*Mylopoulos, J.P.*, and
*Pavlidis, T.*,

**On the Topological Properties of Quantized Spaces
I. The Notion of Dimension**,

*JACM(18)*, No. 2, April 1971, pp. 239-246.
BibRef
**7104**

And:

**On the Topological Properties of Quantized Spaces
II. Connectivity and Order of Connectivity**,

*JACM(18)*, No. 2, April 1971, pp. 247-254.
BibRef

*Tourlakis, G.*, and
*Mylopoulos, J.P.*,

**Some Results on Computational Topology**,

*JACM(20)*, No. 3, July 1973, 439-455.
BibRef
**7307**

*Peacocke, R.[Richard]*,
*Mylopoulos, J.P.[John P.]*,

**A region-based formalism for picture processing**,

*PR(13)*, No. 6, 1981, pp. 399-416.

Elsevier DOI
**0309**

BibRef

*Meagher, D.J.R.*,

**Geometric Modeling Using Octree Encoding**,

*CGIP(19)*, No. 2, June 1982, pp. 129-147.

Elsevier DOI
BibRef
**8206**

Earlier:

**Efficient Synthetic Image Generation of Arbitrary 3-D Objects**,

*PRIP82*(473-478).
BibRef

Earlier:

**Octree Encoding**,

Tech. Report TR-IPL-80-111, Electrical Systems,
*RPI*1980.
BibRef

*Doctor, L.J.*,
*Torborg, J.G.*,

**Display Techniques for Octree-Encoded Objects**,

*IEEE_CGA(1)*, No. 3, 1981, pp. 29-38.
BibRef
**8100**

*Gargantini, I.[Irene]*,

**Linear Octtrees for Fast Processing of Three-Dimensional Objects**,

*CGIP(20)*, No. 4, December 1982, pp. 365-374.

Elsevier DOI For Quadtree version:
See also Effective Way to Represent Quadtrees, An.
BibRef
**8212**

*Yau, M.M.[Mann-May]*, and
*Srihari, S.N.[Sargur N.]*,

**A Hierarchical Data Structure for Multidimensional Digital Images**,

*CACM(26)*, No. 7, July 1983, pp. 504-515.
BibRef
**8307**

Earlier:

**Recursive Generation of Hierarchical Data Structures for
Multidimensional Digital Images**,

*PRIP81*(42-44).
General discussion of hierarchical data structures and the
extension to 3-D.
BibRef

*Srihari, S.N.*,

**Hierarchical Representations for serial Section Images**,

*ICPR80*(1075-1080).
BibRef
**8000**

*Yau, M.M.[Mann-May]*,

**Hierarchical Representation of Three-Dimensional Digital Objects**,

*Ph.D.*January 1983, Computer Science,
BibRef
**8301**
*SUNY Buffalo*
BibRef

*Chen, H.H.[Homer H.]*,
*Huang, T.S.[Thomas S.]*,

**A Survey of Construction and Manipulation of Octrees**,

*CVGIP(43)*, No. 3, September 1988, pp. 409-431.

Elsevier DOI
*Survey, Octree*.
*Octree*. A good source for the early history and its relation
to graphics where most of the early work was centered.
BibRef
**8809**

*Rubin, S.M.[Steven M.]*,

**The Representation and Display of Scenes with a Wide Range of Detail**,

*CGIP(19)*, No. 3, July 1982, pp. 291-298.

Elsevier DOI Subset filtering to determine what is appropriate to display.
BibRef
**8207**

*Reddy, R.[Raj]*,
*Rubin, S.M.[Steven M.]*,

**Representation of Three-Dimensional Objects**,

*CMU-CS-TR*-78-113, April 1978.
General volume blocks for 3-D representations. Early
implementation of the octree concepts for volume
representation as applied to graphics.
BibRef
**7804**

*Hunter, G.M.*,

**Efficient Computation and Data Structures for Graphics**,

*Ph.D.*Thesis (CS), 1978,
BibRef
**7800**
*Princeton*Univ..
Early mention of octree data structure.
BibRef

*Jackins, C.L.[Chris L.]*,
*Tanimoto, S.L.[Steven L.]*,

**Oct-trees and Their Use in Representing Three-Dimensional Objects**,

*CGIP(14)*, No. 3, November 1980, pp. 249-270.

Elsevier DOI
BibRef
**8011**

*Jackins, C.L.[Chris L.]*,
*Tanimoto, S.L.[Steven L.]*,

**Quad-Trees, Oct-Trees, and K-Trees: A Generalized Approach to
Recursive Decomposition of Euclidean Space**,

*PAMI(5)*, No. 5, September 1983, pp. 533-539.
BibRef
**8309**

*Elber, G.*,
*Shpitalni, M.*,

**Octree Creation via C.S.G. Definition**,

*VC(4)*, 1988, pp. 53-64.
BibRef
**8800**

*Brechner, E.L.[Eric L.]*,
*Bourassa, V.E.[Virgil E.]*,

**Method for creating spatially balanced bounding volume hierarchies for use in a computer generated display of a complex structure**,

*US_Patent*5,613,049, Mar 18, 1997

WWW Link.
BibRef
**9703**

*Sakkalis, T.*,
*Shen, G.*,
*Patrikalakis, N.M.*,

**Topological and Geometric Properties of Interval Solid Models**,

*GM(63)*, No. 3, May 2001, pp. 163-175.

DOI Link Voxel type models, collection of boxes, faces parallel to the coordinate
planes, cover the boundar of the solid.
Union with the solid.
**0111**

BibRef

*Kim, C.S.[Chang-Su]*,
*Lee, S.U.[Sang-Uk]*,

**Compact encoding of 3-D voxel surfaces based on pattern code
representation**,

*IP(11)*, No. 8, August 2002, pp. 932-943.

IEEE DOI
**0209**

BibRef

IEEE DOI

convolution, image coding, image representation, image resolution, octrees, stereo image processing, 3D convolutional autoencoders, BibRef

*Husz, Z.L.[Zsolt L.]*,
*Perry, T.P.[Thomas P.]*,
*Hill, B.[Bill]*,
*Baldock, R.A.[Richard A.]*,

**Woolz IIP:
A Tiled On-the-Fly Sectioning Server for 3D Volumetric Atlases**,

*ISVC09*(I: 924-933).

Springer DOI
**0911**

Fast access to volume data.
BibRef

*Mukherjee, M.[Maharaj]*,
*Vemuri, S.*,

**A Novel Approach to Represent 3-D Isothetic Scenes Using XYZ Trees**,

*ICIP96*(II: 333-336).

IEEE DOI
BibRef
**9600**

*Jungert, E.*,
*Chang, S.K.*,

**The Sigma-Tree Q A Symbolic Spatial Data Model**,

*ICPR92*(I:461-465).

IEEE DOI
*Trees, Sigma*.
BibRef
**9200**

*Mazumder, P.*,

**A New Strategy for Octree Representation of Three-Dimensional Objects**,

*CVPR88*(270-275).

IEEE DOI
BibRef
**8800**

Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in

Oct-Trees -- Use .

Last update:Oct 1, 2019 at 15:23:24