Maybank, S.J.,
Algorithm for Analysing Optical Flow Based on the Least-Squares Method,
IVC(4), No. 1, February 1986, pp. 38-42.
Elsevier DOI Moving camera, rigid environment. Irregular surfaces help.
See also Rigid Velocities Compatible with Five Image Velocity Vectors.
BibRef
8602
Maybank, S.J.,
The Angular Velocity Associated with the Optical Flowfield
Arising from Motion Through a Rigid Environment,
Royal(A-401), 1985, pp. 317-326.
BibRef
8500
Maybank, S.J.,
Apparent Area of a Rigid Moving Body,
IVC(5), No. 2, May 1987, pp. 111-113.
Elsevier DOI Change in apparent area, leads to time to contact.
BibRef
8705
Maybank, S.J.,
Optical Flow and the Taylor Expansion,
PRL(4), 1986, pp. 243-246.
BibRef
8600
Radford, C.J.,
Optical Flow Fields in Hough Transform Space,
PRL(4), 1986, pp. 293-303.
BibRef
8600
Emery, W.J.,
Thomas, A.C., and
Collins, M.J.,
An Objective Method for Computing Advective Surface Velocities from
Sequential Infrared Images,
JGR(91), No. C11, 1986, pp. 12865-12878.
BibRef
8600
Lawton, D.T.[Daryl T.],
Gardner, W.F.,
Motion Analysis By Translational Decomposition,
PRL(18), No. 2, February 1997, pp. 203-211.
9704
BibRef
Earlier:
Translational Decomposition of Flow Fields,
DARPA93(697-705).
The flow is represented as local translations.
BibRef
Lawton, D.T.[Daryl T.],
Motion Analysis via Local Translational Processing,
CVWS82(59-72).
Extract zero crossings, and feature points (corners) then match the
corner positions. This generates an optic flow pattern which can
give direction of motion for the observer and the scene.
BibRef
8200
Lawton, D.T.[Daryl T.],
Processing Dynamic Image Sequences from a Moving Sensor,
Ph.D.Thesis (CS), 1984.
BibRef
8400
COINSTR 84-05, UMass.
BibRef
Lawton, D.T.[Daryl T.],
Processing Translational Motion Sequences,
CVGIP(22), No. 1, April 1983, pp. 116-144.
Elsevier DOI
BibRef
8304
Earlier:
COINSTR 82-22, UMass., October 1982.
BibRef
And:
Processing Restricted Sensor Motion,
DARPA83(266-281).
Generation of some 3-d information for a motion sequence. Procedure
to process motion images caused by relative motion of sensor and
scene. Feature extraction: pick out small areas which may be
distinguishing marks of objects.
Search: find the direction of motion which minimizes error.
BibRef
Alliney, S.,
Digital Analysis of Rotated Images,
PAMI(15), No. 5, May 1993, pp. 499-504.
IEEE DOI Find relative rotations using image computations and no data
interploation.
(See also papers that show rotation is independent of center.)
See also Digital Image Registration Using Projections.
BibRef
9305
Negahdaripour, S.[Shahriar],
Revised Definition of Optical Flow:
Integration of Radiometric and Geometric Cues for Dynamic Scene Analysis,
PAMI(20), No. 9, September 1998, pp. 961-979.
IEEE DOI
9809
BibRef
Earlier:
Revised Representation of Optical Flow for Dynamic Scene Analysis,
SCV95(473-478).
IEEE DOI University of Miami.
Unify geometric interpretation of optical flow and
radiometric.
See also BC&GC-Based Dense Stereo By Belief Propagation.
BibRef
Negahdaripour, S.,
Lanjing, J.,
Direct Recovery of Motion and Range from Images of Scenes with
Time-Varying Illumination,
SCV95(467-472).
IEEE DOI University of Miami.
The lighting changes, so the usual models do not apply.
BibRef
9500
Negahdaripour, S., and
Yu, C.H.,
A Generalized Brightness Change Model for Computing Optical Flow,
ICCV93(2-11).
