Panahi, A.,
Viberg, M.,
Fast Candidate Points Selection in the LASSO Path,
SPLetters(19), No. 2, February 2012, pp. 79-82.
IEEE DOI
1201
BibRef
Xiang, Z.J.[Zhen James],
Ramadge, P.J.[Peter J.],
Edge-Preserving Image Regularization Based on Morphological Wavelets
and Dyadic Trees,
IP(21), No. 4, April 2012, pp. 1548-1560.
IEEE DOI
1204
BibRef
Earlier:
Morphological wavelet transform with adaptive dyadic structures,
ICIP10(1677-1680).
IEEE DOI
1009
BibRef
Duan, J.[Junbo],
Soussen, C.,
Brie, D.,
Idier, J.,
Wang, Y.P.[Yu-Ping],
On LARS/Homotopy Equivalence Conditions for Over-Determined LASSO,
SPLetters(19), No. 12, December 2012, pp. 894-897.
IEEE DOI
1212
LASSO: Least absolute shrinkage and selection operator.
BibRef
Jung, A.,
Hannak, G.,
Goertz, N.,
Graphical LASSO based Model Selection for Time Series,
SPLetters(22), No. 10, October 2015, pp. 1781-1785.
IEEE DOI
1506
Algorithm design and analysis
BibRef
Zhou, Y.[Yun],
Han, J.H.[Jiang-Hong],
Yuan, X.H.[Xiao-Hui],
Wei, Z.C.[Zhen-Chun],
Hong, R.C.[Ri-Chang],
Inverse Sparse Group Lasso Model for Robust Object Tracking,
MultMed(19), No. 8, August 2017, pp. 1798-1810.
IEEE DOI
1708
Computational modeling, Dictionaries, Image reconstruction,
Object tracking, Robustness, Sparse matrices,
hash distance, sparse coding, sparse group lasso, visual, tracking
BibRef
Liu, Q.[Qiao],
Ma, X.[Xiao],
Ou, W.H.[Wei-Hua],
Zhou, Q.[Quan],
Visual Object Tracking with Online Sample Selection Via LASSO
Regularization,
SIViP(11), No. 5, July 2017, pp. 881-888.
WWW Link.
1706
BibRef
Xiang, Z.J.[Zhen James],
Wang, Y.[Yun],
Ramadge, P.J.[Peter J.],
Screening Tests for LASSO Problems,
PAMI(39), No. 5, May 2017, pp. 1008-1027.
IEEE DOI
1704
Lasso problem seeks a sparse linear combination of the columns of a
dictionary to best match a given target vector.
BibRef
Yuan, L.[Lei],
Liu, J.[Jun],
Ye, J.P.[Jie-Ping],
Efficient Methods for Overlapping Group LASSO,
PAMI(35), No. 9, 2013, pp. 2104-2116.
IEEE DOI
1307
Acceleration. Lasso for feature selection on nonoverlapping features.
BibRef
Wang, J.,
Fan, W.,
Ye, J.,
Fused LASSO Screening Rules via the Monotonicity of Subdifferentials,
PAMI(37), No. 9, September 2015, pp. 1806-1820.
IEEE DOI
1508
Computational efficiency.
Lasso: Least absolute shrinkage and selection operator.
BibRef
Zhao, L.,
Hu, Q.,
Wang, W.,
Heterogeneous Feature Selection With Multi-Modal Deep Neural Networks
and Sparse Group LASSO,
MultMed(17), No. 11, November 2015, pp. 1936-1948.
IEEE DOI
1511
Data mining
BibRef
Souly, N.[Nasim],
Shah, M.A.[Mubarak A.],
Visual Saliency Detection Using Group Lasso Regularization in Videos of
Natural Scenes,
IJCV(117), No. 1, March 2016, pp. 93-110.
Springer DOI
1604
BibRef
Shen, X.Y.[Xin-Yue],
Chen, L.[Laming],
Gu, Y.T.[Yuan-Tao],
So, H.C.,
Square-Root Lasso With Nonconvex Regularization: An ADMM Approach,
SPLetters(23), No. 7, July 2016, pp. 934-938.
IEEE DOI
1608
LASSO: least absolute shrinkage and selection operator.
concave programming
BibRef
Painsky, A.,
Rosset, S.,
Isotonic Modeling with Non-Differentiable Loss Functions with
Application to Lasso Regularization,
PAMI(38), No. 2, February 2016, pp. 308-321.
IEEE DOI
1601
Algorithm design and analysis
Code, Regularization. Implementation:
WWW Link.
BibRef
Lu, G.F.[Gui-Fu],
Lin, Z.[Zhong],
Jin, Z.[Zhong],
Face recognition using discriminant locality preserving projections
based on maximum margin criterion,
PR(43), No. 10, October 2010, pp. 3572-3579.
Elsevier DOI
1007
MMC; Locality preserving; Small sample size problem; Feature
extraction; Face recognition
BibRef
Lu, G.F.[Gui-Fu],
Lin, Z.[Zhong],
Jin, Z.[Zhong],
Face recognition using regularised generalised discriminant locality
preserving projections,
IET-CV(5), No. 2, 2011, pp. 107-116.
DOI Link
1103
BibRef
Lu, G.F.[Gui-Fu],
Tang, G.[Ganyi],
Zou, J.[Jian],
Spare L1-norm-based maximum margin criterion,
JVCIR(38), No. 1, 2016, pp. 11-17.
