Inoue, Y.[Yoshio],
Sakaiya, E.[Eiji],
Wang, C.Z.[Cui-Zhen],
Potential of X-Band Images from High-Resolution Satellite SAR Sensors
to Assess Growth and Yield in Paddy Rice,
RS(6), No. 7, 2014, pp. 5995-6019.
DOI Link
1408
BibRef
Naito, H.[Hiroki],
Ogawa, S.[Satoshi],
Valencia, M.O.[Milton Orlando],
Mohri, H.[Hiroki],
Urano, Y.[Yutaka],
Hosoi, F.[Fumiki],
Shimizu, Y.[Yo],
Chavez, A.L.[Alba Lucia],
Ishitani, M.[Manabu],
Selvaraj, M.G.[Michael Gomez],
Omasa, K.[Kenji],
Estimating rice yield related traits and quantitative trait loci
analysis under different nitrogen treatments using a simple
tower-based field phenotyping system with modified single-lens reflex
cameras,
PandRS(125), No. 1, 2017, pp. 50-62.
Elsevier DOI
1703
Breeding
BibRef
Zhou, X.,
Zheng, H.B.,
Xu, X.Q.,
He, J.Y.,
Ge, X.K.,
Yao, X.,
Cheng, T.,
Zhu, Y.,
Cao, W.X.,
Tian, Y.C.,
Predicting grain yield in rice using multi-temporal vegetation
indices from UAV-based multispectral and digital imagery,
PandRS(130), No. 1, 2017, pp. 246-255.
Elsevier DOI
1708
UAVs
BibRef
Setiyono, T.D.[Tri D.],
Quicho, E.D.[Emma D.],
Gatti, L.[Luca],
Campos-Taberner, M.[Manuel],
Busetto, L.[Lorenzo],
Collivignarelli, F.[Francesco],
García-Haro, F.J.[Francisco Javier],
Boschetti, M.[Mirco],
Khan, N.I.[Nasreen Islam],
Holecz, F.[Francesco],
Spatial Rice Yield Estimation Based on MODIS and Sentinel-1 SAR Data
and ORYZA Crop Growth Model,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Kawamura, K.[Kensuke],
Ikeura, H.[Hiroshi],
Phongchanmaixay, S.[Sengthong],
Khanthavong, P.[Phanthasin],
Canopy Hyperspectral Sensing of Paddy Fields at the Booting Stage and
PLS Regression can Assess Grain Yield,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Jeong, S.[Seungtaek],
Ko, J.[Jonghan],
Yeom, J.M.[Jong-Min],
Nationwide Projection of Rice Yield Using a Crop Model Integrated
with Geostationary Satellite Imagery: A Case Study in South Korea,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Shiu, Y.S.[Yi-Shiang],
Chuang, Y.C.[Yung-Chung],
Yield Estimation of Paddy Rice Based on Satellite Imagery: Comparison
of Global and Local Regression Models,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Zhang, K.[Ke],
Ge, X.K.[Xiao-Kang],
Shen, P.C.[Peng-Cheng],
Li, W.Y.[Wan-Yu],
Liu, X.J.[Xiao-Jun],
Cao, Q.A.[Qi-Ang],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
Tian, Y.C.[Yong-Chao],
Predicting Rice Grain Yield Based on Dynamic Changes in Vegetation
Indexes during Early to Mid-Growth Stages,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Wang, J.J.[Jian-Jun],
Dai, Q.X.[Qi-Xing],
Shang, J.L.[Jia-Li],
Jin, X.L.[Xiu-Liang],
Sun, Q.[Quan],
Zhou, G.S.[Gui-Sheng],
Dai, Q.G.[Qi-Gen],
Field-Scale Rice Yield Estimation Using Sentinel-1A Synthetic
Aperture Radar (SAR) Data in Coastal Saline Region of Jiangsu
Province, China,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Raksapatcharawong, M.[Mongkol],
Veerakachen, W.[Watcharee],
Homma, K.[Koki],
Maki, M.[Masayasu],
Oki, K.[Kazuo],
Satellite-Based Drought Impact Assessment on Rice Yield in Thailand
with SIMRIW-RS,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Fernandez-Beltran, R.[Ruben],
Baidar, T.[Tina],
Kang, J.[Jian],
Pla, F.[Filiberto],
Rice-Yield Prediction with Multi-Temporal Sentinel-2 Data and 3D CNN:
A Case Study in Nepal,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Kang, Y.S.[Ye-Seong],
Nam, J.[Jinwoo],
Kim, Y.G.[Young-Gwang],
Lee, S.T.[Seong-Tae],
Seong, D.[Deokgyeong],
Jang, S.Y.[Sih-Yeong],
Ryu, C.[Chanseok],
Assessment of Regression Models for Predicting Rice Yield and Protein
Content Using Unmanned Aerial Vehicle-Based Multispectral Imagery,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Yuan, N.G.[Ning-Ge],
Gong, Y.[Yan],
Fang, S.H.[Sheng-Hui],
Liu, Y.T.[Ya-Ting],
Duan, B.[Bo],
Yang, K.[Kaili],
Wu, X.T.[Xian-Ting],
Zhu, R.S.[Ren-Shan],
UAV Remote Sensing Estimation of Rice Yield Based on Adaptive
Spectral Endmembers and Bilinear Mixing Model,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Arumugam, P.[Ponraj],
Chemura, A.[Abel],
Schauberger, B.[Bernhard],
Gornott, C.[Christoph],
Remote Sensing Based Yield Estimation of Rice (Oryza Sativa L.) Using
Gradient Boosted Regression in India,
RS(13), No. 12, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Wang, F.M.[Fu-Min],
Yao, X.P.[Xiao-Ping],
Xie, L.[Lili],
Zheng, J.Y.[Jue-Yi],
Xu, T.Y.[Tian-Yue],
Rice Yield Estimation Based on Vegetation Index and Florescence
Spectral Information from UAV Hyperspectral Remote Sensing,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Xu, T.Y.[Tian-Yue],
Wang, F.M.[Fu-Min],
Shi, Z.[Zhou],
Xie, L.[Lili],
Yao, X.P.[Xiao-Ping],
Dynamic estimation of rice aboveground biomass based on spectral and
spatial information extracted from hyperspectral remote sensing
images at different combinations of growth stages,
PandRS(202), 2023, pp. 169-183.