IEEE DOI Optical flow computations when the intensity changes from frame to
frame. Some experiments with images (2 frames).
BibRef
9300
Negahdaripour, S.,
Yu, C.H.,
Robust Recovery of Motion:
Effects of Surface Orientation and Field of View,
CVPR88(404-410).
IEEE DOI
BibRef
8800
Madjidi, H.[Hossein],
Negahdaripour, S.[Shahriar],
On robustness and localization accuracy of optical flow computation for
underwater color images,
CVIU(104), No. 1, October 2006, pp. 61-76.
Elsevier DOI
0609
BibRef
Earlier:
On robustness and localization accuracy of optical flow computation
from color imagery,
3DPVT04(317-324).
IEEE DOI
0412
Optical Flow; Color Imagery; Underwater image model
BibRef
Gennert, M.A.[Michael A.], and
Negahdaripour, S.[Shahriar],
Relaxing the Brightness Constancy Assumption in Computing Optical Flow,
MIT AI Memo-975, June 1987.
BibRef
8706
Negahdaripour, S., and
Horn, B.K.P.,
Determining 3-D Motion of Planar Objects from Image Brightness Patterns,
IJCAI85(898-901).
Translation perpendicular to the surface only.
BibRef
8500
Pavlin, I.[Igor],
Riseman, E.M., and
Hanson, A.R.,
Analysis of an Algorithm for Detection of Translational Motion,
DARPA85(388-398).
BibRef
8500
And:
COINS-TR-85-47, December 1985.
BibRef
And:
Camera translation with 8 feature points in 2 images.
BibRef
Pavlin, I.,
Riseman, E.M., and
Hanson, A.R.,
A Translational Motion Algorithm Using Hierarchial Search
with Smoothing,
No source.
And:
Translational Motion Algorithm with Global Feature Constraints,
COINS-TR-86-58, December 1986.
Find the translational motion by recursively reducing the scale in the
error surface. This allows for bad initial sampling.
BibRef
8612
Tsukune, H., and
Aggarwal, J.K.,
Analyzing Orthographic Projection of Multiple 3-D Velocity
Vector Fields in Optical Flow,
CVGIP(42), No. 2, May 1988, pp. 157-191.
Elsevier DOI
BibRef
8805
Earlier:
CVPR85(510-517). (ETL and Univ. of Texas)
Motion, Rotation.
Hough. Rotational flow and Hough.
BibRef
Kanatani, K.I.,
Transformation of Optical Flow by Camera Rotation,
PAMI(10), No. 2, March 1988, pp. 131-143.
IEEE DOI
BibRef
8803
Earlier:
Motion86(113-118).
BibRef
And:
Coordinate Rotation Invariance of Image Characteristics for
3D Shape and Motion Recovery,
ICCV87(55-64).
Gunma U. Japan, Now at UMd.
Camera rotation effects on Optical Flow of a planar surface that is moving.
See also Camera Rotation Invariance of Image Characteristics.
BibRef
Pnueli, Y.,
Kiryati, N.,
Bruckstein, A.M.,
Hough Techniques For Fast Optimization of Linear Constant Velocity Motion
in Moving Influence Fields,
PRL(15), No. 4, April 1994, pp. 329-336.
BibRef
9404
Guan, B.Q.[Bai-Qing],
Wang, S.G.[Shi-Gang],
Wang, G.B.[Guo-Bao],
A biologically inspired method for estimating 2D high-speed
translational motion,
PRL(26), No. 15, November 2005, pp. 2450-2462.
Elsevier DOI
0510
BibRef
Shih, F.Y.[Frank Y.],
Klotz, T.[Tobias],
Brockmann, W.[Werner],
A system for rotational velocity computation from image sequences,
IVC(24), No. 4, 1 April 2006, pp. 357-362.
