4.11.5.1.1 Retinex for Low Light Images

Chapter Contents (Back)
Retinex. Low Light.
See also Color Constancy, Retinex.
See also Low Light Color Enhancement.
See also Low Light Enhancement.

Liu, C.J.[Chang-Jiang], Cheng, I.[Irene], Zhang, Y.[Yi], Basu, A.[Anup],
Enhancement of low visibility aerial images using histogram truncation and an explicit Retinex representation for balancing contrast and color consistency,
PandRS(128), No. 1, 2017, pp. 16-26.
Elsevier DOI 1706
Multi-scale, Retinex BibRef

Li, M.D.[Ma-Ding], Liu, J.Y.[Jia-Ying], Yang, W.H.[Wen-Han], Sun, X.Y.[Xiao-Yan], Guo, Z.M.[Zong-Ming],
Structure-Revealing Low-Light Image Enhancement Via Robust Retinex Model,
IP(27), No. 6, June 2018, pp. 2828-2841.
IEEE DOI 1804
image enhancement, optimisation, augmented Lagrange multiplier based alternating direction minimization algorithm, structure-revealing. BibRef

Ren, X., Yang, W., Cheng, W., Liu, J.,
LR3M: Robust Low-Light Enhancement via Low-Rank Regularized Retinex Model,
IP(29), 2020, pp. 5862-5876.
IEEE DOI 2005
Lighting, Robustness, Noise reduction, Histograms, Minimization, Visualization, Estimation, Low-light enhancement, denoising, low-rank decomposition BibRef

Gu, Z., Li, F., Fang, F., Zhang, G.,
A Novel Retinex-Based Fractional-Order Variational Model for Images With Severely Low Light,
IP(29), 2020, pp. 3239-3253.
IEEE DOI 2002
Retinex, low-light image, fractional-order, variational model, image enhancement, reflectance, illumination BibRef

Yang, W., Wang, W., Huang, H., Wang, S., Liu, J.,
Sparse Gradient Regularized Deep Retinex Network for Robust Low-Light Image Enhancement,
IP(30), 2021, pp. 2072-2086.
IEEE DOI 2101
Lighting, Image restoration, Image enhancement, Image coding, Noise reduction, Atmospheric modeling, Minimization, denoising BibRef

Li, M.[Miao], Zhou, D.M.[Dong-Ming], Nie, R.C.[Ren-Can], Xie, S.D.[Shi-Dong], Liu, Y.Y.[Yan-Yu],
AMBCR: Low-Light Image Enhancement via Attention Guided Multi-Branch Construction and Retinex Theory,
IET-IPR(15), No. 9, 2021, pp. 2020-2038.
DOI Link 2106
attention networks, low-light image enhancement, multi-branch construction, Retinex theory BibRef

Yang, J.Y.[Jing-Yu], Xu, Y.W.[Yu-Wei], Yue, H.J.[Huan-Jing], Jiang, Z.Y.[Zhong-Yu], Li, K.[Kun],
Low-light image enhancement based on Retinex decomposition and adaptive gamma correction,
IET-IPR(15), No. 5, 2021, pp. 1189-1202.
DOI Link 2106
BibRef

Kong, X.Y.[Xiang-Yu], Liu, L.[Lei], Qian, Y.S.[Yun-Sheng],
Low-Light Image Enhancement via Poisson Noise Aware Retinex Model,
SPLetters(28), 2021, pp. 1540-1544.
IEEE DOI 2108
Lighting, Reflectivity, Kernel, Image enhancement, Noise reduction, Photonics, Standards, Image denoising, low-light image enhancement, Retinex model BibRef

Lv, X.Q.[Xiao-Qian], Sun, Y.J.[Yu-Jing], Zhang, J.[Jun], Jiang, F.[Feng], Zhang, S.P.[Sheng-Ping],
Low-light image enhancement via deep Retinex decomposition and bilateral learning,
SP:IC(99), 2021, pp. 116466.
Elsevier DOI 2111
Low-light image enhancement, Image decomposition, Deep neural network, Attention, Illumination adjustment BibRef

