, D.[Deyanira],
Enriquez, L.[Lucia],
Ore, Z.[Zoila],
Pizarro, S.[Samuel],
Estimation of Forage Biomass in Oat (Avena sativa) Using Agronomic
Variables through UAV Multispectral Imaging,
RS(16), No. 19, 2024, pp. 3720.
DOI Link
2410
BibRef
Ali, A.[Abid],
Kaul, H.P.[Hans-Peter],
Monitoring Yield and Quality of Forages and Grassland in the View of
Precision Agriculture Applications: A Review,
RS(17), No. 2, 2025, pp. 279.
DOI Link
2502
BibRef
Noushahi, H.A.[Hamza Armghan],
Inostroza, L.[Luis],
Barahona, V.[Viviana],
Espinoza, S.[Soledad],
Ovalle, C.[Carlos],
Quitral, K.[Katherine],
Lobos, G.A.[Gustavo A.],
Guerra, F.P.[Fernando P.],
Kefauver, S.C.[Shawn C.],
del Pozo, A.[Alejandro],
Selecting High Forage-Yielding Alfalfa Populations in a Mediterranean
Drought-Prone Environment Using High-Throughput Phenotyping,
RS(17), No. 9, 2025, pp. 1517.
DOI Link
2505
BibRef
Possoch, M.,
Bieker, S.,
Hoffmeister, D.,
Bolten, A.,
Schellberg, J.,
Bareth, G.,
Multi-temporal Crop Surface Models Combined with the RGB Vegetation
Index From UAV-based Images for Forage Monitoring In Grassland,
ISPRS16(B1: 991-998).
DOI Link
1610
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Pasture, Grassland, Rangeland, Change, Degradation, Temporal .