23.2.8.4.1 Rice Crop Yield, Production

Chapter Contents (Back)
Rice Yield. 2507

See also Gross Primary Production, Net Primary Production, GPP, NPP.

Inoue, Y.[Yoshio], Sakaiya, E.[Eiji], Wang, C.Z.[Cui-Zhen],
Potential of X-Band Images from High-Resolution Satellite SAR Sensors to Assess Growth and Yield in Paddy Rice,
RS(6), No. 7, 2014, pp. 5995-6019.
DOI Link 1408
BibRef

Naito, H.[Hiroki], Ogawa, S.[Satoshi], Valencia, M.O.[Milton Orlando], Mohri, H.[Hiroki], Urano, Y.[Yutaka], Hosoi, F.[Fumiki], Shimizu, Y.[Yo], Chavez, A.L.[Alba Lucia], Ishitani, M.[Manabu], Selvaraj, M.G.[Michael Gomez], Omasa, K.[Kenji],
Estimating rice yield related traits and quantitative trait loci analysis under different nitrogen treatments using a simple tower-based field phenotyping system with modified single-lens reflex cameras,
PandRS(125), No. 1, 2017, pp. 50-62.
Elsevier DOI 1703
Breeding BibRef

Zhou, X., Zheng, H.B., Xu, X.Q., He, J.Y., Ge, X.K., Yao, X., Cheng, T., Zhu, Y., Cao, W.X., Tian, Y.C.,
Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery,
PandRS(130), No. 1, 2017, pp. 246-255.
Elsevier DOI 1708
UAVs BibRef

Setiyono, T.D.[Tri D.], Quicho, E.D.[Emma D.], Gatti, L.[Luca], Campos-Taberner, M.[Manuel], Busetto, L.[Lorenzo], Collivignarelli, F.[Francesco], García-Haro, F.J.[Francisco Javier], Boschetti, M.[Mirco], Khan, N.I.[Nasreen Islam], Holecz, F.[Francesco],
Spatial Rice Yield Estimation Based on MODIS and Sentinel-1 SAR Data and ORYZA Crop Growth Model,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Kawamura, K.[Kensuke], Ikeura, H.[Hiroshi], Phongchanmaixay, S.[Sengthong], Khanthavong, P.[Phanthasin],
Canopy Hyperspectral Sensing of Paddy Fields at the Booting Stage and PLS Regression can Assess Grain Yield,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link 1809
BibRef

Jeong, S.[Seungtaek], Ko, J.[Jonghan], Yeom, J.M.[Jong-Min],
Nationwide Projection of Rice Yield Using a Crop Model Integrated with Geostationary Satellite Imagery: A Case Study in South Korea,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

Shiu, Y.S.[Yi-Shiang], Chuang, Y.C.[Yung-Chung],
Yield Estimation of Paddy Rice Based on Satellite Imagery: Comparison of Global and Local Regression Models,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Zhang, K.[Ke], Ge, X.K.[Xiao-Kang], Shen, P.C.[Peng-Cheng], Li, W.Y.[Wan-Yu], Liu, X.J.[Xiao-Jun], Cao, Q.A.[Qi-Ang], Zhu, Y.[Yan], Cao, W.X.[Wei-Xing], Tian, Y.C.[Yong-Chao],
Predicting Rice Grain Yield Based on Dynamic Changes in Vegetation Indexes during Early to Mid-Growth Stages,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Wang, J.J.[Jian-Jun], Dai, Q.X.[Qi-Xing], Shang, J.L.[Jia-Li], Jin, X.L.[Xiu-Liang], Sun, Q.[Quan], Zhou, G.S.[Gui-Sheng], Dai, Q.G.[Qi-Gen],
Field-Scale Rice Yield Estimation Using Sentinel-1A Synthetic Aperture Radar (SAR) Data in Coastal Saline Region of Jiangsu Province, China,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link 1910
BibRef

Raksapatcharawong, M.[Mongkol], Veerakachen, W.[Watcharee], Homma, K.[Koki], Maki, M.[Masayasu], Oki, K.[Kazuo],
Satellite-Based Drought Impact Assessment on Rice Yield in Thailand with SIMRIW-RS,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link 2007
BibRef

Fernandez-Beltran, R.[Ruben], Baidar, T.[Tina], Kang, J.[Jian], Pla, F.[Filiberto],
Rice-Yield Prediction with Multi-Temporal Sentinel-2 Data and 3D CNN: A Case Study in Nepal,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Kang, Y.S.[Ye-Seong], Nam, J.[Jinwoo], Kim, Y.G.[Young-Gwang], Lee, S.T.[Seong-Tae], Seong, D.[Deokgyeong], Jang, S.Y.[Sih-Yeong], Ryu, C.[Chanseok],
Assessment of Regression Models for Predicting Rice Yield and Protein Content Using Unmanned Aerial Vehicle-Based Multispectral Imagery,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Yuan, N.G.[Ning-Ge], Gong, Y.[Yan], Fang, S.H.[Sheng-Hui], Liu, Y.T.[Ya-Ting], Duan, B.[Bo], Yang, K.[Kaili], Wu, X.T.[Xian-Ting], Zhu, R.S.[Ren-Shan],
UAV Remote Sensing Estimation of Rice Yield Based on Adaptive Spectral Endmembers and Bilinear Mixing Model,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Arumugam, P.[Ponraj], Chemura, A.[Abel], Schauberger, B.[Bernhard], Gornott, C.[Christoph],
Remote Sensing Based Yield Estimation of Rice (Oryza Sativa L.) Using Gradient Boosted Regression in India,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Wang, F.M.[Fu-Min], Yao, X.P.[Xiao-Ping], Xie, L.[Lili], Zheng, J.Y.[Jue-Yi], Xu, T.Y.[Tian-Yue],
Rice Yield Estimation Based on Vegetation Index and Florescence Spectral Information from UAV Hyperspectral Remote Sensing,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Xu, T.Y.[Tian-Yue], Wang, F.M.[Fu-Min], Shi, Z.[Zhou], Xie, L.[Lili], Yao, X.P.[Xiao-Ping],
Dynamic estimation of rice aboveground biomass based on spectral and spatial information extracted from hyperspectral remote sensing images at different combinations of growth stages,
PandRS(202), 2023, pp. 169-183.
Elsevier DOI 2308
Data fusion, Optical, Vegetative growth stages, Gray level co-occurrence matrix, Time series BibRef