Zhao, Z.J.[Zun-Jin], Xiong, B.S.[Bang-Shu], Wang, L.[Lei], Ou, Q.F.[Qiao-Feng], Yu, L.[Lei], Kuang, F.[Fa],
RetinexDIP: A Unified Deep Framework for Low-Light Image Enhancement,
CirSysVideo(32), No. 3, March 2022, pp. 1076-1088.
IEEE DOI 2203
Lighting, Couplings, Image enhancement, Task analysis, Histograms, Cameras, Low-light image enhancement, zero-reference BibRef

Lin, Y.H.[Yi-Hsien], Lu, Y.C.[Yi-Chang],
Low-Light Enhancement Using a Plug-and-Play Retinex Model With Shrinkage Mapping for Illumination Estimation,
IP(31), 2022, pp. 4897-4908.
IEEE DOI 2208
Lighting, Optimization, Image edge detection, Stars, Learning systems, Linear programming, Image quality, alternating direction method of multipliers BibRef

Rasheed, M.T.[Muhammad Tahir], Guo, G.Y.[Gui-Yu], Shi, D.M.[Da-Ming], Khan, H.[Hufsa], Cheng, X.C.[Xiao-Chun],
An Empirical Study on Retinex Methods for Low-Light Image Enhancement,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Zhao, Z.J.[Zun-Jin], Shi, D.M.[Da-Ming],
Retinex-guided generative diffusion prior for low-light image enhancement,
PR(172), 2026, pp. 112421.
Elsevier DOI Code:
WWW Link. 2512
Low-light enhancement, Retinex, Diffusion, Training-free enhancement BibRef

Zhao, Z.J.[Zun-Jin], Lin, H.X.[He-Xiu], Shi, D.M.[Da-Ming], Zhou, G.Q.[Guo-Qing],
A non-regularization self-supervised Retinex approach to low-light image enhancement with parameterized illumination estimation,
PR(146), 2024, pp. 110025.
Elsevier DOI Code:
WWW Link. 2311
Low-light image enhancement, Illumination estimation, Parameterization, Bilateral grid, Non-regularization BibRef

Wang, Y.[Yong], Li, B.[Bo], Jiang, L.J.[Li-Jun], Yang, W.M.[Wen-Ming],
R2Net: Relight the restored low-light image based on complementarity of illumination and reflection,
SP:IC(108), 2022, pp. 116800.
Elsevier DOI 2209
Low-light image enhancement, Retinex-based method, Attention module, Image restoration BibRef

Jia, F.[Fan], Wong, H.S.[Hok Shing], Wang, T.[Tiange], Zeng, T.Y.[Tie-Yong],
A reflectance re-weighted Retinex model for non-uniform and low-light image enhancement,
PR(144), 2023, pp. 109823.
Elsevier DOI 2310
Image enhancement, Variational method, Retinex model, Non-uniform enhancement BibRef

Jia, F.[Fan], Mao, S.[Shen], Tai, X.C.[Xue-Cheng], Zeng, T.Y.[Tie-Yong],
A Variational Model for Nonuniform Low-Light Image Enhancement,
SIIMS(17), No. 1, 2024, pp. 1-30.
DOI Link 2404
BibRef

Ma, Q.T.[Qian-Ting], Wang, Y.[Yang], Zeng, T.Y.[Tie-Yong],
A Contrast-Saturation Adaptive Model for Low-Light Image Enhancement,
SIIMS(18), No. 1, 2025, pp. 765-787.
DOI Link 2504
BibRef

Hai, J.[Jiang], Hao, Y.T.[Yu-Tong], Zou, F.Z.[Feng-Zhu], Lin, F.[Fang], Han, S.C.[Song-Chen],
Advanced RetinexNet: A fully convolutional network for low-light image enhancement,
SP:IC(112), 2023, pp. 116916.
Elsevier DOI 2302
Retinex, Low-light image enhancement, Image processing, Fully convolutional network BibRef

Yang, J.[Jie], Wang, J.[Jun], Dong, L.L.[Lin-Lu], Chen, S.Y.[Shu-Yuan], Wu, H.[Hao], Zhong, Y.W.[Ya-Wen],
Optimization algorithm for low-light image enhancement based on Retinex theory,
IET-IPR(17), No. 2, 2023, pp. 505-517.
DOI Link 2302
fast and robust fuzzy C-means, guided filtering, image enhancement, low-light image BibRef

