Vidal, R.G.[Rosaura G.],
Banerjee, S.[Sreya],
Grm, K.[Klemen],
Struc, V.[Vitomir],
Scheirer, W.J.[Walter J.],
UG^2: a Video Benchmark for Assessing the Impact of Image Restoration
and Enhancement on Automatic Visual Recognition,
WWW Link.
1901
Earlier:
WACV18(1597-1606)
IEEE DOI
1806
Dataset, Image Restoration. Used for restoration challenges at CVPR.
image classification, image enhancement, image restoration,
learning (artificial intelligence), object detection,
Visualization
BibRef
Harris, J.L.,
Image Evaluation and Restoration,
JOSA(56), No. 5, May 1966, pp. 569-574.
BibRef
6605
Rushforth, C.K.,
Harris, R.W.,
Restoration, Resolution, and Noise,
JOSA(58), No. 4, April 1968, pp. 539-545.
BibRef
6804
Trussell, H.J.,
Civanlar, M.R.,
The Feasible Solution in Signal Restoration,
ASSP(32), No. 2, 1984, pp. 201-212.
Constraints described as convex sets.
BibRef
8400
Sezan, M.I.,
Tekalp, A.M., (Eds.)
Image Restoration and Reconstruction,
OptEng(29), No. 5, May 1990, pp. 391-574.
Special issue.
BibRef
9005
Sezan, M.I.,
Stark, H.,
Image restoration by the method of convex projections: Part 2,
MedImg(1), October 1982, pp. xx-yy.
BibRef
8210
Sezan, M.I.,
Tekalp, A.M.,
Survey of recent developments in digital image restoration,
OptEng(29), No. 5, May 1990, pp. 393-404.
Survey, Restoration. In the Special issue.
BibRef
9005
Katsaggelos, A.K.,
Mammone, R.J., (Eds.)
Special Issue: Image Restoration,
JVCIR(3), No. 4, December 1992, pp. 305-455.
BibRef
9212
Katsaggelos, A.K.,
Digital Image Restoration (Book),
SpringerBerlin, 1991.
BibRef
9100
Banham, M.R.,
Katsaggelos, A.K.,
Digital Image Restoration,
SPMag(14), No. 2, March 1997, pp. 24-41.
9704
BibRef
Hong, M.C.,
Stathaki, T., and
Katsaggelos, A.K.,
A Mixed Norm Image Restoration,
ICIP97(I: 385-388).
IEEE DOI
BibRef
9700
May, K.,
Stathaki, T.,
Constantinides, A.G.,
Katsaggelos, A.K.,
Iterative determination of local bound constraints in iterative image
restoration,
ICIP98(II: 833-837).
IEEE DOI
9810
BibRef
Hong, M.C.[Min-Cheol],
Stathaki, T.,
A regularized least mean mixed norm multichannel image restoration
algorithm,
ICIP98(II: 828-832).
IEEE DOI
9810
BibRef
Reeves, S.J.,
Mersereau, R.M.,
Automatic assessment of constraint sets in image restoration,
IP(1), No. 1, January 1992, pp. 119-123.
IEEE DOI
0402
BibRef
Reeves, S.J.,
Optimal space-varying regularization in iterative image restoration,
IP(3), No. 3, May 1994, pp. 319-324.
IEEE DOI
0402
BibRef
Reeves, S.J.,
Fast image restoration without boundary artifacts,
IP(14), No. 10, October 2005, pp. 1448-1453.
IEEE DOI
0510
BibRef
King, I.R.,
Some Practical Aspects of Image Restoration,
IJIST(6), No. 4, Winter 1995, pp. 392-394.
BibRef
9500
Choy, S.S.O.,
Chan, Y.H.[Yuk-Hee],
Siu, W.C.[Wan-Chi],
New Image Restoration Performance-Measures with High-Precision,
OptEng(36), No. 4, April 1997, pp. 1035-1043.
9705
BibRef
Earlier:
New adaptive iterative image restoration algorithm,
ICIP94(II: 670-674).