Li, D.C.[Dai-Chao], Liang, J.Q.[Jian-Qin], Wang, X.F.[Xing-Feng], Wu, S.[Sheng], Xie, X.W.[Xiao-Wei], Lu, J.Q.[Jia-Qi],
Rice Yield Simulation and Planting Suitability Environment Pattern Recognition at a Fine Scale,
IJGI(10), No. 9, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Franch, B.[Belen], Bautista, A.S.[Alberto San], Fita, D.[David], Rubio, C.[Constanza], Tarrazó-Serrano, D.[Daniel], Sánchez, A.[Antonio], Skakun, S.[Sergii], Vermote, E.[Eric], Becker-Reshef, I.[Inbal], Uris, A.[Antonio],
Within-Field Rice Yield Estimation Based on Sentinel-2 Satellite Data,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Liu, Y.Y.[Yuan-Yuan], Wang, S.Q.[Shao-Qiang], Chen, J.H.[Jing-Hua], Chen, B.[Bin], Wang, X.B.[Xiao-Bo], Hao, D.Z.[Dong-Ze], Sun, L.[Leigang],
Rice Yield Prediction and Model Interpretation Based on Satellite and Climatic Indicators Using a Transformer Method,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Park, S.[Seonyoung], Lee, J.[Jaese], Yeom, J.[Jongmin], Seo, E.[Eunkyo], Im, J.[Jungho],
Performance of Drought Indices in Assessing Rice Yield in North Korea and South Korea under the Different Agricultural Systems,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Kurihara, J.[Junichi], Nagata, T.[Toru], Tomiyama, H.[Hiroyuki],
Rice Yield Prediction in Different Growth Environments Using Unmanned Aerial Vehicle-Based Hyperspectral Imaging,
RS(15), No. 8, 2023, pp. 2004.
DOI Link 2305
BibRef

Mia, M.S.[Md. Suruj], Tanabe, R.[Ryoya], Habibi, L.N.[Luthfan Nur], Hashimoto, N.[Naoyuki], Homma, K.[Koki], Maki, M.[Masayasu], Matsui, T.[Tsutomu], Tanaka, T.S.T.[Takashi S. T.],
Multimodal Deep Learning for Rice Yield Prediction Using UAV-Based Multispectral Imagery and Weather Data,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link 2306
BibRef

Wang, Q.Y.[Qing-Yan], Sun, L.Z.[Long-Zhi], Yang, X.[Xuan],
Identifying Spatial Determinants of Rice Yields in Main Producing Areas of China Using Geospatial Machine Learning,
IJGI(13), No. 3, 2024, pp. 76.
DOI Link 2404
BibRef

Clarke, A.[Allister], Yates, D.[Darren], Blanchard, C.[Christopher], Islam, M.Z.[Md. Zahidul], Ford, R.[Russell], Rehman, S.U.[Sabih-Ur], Walsh, R.P.[Robert Paul],
Integrating Climate and Satellite Data for Multi-Temporal Pre-Harvest Prediction of Head Rice Yield in Australia,
RS(16), No. 10, 2024, pp. 1815.
DOI Link 2405
BibRef

He, J.Y.[Jiao-Yang], Zhao, Y.X.[Yan-Xi], He, P.[Ping], Yu, M.L.[Ming-Lei], Zhu, Y.[Yan], Cao, W.X.[Wei-Xing], Zhang, X.H.[Xiao-Hu], Tian, Y.C.[Yong-Chao],
Rice Yield Prediction Based on Simulation Zone Partitioning and Dual-Variable Hierarchical Assimilation,
RS(17), No. 3, 2025, pp. 386.
DOI Link 2502
BibRef

Quille-Mamani, J.[Javier], Ramos-Fernández, L.[Lia], Huanuqueño-Murillo, J.[José], Quispe-Tito, D.[David], Cruz-Villacorta, L.[Lena], Pino-Vargas, E.[Edwin], Flores-del Pino, L.[Lisveth], Heros-Aguilar, E.[Elizabeth], Ruiz, L.Á.[Luis Ángel],
Rice Yield Prediction Using Spectral and Textural Indices Derived from UAV Imagery and Machine Learning Models in Lambayeque, Peru,
RS(17), No. 4, 2025, pp. 632.
DOI Link 2502
BibRef


Son, N.T., Chen, C.F., Chen, C.R., Chang, L.Y., Chiang, S.H.,
Rice Yield Estimation Through Assimilating Satellite Data Into A Crop Simumlation Model,
ISPRS16(B8: 993-996).
DOI Link 1610
BibRef

Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Wheat Crop Analysis, Detection, Change .


Last update:Sep 10, 2025 at 12:00:25