Wang, Y.N.[Yong-Nian], Zhang, Z.B.[Zhi-Bin],
Global attention retinex network for low light image enhancement,
JVCIR(92), 2023, pp. 103795.
Elsevier DOI 2303
Low light image enhancement, Retinex, Global attention, Channel attention BibRef

Lu, H.X.[Hao-Xiang], Liu, Z.B.[Zhen-Bing], Lan, R.[Rushi], Pan, X.P.[Xi-Peng], Gong, J.M.[Jun-Ming],
Retinex-inspired contrast stretch and detail boosting for lowlight image enhancement,
IET-IPR(17), No. 6, 2023, pp. 1718-1738.
DOI Link 2305
image enhancement, image fusion, image processing BibRef

Yang, B.[Biao], Zheng, L.L.[Liang-Liang], Wu, X.B.[Xia-Bin], Gao, T.[Tan], Chen, X.L.[Xiao-Long],
Low-Illumination Image Enhancement Using Local Gradient Relative Deviation for Retinex Models,
RS(15), No. 17, 2023, pp. 4327.
DOI Link 2310
BibRef

Ma, L.[Long], Liu, R.S.[Ri-Sheng], Wang, Y.Y.[Yi-Yang], Fan, X.[Xin], Luo, Z.X.[Zhong-Xuan],
Low-Light Image Enhancement via Self-Reinforced Retinex Projection Model,
MultMed(25), 2023, pp. 3573-3586.
IEEE DOI 2310
BibRef

An, N.[Nan], Ma, L.[Long], Han, G.C.[Guang-Chao], Fan, X.[Xin], Liu, R.S.[Ri-Sheng],
Striving for Faster and Better: A One-Layer Architecture With Auto Re-Parameterization for Low-Light Image Enhancement,
CirSysVideo(35), No. 8, August 2025, pp. 7455-7470.
IEEE DOI Code:
WWW Link. 2508
Visualization, Image enhancement, Computational efficiency, Lighting, Reflectivity, Computational modeling, Optimization, tiered architecture search BibRef

Ma, L.[Long], Jin, D.[Dian], An, N.[Nan], Liu, J.Y.[Jin-Yuan], Fan, X.[Xin], Luo, Z.X.[Zhong-Xuan], Liu, R.S.[Ri-Sheng],
Bilevel Fast Scene Adaptation for Low-Light Image Enhancement,
IJCV(133), No. 11, November 2025, pp. 8234-8252.
Springer DOI 2511
BibRef

Ma, L.[Long], Ma, T.Y.[Teng-Yu], Liu, R.S.[Ri-Sheng], Fan, X.[Xin], Luo, Z.X.[Zhong-Xuan],
Toward Fast, Flexible, and Robust Low-Light Image Enhancement,
CVPR22(5627-5636)
IEEE DOI 2210
Training, Adaptation models, Visualization, Image segmentation, Computational modeling, Semantics, Lighting, Low-level vision BibRef

Ma, L.[Long], Ma, T.Y.[Teng-Yu], Xu, C.P.[Cheng-Pei], Liu, J.Y.[Jin-Yuan], Fan, X.[Xin], Luo, Z.X.[Zhong-Xuan], Liu, R.S.[Ri-Sheng],
Learning with Self-Calibrator for Fast and Robust Low-Light Image Enhancement,
PAMI(47), No. 10, October 2025, pp. 9095-9112.
IEEE DOI 2510
Lighting, Image enhancement, Training, Visualization, Estimation, Convergence, Architecture, Reflectivity, Optimization, low-light vision BibRef

Ma, Q.T.[Qian-Ting], Wang, Y.[Yang], Zeng, T.Y.[Tie-Yong],
Retinex-Based Variational Framework for Low-Light Image Enhancement and Denoising,
MultMed(25), 2023, pp. 5580-5588.
IEEE DOI 2311
BibRef