Elsevier DOI
2308
Data fusion, Optical, Vegetative growth stages,
Gray level co-occurrence matrix, Time series
BibRef
Li, D.C.[Dai-Chao],
Liang, J.Q.[Jian-Qin],
Wang, X.F.[Xing-Feng],
Wu, S.[Sheng],
Xie, X.W.[Xiao-Wei],
Lu, J.Q.[Jia-Qi],
Rice Yield Simulation and Planting Suitability Environment Pattern
Recognition at a Fine Scale,
IJGI(10), No. 9, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Franch, B.[Belen],
Bautista, A.S.[Alberto San],
Fita, D.[David],
Rubio, C.[Constanza],
Tarrazó-Serrano, D.[Daniel],
Sánchez, A.[Antonio],
Skakun, S.[Sergii],
Vermote, E.[Eric],
Becker-Reshef, I.[Inbal],
Uris, A.[Antonio],
Within-Field Rice Yield Estimation Based on Sentinel-2 Satellite Data,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Liu, Y.Y.[Yuan-Yuan],
Wang, S.Q.[Shao-Qiang],
Chen, J.H.[Jing-Hua],
Chen, B.[Bin],
Wang, X.B.[Xiao-Bo],
Hao, D.Z.[Dong-Ze],
Sun, L.[Leigang],
Rice Yield Prediction and Model Interpretation Based on Satellite and
Climatic Indicators Using a Transformer Method,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Park, S.[Seonyoung],
Lee, J.[Jaese],
Yeom, J.[Jongmin],
Seo, E.[Eunkyo],
Im, J.[Jungho],
Performance of Drought Indices in Assessing Rice Yield in North Korea
and South Korea under the Different Agricultural Systems,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Kurihara, J.[Junichi],
Nagata, T.[Toru],
Tomiyama, H.[Hiroyuki],
Rice Yield Prediction in Different Growth Environments Using Unmanned
Aerial Vehicle-Based Hyperspectral Imaging,
RS(15), No. 8, 2023, pp. 2004.
DOI Link
2305
BibRef
Mia, M.S.[Md. Suruj],
Tanabe, R.[Ryoya],
Habibi, L.N.[Luthfan Nur],
Hashimoto, N.[Naoyuki],
Homma, K.[Koki],
Maki, M.[Masayasu],
Matsui, T.[Tsutomu],
Tanaka, T.S.T.[Takashi S. T.],
Multimodal Deep Learning for Rice Yield Prediction Using UAV-Based
Multispectral Imagery and Weather Data,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Wang, Q.Y.[Qing-Yan],
Sun, L.Z.[Long-Zhi],
Yang, X.[Xuan],
Identifying Spatial Determinants of Rice Yields in Main Producing
Areas of China Using Geospatial Machine Learning,
IJGI(13), No. 3, 2024, pp. 76.
DOI Link
2404
BibRef
Clarke, A.[Allister],
Yates, D.[Darren],
Blanchard, C.[Christopher],
Islam, M.Z.[Md. Zahidul],
Ford, R.[Russell],
Rehman, S.U.[Sabih-Ur],
Walsh, R.P.[Robert Paul],
Integrating Climate and Satellite Data for Multi-Temporal Pre-Harvest
Prediction of Head Rice Yield in Australia,
RS(16), No. 10, 2024, pp. 1815.
DOI Link
2405
BibRef
He, J.Y.[Jiao-Yang],
Zhao, Y.X.[Yan-Xi],
He, P.[Ping],
Yu, M.L.[Ming-Lei],
Zhu, Y.[Yan],
Cao, W.X.[Wei-Xing],
Zhang, X.H.[Xiao-Hu],
Tian, Y.C.[Yong-Chao],
Rice Yield Prediction Based on Simulation Zone Partitioning and
Dual-Variable Hierarchical Assimilation,
RS(17), No. 3, 2025, pp. 386.
DOI Link
2502
BibRef
Quille-Mamani, J.[Javier],
Ramos-Fernández, L.[Lia],
Huanuqueño-Murillo, J.[José],
Quispe-Tito, D.[David],
Cruz-Villacorta, L.[Lena],
Pino-Vargas, E.[Edwin],
Flores-del Pino, L.[Lisveth],
Heros-Aguilar, E.[Elizabeth],
Ruiz, L.Á.[Luis Ángel],
Rice Yield Prediction Using Spectral and Textural Indices Derived
from UAV Imagery and Machine Learning Models in Lambayeque, Peru,
RS(17), No. 4, 2025, pp. 632.
DOI Link
2502
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Wheat Crop Analysis, Detection, Change .