IEEE DOI
9411
BibRef
Fienup, J.R.,
Invariant Error Metrics for Image Reconstruction,
AppOpt(36), No. 32, November 10 1997, pp. 8352-8357.
9711
BibRef
Thurman, S.T.[Samuel T.],
Fienup, J.R.[James R.],
Noise histogram regularization for iterative image reconstruction
algorithms,
JOSA-A(24), No. 3, March 2007, pp. 608-617.
WWW Link.
0801
BibRef
Uma, S.,
Annadurai, S.,
A Review: Restoration Approaches,
GVIP(05), No. V8, 2005, pp. 23-35.
HTML Version.
BibRef
0500
Hasegawa, Y.[Yasumichi],
Algebraically Approximate and Noisy Realization of Discrete-Time Systems
and Digital Images,
Springer-Verlag2009. ISBN: 978-3-642-03216-5
WWW Link.
Buy this book: Algebraically Approximate and Noisy Realization of Discrete-Time Systems and Digital Images (Lecture Notes in Electrical Engineering)
0910
BibRef
Chatterjee, P.,
Milanfar, P.[Peyman],
Is Denoising Dead?,
IP(19), No. 4, April 2010, pp. 895-911.
IEEE DOI
1003
Evaluation, Denoising. Since recent work seems to be about as good as the past, is there a
theoretical limit and are we there yet? Conclusion, not at the limit yet.
BibRef
Chatterjee, P.,
Milanfar, P.[Peyman],
Practical Bounds on Image Denoising: From Estimation to Information,
IP(20), No. 5, May 2011, pp. 1221-1233.
IEEE DOI
1104
See also Patch-Based Near-Optimal Image Denoising.
BibRef
Russo, F.,
New Method for Performance Evaluation of Grayscale Image Denoising
Filters,
SPLetters(17), No. 5, May 2010, pp. 417-420.
IEEE DOI
1003
BibRef
Chickerur, S.[Satyadhyan],
Kumar M., A.[Aswatha],
Image Restoration: Past, Present and Future,
RPCS(3), No. 3 2010, pp. 108-126.
WWW Link.
1003
BibRef
Jouini, W.,
Energy Detection Limits Under Log-Normal Approximated Noise Uncertainty,
SPLetters(18), No. 7, July 2011, pp. 423-426.
IEEE DOI
1101
BibRef
Shao, L.,
Yan, R.,
Li, X.,
Liu, Y.,
From Heuristic Optimization to Dictionary Learning:
A Review and Comprehensive Comparison of Image Denoising Algorithms,
Cyber(44), No. 7, July 2014, pp. 1001-1013.
IEEE DOI
1407
Survey, Denoising. Dictionaries
BibRef
Zhang, L.,
Zuo, W.,
Image Restoration: From Sparse and Low-Rank Priors to Deep Priors,
SPMag(34), No. 5, September 2017, pp. 172-179.
IEEE DOI
1709
Lecture Notes.
Cameras, Digital cameras, Digital imaging, Dynamic range, Encoding,
Machine learning, Transform, coding
BibRef
Rasti, B.[Behnood],
Scheunders, P.[Paul],
Ghamisi, P.[Pedram],
Licciardi, G.[Giorgio],
Chanussot, J.[Jocelyn],
Noise Reduction in Hyperspectral Imagery: Overview and Application,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Wu, W.C.[Wen-Cong],
Chen, M.F.[Ming-Fei],
Xiang, Y.[Yu],
Zhang, Y.G.[Yun-Gang],
Yang, Y.[Yang],
Recent progress in image denoising: A training strategy perspective,
IET-IPR(17), No. 6, 2023, pp. 1627-1657.