Zhou, M.L.[Ming-Liang], Wu, X.T.[Xing-Tai], Wei, X.K.[Xue-Kai], Xiang, T.[Tao], Fang, B.[Bin], Kwong, S.[Sam],
Low-Light Enhancement Method Based on a Retinex Model for Structure Preservation,
MultMed(26), 2024, pp. 650-662.
IEEE DOI 2402
Lighting, Reflectivity, Image enhancement, Dispersion, Standards, Sensitivity, Histograms, Coefficient of variation, retinex model, structure-preserving BibRef

Li, X.F.[Xiao-Fang], Wang, W.W.[Wei-Wei], Feng, X.C.[Xiang-Chu], Li, M.[Min],
Deep Parametric Retinex Decomposition Model for Low-Light Image Enhancement,
CVIU(241), 2024, pp. 103948.
Elsevier DOI 2403
Low-light image enhancement, Parametric Retinex decomposition, Deep network, Denoising BibRef

Wang, Z.X.[Ze-Xin], Qingge, L.[Letu], Pan, Q.Y.[Qing-Yi], Yang, P.[Pei],
Retinex decomposition based low-light image enhancement by integrating Swin transformer and U-Net-like architecture,
IET-IPR(18), No. 11, 2024, pp. 3028-3041.
DOI Link 2409
low-light image enhancement, residual connection, swin transformer, U-Net BibRef

Weng, R.[Ruidi], Zhang, Y.[Ya], Wu, H.Y.[Han-Yang], Wang, W.Y.[Wei-Yong], Wang, D.Y.[Dong-Yun],
The Retinex enhancement algorithm for low-light intensity image based on improved illumination map,
IET-IPR(18), No. 12, 2024, pp. 3381-3392.
DOI Link 2411
image denoising, image enhancement, image processing BibRef

Chen, L.W.[Li-Wei], Liu, Y.Y.[Yan-Yan], Li, G.[Guoning], Hong, J.T.[Jin-Tao], Li, J.[Jin], Peng, J.T.[Jian-Tao],
Double-function enhancement algorithm for low-illumination images based on retinex theory,
JOSA-A(40), No. 2, February 2023, pp. 316-325.
DOI Link 2503
Deep learning, Image metrics, Image quality, Machine vision, Neural networks, Wavelet transforms BibRef

Chen, X.Y.[Xin-Yu], Li, J.J.[Jin-Jiang], Hua, Z.[Zhen],
Low-Light Image Enhancement Based on Exponential Retinex Variational Model,
IET-IPR(15), No. 12, 2021, pp. 3003-3019.
DOI Link 2109
BibRef

Xu, X.T.[Xin-Tao], Li, J.J.[Jin-Jiang], Hua, Z.[Zhen], Fan, L.W.[Lin-Wei],
Attention-Based Multi-Channel Feature Fusion Enhancement Network to Process Low-Light Images,
IET-IPR(16), No. 12, 2022, pp. 3374-3393.
DOI Link 2209
BibRef

Yu, N.[Nana], Li, J.J.[Jin-Jiang], Hua, Z.[Zhen],
LBP-Based Progressive Feature Aggregation Network for Low-Light Image Enhancement,
IET-IPR(16), No. 2, 2022, pp. 535-553.
DOI Link 2201
BibRef

Feng, X.M.[Xiao-Mei], Li, J.J.[Jin-Jiang], Fan, H.[Hui],
Hierarchical guided network for low-light image enhancement,
IET-IPR(15), No. 13, 2021, pp. 3254-3266.
DOI Link 2110
BibRef

Li, J.J.[Jin-Jiang], Feng, X.M.[Xiao-Mei], Hua, Z.[Zhen],
Low-Light Image Enhancement via Progressive-Recursive Network,
CirSysVideo(31), No. 11, November 2021, pp. 4227-4240.
IEEE DOI 2112
Image enhancement, Lighting, Training, Feature extraction, Brightness, Task analysis, Image color analysis, attention model BibRef

Huang, Z.X.[Zhi-Xiong], Li, J.J.[Jin-Jiang], Hua, Z.[Zhen], Fan, L.W.[Lin-Wei],
Attention-Based Dual-Color Space Fusion Network for Low-Light Image Enhancement,
SP:IC(119), 2023, pp. 117060.
Elsevier DOI 2310
Low-light image enhancement, Dual-color space, Adaptive large-kernel attention, Deep learning
See also Underwater Image Enhancement via LBP-Based Attention Residual Network. BibRef