Elsevier DOI Optical flow; Velocity computation; Corner detection; Mathematical morphology
0606
BibRef
Li, L.[Ling],
Yang, Y.Y.[Yong-Yi],
Optical Flow Estimation for a Periodic Image Sequence,
IP(19), No. 1, January 2010, pp. 1-10.
IEEE DOI
1001
BibRef
Earlier:
Optical flow estimation for a periodic images sequence,
ICIP08(833-836).
IEEE DOI
0810
BibRef
Taddei, P.[Pierluigi],
Espuny, F.[Ferran],
Caglioti, V.[Vincenzo],
Planar Motion Estimation and Linear Ground Plane Rectification using an
Uncalibrated Generic Camera,
IJCV(96), No. 2, February 2012, pp. 162-174.
WWW Link.
1201
BibRef
Earlier: A3, A1, Only:
Planar motion estimation using an uncalibrated general camera,
OMNIVIS08(xx-yy).
0810
BibRef
Kinoshita, K.,
Murakami, K.,
Moving object tracking via one-dimensional optical flow using queue,
ICARCV08(2326-2331).
IEEE DOI
1109
BibRef
Kinoshita, K.,
Enokidani, M.,
Izumida, M.,
Murakami, K.,
Tracking of a Moving Object Using One-Dimensional Optical Flow with a
Rotating Observer,
ICARCV06(1-6).
IEEE DOI
0612
BibRef
Kinoshita, K.,
Matsushita, H.,
Izumida, M.,
Murakami, K.,
Estimation of Inverse Kinematics Model by Forward-Propagation Rule with
a High-Order Term,
ICARCV06(1-6).
IEEE DOI
0612
BibRef
Porrill, J.[John],
Ivins, J.P.[Jim P.],
Orban, G.[Guy],
Frisby, J.P.[John P.],
The Joint Probability Density Function for Linear Optic Flow Components,
ICPR98(Vol I: 795-798).
IEEE DOI
9808
BibRef
Simoncelli, E.P.,
Adelson, E.H., and
Heeger, D.J.,
Probability Distributions of Optical Flow,
CVPR91(310-315).
IEEE DOI and
PS File.
BibRef
9100
Simoncelli, E.P.[Eero P.],
Distributed Analysis and Representation of Visual Motion,
Ph.D.Thesis, MIT. January, 1993.
HTML Version.
BibRef
9301
And:
(The Tech report listing gives
Representation and Analysis, but it is the same document):
Vismod209, 1993.
HTML Version. and
PS File.
BibRef
Simoncelli, E.P.[Eero P.],
Distributed Representations of Image Velocity,
Vismod202, 1992.
HTML Version. And
PS File.
BibRef
9200
Simoncelli, E.P.[Eero P.],
Adelson, E.H.[Edward H.],
Computing Optical Flow Distributions Using Spatio-Temporal Filters,
Vismod-165, November 1990, Revised March 1991.
PS File.
BibRef
9003
Thomas, I.,
Simoncelli, E.P.,
Bajcsy, R.,
Peripheral Visual Field, Fixation and Direction of Heading,
EVAE1995, pp. xx.
BibRef
9500
Bobick, A.F.,
Using Stability of Interpretation as Verification for Low Level
Processing: An Example from Egomotion and Optic Flow,
CVPR93(718-719).
IEEE DOI
BibRef
9300
Bobick, A.F.[Aaron F.],
A Hybrid Approach to Structure-from-Motion,
Motion83(91-109).
(MIT-Psych) Objects are rotated about a fixed axis.
BibRef
8300
Roberts, K.S.,
Bishop, G.,
Ganapathy, S.K.,
Smooth Interpolation of Rotational Motions,
CVPR88(724-729).
IEEE DOI
BibRef
8800
Diehl, N.,
Burkhardt, H.,
Planar Motion Estimation with a Fast Converging Algorithm,
ICPR86(1099-1102).
BibRef
8600
Chapter on Optical Flow Field Computations and Use continues in
Discontinuous Optic Flow Computation, Occlusions .