DOI Link
2305
deep neural networks, image denoising, image processing, image restoration
BibRef
Kui, M.Y.[Meng-Yun],
Xu, Y.[Yunna],
Wang, J.L.[Jin-Liang],
Cheng, F.[Feng],
Research on the Adaptability of Typical Denoising Algorithms Based on
ICESat-2 Data,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Li, Y.[Yawei],
Zhang, Y.[Yulun],
Timofte, R.[Radu],
Van Gool, L.J.[Luc J.],
Tu, Z.J.[Zhi-Jun],
Du, K.P.[Kun-Peng],
Wang, H.L.[Hai-Ling],
Chen, H.T.[Han-Ting],
Li, W.[Wei],
Wang, X.F.[Xiao-Fei],
Hu, J.[Jie],
Wang, Y.H.[Yun-He],
Kong, X.Y.[Xiang-Yu],
Wu, J.L.[Jin-Long],
Zhang, D.[Dafeng],
Zhang, J.X.[Jian-Xing],
Liu, S.[Shuai],
Bai, F.[Furui],
Feng, C.[Chaoyu],
Wang, H.[Hao],
Zhang, Y.Q.[Yu-Qian],
Shao, G.Q.[Guang-Qi],
Wang, X.T.[Xiao-Tao],
Lei, L.[Lei],
Xu, R.J.[Rong-Jian],
Zhang, Z.[Zhilu],
Chen, Y.J.[Yun-Jin],
Ren, D.W.[Dong-Wei],
Zuo, W.M.[Wang-Meng],
Wu, Q.[Qi],
Han, M.Y.[Ming-Yan],
Cheng, S.[Shen],
Li, H.P.[Hai-Peng],
Jiang, T.[Ting],
Jiang, C.Z.[Cheng-Zhi],
Li, X.P.[Xin-Peng],
Luo, J.[Jinting],
Lin, W.J.[Wen-Jie],
Yu, L.[Lei],
Fan, H.Q.[Hao-Qiang],
Liu, S.C.[Shuai-Cheng],
Arora, A.[Aditya],
Zamir, S.W.[Syed Waqas],
Vazquez-Corral, J.[Javier],
Derpanis, K.G.[Konstantinos G.],
Brown, M.S.[Michael S.],
Li, H.[Hao],
Zhao, Z.H.[Zhi-Hao],
Pan, J.S.[Jin-Shan],
Dong, J.X.[Jiang-Xin],
Tang, J.H.[Jin-Hui],
Yang, B.[Bo],
Chen, J.X.[Jing-Xiang],
Li, C.H.[Cheng-Hua],
Zhang, X.[Xi],
Zhang, Z.[Zhao],
Ren, J.H.[Jia-Huan],
Ji, Z.C.[Zhi-Cheng],
Miao, K.[Kang],
Zhao, S.[Suiyi],
Zheng, H.[Huan],
Wei, Y.[YanYan],
Liu, K.[Kangliang],
Du, X.C.[Xiang-Cheng],
Liu, S.[Sijie],
Zheng, Y.B.[Ying-Bin],
Wu, X.J.[Xing-Jiao],
Jin, C.[Cheng],
Irny, R.[Rajeev],
Koundinya, S.[Sriharsha],
Kamath, V.[Vighnesh],
Khandelwal, G.[Gaurav],
Khowaja, S.A.[Sunder Ali],
Yoon, J.[Jiseok],
Lee, I.H.[Ik Hyun],
Chen, S.J.[Shi-Jie],
Zhao, C.Q.[Cheng-Qiang],
Yang, H.[Huabin],
Zhang, Z.J.[Zhong-Jian],
Huang, J.[Junjia],
Zhang, Y.[Yanru],
NTIRE 2023 Challenge on Image Denoising: Methods and Results,
NTIRE23(1905-1921)
IEEE DOI
2309
BibRef
Flepp, R.[Roman],
Ignatov, A.[Andrey],
Timofte, R.[Radu],
Van Gool, L.J.[Luc J.],
Real-World Mobile Image Denoising Dataset with Efficient Baselines,
CVPR24(22368-22377)
IEEE DOI Code:
WWW Link.