Cai, R.T.[Rong-Tai], Chen, Z.K.[Ze-Kun],
Brain-like retinex: A biologically plausible retinex algorithm for low light image enhancement,
PR(136), 2023, pp. 109195.
Elsevier DOI 2301
Retinex, Low light image enhancement, Contour detection, Edge detection, Brain-inspired computation, Color constancy, Retinal circuit BibRef

Gao, X.Y.[Xing-Yun], Zhang, W.B.[Wei-Bo], Zhuang, P.X.[Pei-Xian], Zhao, W.[Wenyi], Zhang, W.D.[Wei-Dong],
RDANet: Retinex decomposition attention network for low-light image enhancement,
PRL(197), 2025, pp. 175-181.
Elsevier DOI 2510
Low-light image enhancement, Cascaded attention, Retinex decomposition BibRef

Qiang, H.[Hu], Zhong, Y.Z.[Yu-Zhong], Liao, Y.W.[Yi-Wei], You, X.X.[Xing-Xing], Zhu, Y.Q.[Yu-Qi], Dian, S.[Songyi],
GWRetinex-Net: Gray World Retinex Network for Low-Light Image Enhancement,
CirSysVideo(35), No. 10, October 2025, pp. 9636-9649.
IEEE DOI 2510
Lighting, Reflection, Image color analysis, Image enhancement, Distortion, Degradation, Deep learning, Brightness, Training, Noise, color balance BibRef

Li, W.C.[Wen-Chao], Wen, S.Y.[Shu-Yuan], Zhu, J.H.[Jin-Hao], Ou, Q.[Qiaofeng], Guo, Y.C.[Yan-Chun], Chen, J.[Jiabao], Xiong, B.S.[Bang-Shu],
ZERRIN-Net: Adaptive low-light image enhancement using Retinex decomposition and noise extraction,
SP:IC(138), 2025, pp. 117345.
Elsevier DOI Code:
WWW Link. 2509
Low-light image enhancement, Image denoise, Zero-shot learning, Retinex decomposition BibRef

Yi, X.P.[Xun-Peng], Xu, H.[Han], Zhang, H.[Hao], Tang, L.F.[Lin-Feng], Ma, J.Y.[Jia-Yi],
Diff-Retinex++: Retinex-Driven Reinforced Diffusion Model for Low-Light Image Enhancement,
PAMI(47), No. 8, August 2025, pp. 6823-6841.
IEEE DOI 2507
BibRef
Earlier:
Diff-Retinex: Rethinking Low-light Image Enhancement with A Generative Diffusion Model,
ICCV23(12268-12277)
IEEE DOI 2401
Diffusion models, Image enhancement, Image restoration, Degradation, Lighting, Image synthesis, Noise reduction, mixture of experts BibRef

Zhang, K.B.[Kai-Bing], Yuan, C.[Cheng], Li, J.[Jie], Gao, X.B.[Xin-Bo], Li, M.Q.[Min-Qi],
Multi-Branch and Progressive Network for Low-Light Image Enhancement,
IP(32), 2023, pp. 2295-2308.
IEEE DOI 2305
Image enhancement, Lighting, Degradation, Image color analysis, Network architecture, Technological innovation, Task analysis, recurrent network BibRef

Wang, H.K.[Hua-Ke], Hou, X.S.[Xing-Song], Li, J.T.[Ju-Tao], Yan, Y.[Yadi], Sun, W.K.[Wen-Ke], Zeng, X.[Xin], Zhang, K.B.[Kai-Bing], Cao, X.Y.[Xiang-Yong],
Multi-Scale Retinex Unfolding Network for Low-Light Image Enhancement,
MultMed(27), 2025, pp. 5709-5721.
IEEE DOI 2509
Image enhancement, Lighting, Computational modeling, Optimization, Transformers, Image restoration, Image color analysis, Data mining, scale-aware proximal mapping BibRef

Wu, K.[Kangle], Huang, J.[Jun], Ma, Y.[Yong], Fan, F.[Fan], Ma, J.Y.[Jia-Yi],
Cycle-Retinex: Unpaired Low-Light Image Enhancement via Retinex-Inline CycleGAN,
MultMed(26), 2024, pp. 1213-1228.
IEEE DOI 2402
Image enhancement, Image color analysis, Image restoration, Lighting, Colored noise, Degradation, Deep learning, unsupervised learning BibRef

Xu, H.[Han], Zhang, H.[Hao], Yi, X.P.[Xun-Peng], Ma, J.Y.[Jia-Yi],
CRetinex: A Progressive Color-Shift Aware Retinex Model for Low-Light Image Enhancement,
IJCV(132), No. 1, January 2024, pp. 3610-3632.
Springer DOI 2409
BibRef

Kang, S.C.[Si-Cong], Gao, S.B.[Shuai-Bo], Wu, W.H.[Wen-Hui], Wang, X.[Xu], Wang, S.[Shuoyao], Qiu, G.P.[Guo-Ping],
Image Intrinsic Components Guided Conditional Diffusion Model for Low-Light Image Enhancement,
CirSysVideo(34), No. 12, December 2024, pp. 13244-13256.
IEEE DOI Code:
WWW Link. 2501
Lighting, Image restoration, Reflectivity, Diffusion models, Feature extraction, Image color analysis, Image enhancement, retinex decomposition
See also Deep Feature Prior-Guided Conditional Diffusion Model for Underwater Image Enhancement. BibRef

Liu, C.X.[Chun-Xiao], Wang, Z.[Zelong], Birch, P.[Philip], Wang, X.[Xun],
Efficient Retinex-Based Framework for Low-Light Image Enhancement Without Additional Networks,
CirSysVideo(35), No. 5, May 2025, pp. 4896-4909.
IEEE DOI 2505
Lighting, Degradation, Image enhancement, Image color analysis, Estimation, Transforms, Colored noise, multiscale attention network BibRef

Guo, R.[Ruoyu], Pagnucco, M.[Maurice], Song, Y.[Yang],
Exploring Multi-Feature Relationship in Retinex Decomposition for Low-Light Image Enhancement,
MultMed(27), 2025, pp. 7271-7284.
IEEE DOI 2510
Reflectivity, Lighting, Image color analysis, Feature extraction, Image enhancement, Training, Brightness, Unsupervised learning, Retinex theory BibRef

Ma, A.[Ailin], Jiang, H.[Hai], Liang, B.B.[Bin-Bin], Han, S.C.[Song-Chen],
Incorporating Fourier Transformation With Diffusion Models for Low-Light Image Enhancement,
SPLetters(32), 2025, pp. 2354-2358.
IEEE DOI 2507
Image restoration, Image reconstruction, Diffusion models, Noise reduction, Training, Degradation, Image enhancement, low-light image enhancement BibRef

Jiang, H.[Hai], Luo, A.[Ao], Liu, X.H.[Xiao-Hong], Han, S.C.[Song-Chen], Liu, S.C.[Shuai-Cheng],
Lightendiffusion: Unsupervised Low-light Image Enhancement with Latent-retinex Diffusion Models,
ECCV24(XLVIII: 161-179).
Springer DOI 2412
BibRef

Sun, S.Q.[Shang-Quan], Ren, W.Q.[Wen-Qi], Peng, J.Y.[Jing-Yang], Song, F.L.[Feng-Long], Cao, X.C.[Xiao-Chun],
DI-Retinex: Digital-Imaging Retinex Model for Low-Light Image Enhancement,
IJCV(133), No. 12, December 2025, pp. 8293-8314.
Springer DOI 2512

See also Restoring Images in Adverse Weather Conditions via Histogram Transformer. BibRef

Torres, D.[Daniel], Duran, J.[Joan], Navarro, J.[Julia], Sbert, C.[Catalina],
Nonlocal Retinex-Based Variational Model and its Deep Unfolding Twin for Low-Light Image Enhancement,
IJCV(133), No. 11, November 2025, pp. 7772-7793.
Springer DOI 2511
BibRef
And: A1, A4, A2, Only:
A Retinex-Based Variational Model with A Nonlocal Gradient-Type Constraint for Low-Light Image Enhancement,
ICIP25(1187-1192)
IEEE DOI 2601
Reflectivity, Deep learning, Accuracy, Computational modeling, Noise, Noise reduction, Brightness, Lighting, Image decomposition, nonlocal method BibRef