2410
Training, Visualization, Runtime, Cameras, Robustness,
Real-time systems, Numerical models, Image Denoising,
Computational Photography
BibRef
Jin, X.[Xin],
Guo, C.[Chunle],
Li, X.M.[Xiao-Ming],
Yue, Z.S.[Zong-Sheng],
Li, C.Y.[Chong-Yi],
Zhou, S.[Shangchen],
Feng, R.C.[Rui-Cheng],
Dai, Y.[Yuekun],
Yang, P.Q.[Pei-Qing],
Loy, C.C.[Chen Change],
Li, R.[Ruoqi],
Liu, C.[Chang],
Wang, Z.[Ziyi],
Du, Y.[Yao],
Yang, J.J.[Jing-Jing],
Bao, L.[Long],
Sun, H.[Heng],
Kong, X.Y.[Xiang-Yu],
Xing, X.X.[Xiao-Xia],
Wu, J.L.[Jin-Long],
Xue, Y.Y.[Yuan-Yang],
Park, H.[Hyunhee],
Song, S.[Sejun],
Kim, C.[Changho],
Tan, J.F.[Jing-Fan],
Luo, W.H.[Wen-Han],
Liu, Z.[Zikun],
Qiao, M.[Mingde],
Jiang, J.J.[Jun-Jun],
Jiang, K.[Kui],
Xiao, Y.[Yao],
Sun, C.[Chuyang],
Hu, J.H.[Jin-Hui],
Ruan, W.J.[Wei-Jian],
Dong, Y.[Yubo],
Chen, K.[Kai],
Jo, H.[Hyejeong],
Qin, J.H.[Jia-Hao],
Han, B.J.[Bing-Jie],
Qin, P.[Pinle],
Chai, R.[Rui],
Wang, P.Y.[Peng-Yuan],
MIPI 2024 Challenge on Few-shot RAW Image Denoising: Methods and
Results,
MIPI24(1153-1161)
IEEE DOI Code:
WWW Link.
2410
Training, Photography, Image sensors, Reviews, Noise reduction, Focusing
BibRef
Albert, P.[Paul],
Arazo, E.[Eric],
Krishna, T.[Tarun],
O'Connor, N.E.[Noel E.],
McGuinness, K.[Kevin],
Is your noise correction noisy? PLS: Robustness to label noise with
two stage detection,
WACV23(118-127)
IEEE DOI
2302
Training, Semantics, Neural networks, Benchmark testing, Robustness,
Noise robustness, Algorithms: Machine learning architectures,
visual reasoning
BibRef
Paulino, I.R.[Ignacio Ramírez],
Practical Bulk Denoising Of Large Binary Images,
ICIP22(196-200)
IEEE DOI
2211
Noise reduction, Benchmark testing, image denoising,
binary image denoising, DUDE, non-local means, real noise
BibRef
Chen, L.[Liangyu],
Chu, X.J.[Xiao-Jie],
Zhang, X.Y.[Xiang-Yu],
Sun, J.[Jian],
Simple Baselines for Image Restoration,
ECCV22(VII:17-33).
Springer DOI
2211
BibRef
Abdelhamed, A.[Abdelrahman],
Afifi, M.[Mahmoud],
Timofte, R.[Radu],
Brown, M.S.[Michael S.],
Cao, Y.[Yue],
Zhang, Z.L.[Zhi-Lu],
Zuo, W.M.[Wang-Meng],
Zhang, X.L.[Xiao-Ling],
Liu, J.[Jiye],
Chen, W.D.[Wen-Dong],
Wen, C.Y.[Chang-Yuan],
Liu, M.[Meng],
Lv, S.L.[Shuai-Lin],
Zhang, Y.C.[Yun-Chao],
Pan, Z.H.[Zhi-Hong],
Li, B.[Baopu],
Xi, T.[Teng],
Fan, Y.W.[Yan-Wen],
Yu, X.Y.[Xi-Yu],
Zhang, G.[Gang],
Liu, J.T.[Jing-Tuo],
Han, J.Y.[Jun-Yu],
Ding, E.[Errui],
Yu, S.H.[Song-Hyun],
Park, B.J.[Bum-Jun],
Jeong, J.C.[Je-Chang],
Liu, S.[Shuai],
Zong, Z.Y.[Zi-Yao],
Nan, N.[Nan],
Li, C.H.[Cheng-Hua],
Yang, Z.L.[Zeng-Li],
Bao, L.[Long],
Wang, S.Q.[Shuang-Quan],
Bai, D.W.[Dong-Woon],
Lee, J.W.[Jung-Won],
Kim, Y.J.[Young-Jung],
Rho, K.[Kyeongha],
Shin, C.Y.[Chang-Yeop],
Kim, S.H.[Sung-Ho],
Tang, P.L.[Peng-Liang],
Zhao, Y.Y.[Yi-Yun],
Zhou, Y.Q.[Yu-Qian],
Fan, Y.C.[Yu-Chen],
Huang, T.S.[Thomas S.],
Li, Z.H.[Zhi-Hao],
Shah, N.A.[Nisarg A.],
Liu, W.[Wei],
Yan, Q.[Qiong],
Zhao, Y.Z.[Yu-Zhi],
Mozejko, M.[Marcin],
Latkowski, T.[Tomasz],
Treszczotko, L.[Lukasz],
Szafraniuk, M.[Michal],
Trojanowski, K.[Krzysztof],
Wu, Y.H.[Yan-Hong],
Michelini, P.N.[Pablo Navarrete],
Hu, F.S.[Feng-Shuo],
Lu, Y.H.[Yun-Hua],
Kim, S.J.[Su-Jin],
Kim, W.J.[Won-Jin],
Lee, J.[Jaayeon],
Choi, J.H.[Jang-Hwan],
Zhussip, M.[Magauiya],
Khassenov, A.[Azamat],
Kim, J.H.[Jong Hyun],
Cho, H.[Hwechul],
Kansal, P.[Priya],
Nathan, S.[Sabari],
Ye, Z.Y.[Zhang-Yu],
Lu, X.W.[Xi-Wen],
Wu, Y.Q.[Ya-Qi],
Yang, J.X.[Jiang-Xin],
Cao, Y.L.[Yan-Long],
Tang, S.L.[Si-Liang],
Cao, Y.P.[Yan-Peng],
Maggioni, M.[Matteo],
Marras, I.[Ioannis],
Tanay, T.[Thomas],
Slabaugh, G.[Gregory],
Yan, Y.L.[You-Liang],
Kang, M.J.[Myung-Joo],
Choi, H.S.[Han-Soo],
Song, K.M.[Kyung-Min],
Xu, S.S.[Shu-Song],
Lu, X.M.[Xiao-Mu],
Wang, T.N.[Ting-Niao],
Lei, C.X.[Chun-Xia],
Liu, B.[Bin],
Gupta, R.[Rajat],
Kumar, V.[Vineet],
NTIRE 2020 Challenge on Real Image Denoising:
Dataset, Methods and Results,
NTIRE20(2077-2088)
IEEE DOI
2008
Image color analysis, Image denoising, Noise measurement, Testing,
Noise reduction, Runtime, Pipelines
BibRef
Plötz, T.,
Roth, S.,
Benchmarking Denoising Algorithms with Real Photographs,
CVPR17(2750-2759)
IEEE DOI
1711
Benchmark testing, Cameras, Gaussian noise, ISO, Noise measurement,
Noise reduction, Protocols
BibRef
Akkoul, S.[Smaïl],
Ledee, R.[Roger],
Leconge, R.[Remy],
Leger, C.[Christophe],
Harba, R.[Rachid],
Pesnel, S.[Sabrina],
Lerondel, S.[Stéphanie],
Lepape, A.[Alain],
Vilcahuaman, L.[Luis],
Comparison of Image Restoration Methods for Bioluminescence Imaging,
ICISP08(163-172).
Springer DOI
0807
BibRef
Kokaram, A.[Anil],
Ten Years of Digital Visual Restoration Systems,
ICIP07(IV: 1-4).
IEEE DOI
0709
BibRef
Kornprobst, P.,
Deriche, R.,
Gilles, A.,
Nonlinear Operators in Image Restoration,
CVPR97(325-330).
IEEE DOI
9704
Halfquadratic minimization is best.
PS File.
BibRef
Ferreira, P.J.S.G.,
The stability of certain image restoration problems:
Quantitative results,
ICIP95(II: 29-32).
IEEE DOI
9510
BibRef
Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
Image Restoration: Filter Approaches .