Hsieh, P.W.[Po-Wen], Yang, S.Y.[Suh-Yuh],
Anisotropic pth-order TV-based Retinex decomposition with adaptive reflectance regularizer for low-light image enhancement,
PR(172), 2026, pp. 112468.
Elsevier DOI 2512
Low-light image enhancement, Retinex decomposition, Total variation, Noise suppression BibRef

Xiao, Y.[Yao], Xia, Y.S.[You-Shen],
A novel image enhancement method based on image decomposition and deep neural networks,
PR(172), 2026, pp. 112371.
Elsevier DOI Code:
WWW Link. 2512
Low-light image enhancement, Image decomposition, Deep neural network, Retinex theory BibRef

Hu, E.[Enping], Liu, Y.[Yun], Wang, A.Z.[An-Zhi], Shiri, B.[Babak], Ren, W.Q.[Wen-Qi], Lin, W.S.[Wei-Si],
Low-Light Image Enhancement Using a Retinex-Based Variational Model with Weighted L_p Norm Constraint,
MultMed(28), 2026, pp. 152-166.
IEEE DOI 2601
Lighting, Reflectivity, Noise, Image enhancement, Training, Computational modeling, Image restoration, Image edge detection, Retinex decomposition
See also Single Image Dehazing Based on Weighted Variational Regularized Model. BibRef


Fu, H.Y.[Hui-Yuan], Zheng, W.K.[Wen-Kai], Meng, X.Y.[Xiang-Yu], Wang, X.[Xin], Wang, C.M.[Chuan-Ming], Ma, H.D.[Hua-Dong],
You Do Not Need Additional Priors or Regularizers in Retinex-Based Low-Light Image Enhancement,
CVPR23(18125-18134)
IEEE DOI 2309
BibRef

Zhang, J.[Jin], Jin, H.Y.[Hai-Yan], Su, H.N.[Hao-Nan], Zhang, Y.L.[Yuan-Lin], Xiao, Z.L.[Zhao-Lin], Wang, B.[Bin],
A CNN-Transformer Network Based SNR Guided High Frequency Reconstruction for Low Light Image Enhancement,
ICIP24(1649-1655)
IEEE DOI 2411
Visualization, Image edge detection, Noise reduction, Transformers, Image decomposition, Image restoration, High frequency, SNR BibRef

Cai, Y.H.[Yuan-Hao], Bian, H.[Hao], Lin, J.[Jing], Wang, H.Q.[Hao-Qian], Timofte, R.[Radu], Zhang, Y.L.[Yu-Lun],
Retinexformer: One-stage Retinex-based Transformer for Low-light Image Enhancement,
ICCV23(12470-12479)
IEEE DOI Code:
WWW Link. 2401
BibRef

Lecert, A.[Arthur], Fraisse, R.[Renaud], Roumy, A.[Aline], Guillemot, C.[Christine],
A New Regularization for Retinex Decomposition of Low-Light Images,
ICIP22(906-910)
IEEE DOI 2211
Measurement, Lighting, Image restoration, Image enhancement, Light sources, Low light enhancement, Image decomposition, Neural Networks BibRef

Wu, Q.[Qi], Qin, M.L.[Mao-Ling], Song, J.Q.[Jing-Qi], Liu, L.[Li],
An Improved Method of Low Light Image Enhancement Based on Retinex,
ICIVC21(233-241)
IEEE DOI 2112
Lighting, Reflection, Image decomposition, Feeds, Task analysis, Image enhancement, low light, image enhancement, Retinex BibRef

Liu, R.S.[Ri-Sheng], Ma, L.[Long], Zhang, J.[Jiaao], Fan, X.[Xin], Luo, Z.X.[Zhong-Xuan],
Retinex-inspired Unrolling with Cooperative Prior Architecture Search for Low-light Image Enhancement,
CVPR21(10556-10565)
IEEE DOI 2111
Deep learning, Architecture, Computational modeling, Lighting, Search problems BibRef

Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Color Constancy, Recognition, Simon Fraser Univ. (Funt and Finlayson) Papers .


Last update:Jan 23, 2026 at 20:54:10