Elsevier DOI
1605
Feature extraction
BibRef
Lu, G.F.[Gui-Fu],
Zou, J.[Jian],
Wang, Y.[Yong],
L1-norm and maximum margin criterion based discriminant locality
preserving projections via trace Lasso,
PR(55), No. 1, 2016, pp. 207-214.
Elsevier DOI
1604
Discriminant locality preserving projections
BibRef
Zhang, Z.H.[Zhi-Hong],
Tian, Y.Y.[Yi-Yang],
Bai, L.[Lu],
Xiahou, J.B.[Jian-Bing],
Hancock, E.R.[Edwin R.],
High-order covariate interacted Lasso for feature selection,
PRL(87), No. 1, 2017, pp. 139-146.
Elsevier DOI
1703
Lasso
BibRef
Ma, X.[Xiao],
Liu, Q.[Qiao],
Ou, W.H.[Wei-Hua],
Zhou, Q.[Quan],
Visual object tracking via coefficients constrained exclusive group
LASSO,
MVA(29), No. 5, July 2018, pp. 749-763.
WWW Link.
1808
BibRef
Xiong, H.[He],
Kong, D.[Deguang],
Elastic nonnegative matrix factorization,
PR(90), 2019, pp. 464-475.
Elsevier DOI
1903
NMF, Elastic, Robust, Manifold, Clustering, Exclusive LASSO
BibRef
Guo, C.G.[Cheng-Gang],
Chen, D.Y.[Dong-Yi],
Huang, Z.Q.[Zhi-Qi],
Real-Time Sparse Visual Tracking Using Circulant Reverse LASSO Model,
IEICE(E102-D), No. 1, January 2019, pp. 175-184.
WWW Link.
1901
BibRef
Duan, J.B.[Jun-Bo],
Idier, J.[Jérôme],
Wang, Y.P.[Yu-Ping],
Wan, M.X.[Ming-Xi],
A Joint Least Squares and Least Absolute Deviation Model,
SPLetters(26), No. 4, April 2019, pp. 543-547.
IEEE DOI
1903
LASSO: Least absolute shrinkage and selection operator.
least squares approximations, signal restoration, JOLESALAD,
generalized LASSO, constrained LASSO, LASSO models,
ramp signal restoration
BibRef
Dong, Y.,
Yang, X.,
Zhao, X.,
Li, J.,
Bidirectional Convolutional Recurrent Sparse Network (BCRSN):
An Efficient Model for Music Emotion Recognition,
MultMed(21), No. 12, December 2019, pp. 3150-3163.
IEEE DOI
1912
Feature extraction, Music, Emotion recognition, Speech recognition,
Convolution, Recurrent neural networks, Databases,
Lasso regression
BibRef
Moghimi, B.,
Safikhani, A.,
Kamga, C.,
Hao, W.,
Ma, J.,
Short-Term Prediction of Signal Cycle on an Arterial With
Actuated-Uncoordinated Control Using Sparse Time Series Models,
ITS(20), No. 8, August 2019, pp. 2976-2985.
IEEE DOI
1908
Time series analysis, Data models, Predictive models, Detectors,
Delays, Reactive power, Automobiles, Fully actuated signal,
HGLASSO
BibRef
Liu, C.[Cheng],
Zheng, C.T.[Chu-Tao],
Qian, S.[Sheng],
Wu, S.[Si],
Wong, H.S.[Hau-San],
Encoding sparse and competitive structures among tasks in multi-task
learning,
PR(88), 2019, pp. 689-701.
Elsevier DOI
1901
Multi-task learning, Sparse exclusive lasso, Task-competitive
BibRef
Seghouane, A.K.[Abd-Krim],
Shokouhi, N.[Navid],
Koch, I.[Inge],
Sparse Principal Component Analysis With Preserved Sparsity Pattern,
IP(28), No. 7, July 2019, pp. 3274-3285.
IEEE DOI
1906
biomedical MRI, blind source separation, data analysis,
pattern recognition, principal component analysis,
group lasso
BibRef
Abdolali, M.[Maryam],
Rahmati, M.[Mohammad],
Robust subspace clustering for image data using clean dictionary
estimation and group lasso based matrix completion,
JVCIR(61), 2019, pp. 303-314.
Elsevier DOI
1906
Subspace estimation, Sparse representation,
Sparse subspace clustering, Group lasso,
Matrix completion
BibRef
Zhang, M.[Mimi],
Forward-stagewise clustering: An algorithm for convex clustering,
PRL(128), 2019, pp. 283-289.
Elsevier DOI
1912
Fusion penalty, Generalized lasso, Hierarchical clustering, K-nearest neighbor
BibRef
Zheng, S.[Shuai],
Ding, C.[Chris],
A group lasso based sparse KNN classifier,
PRL(131), 2020, pp. 227-233.
Elsevier DOI
2004
Sparse learning, Group lasso, Explainable classifier
BibRef
Cui, L.X.[Li-Xin],
Bai, L.[Lu],
Wang, Y.[Yue],
Yu, P.S.[Philip S.],
Hancock, E.R.[Edwin R.],
Fused lasso for feature selection using structural information,
PR(119), 2021, pp. 108058.
Elsevier DOI
2106
Feature selection, Structural relationship, Fused lasso,
Graph-based feature selection, Sparse learning, Correlated feature group
BibRef
Lee, S.[Seunghak],
Görnitz, N.[Nico],
Xing, E.P.[Eric P.],
Heckerman, D.[David],
Lippert, C.[Christoph],
Ensembles of Lasso Screening Rules,
PAMI(40), No. 12, December 2018, pp. 2841-2852.
IEEE DOI
1811
Closed-form solutions, Heuristic algorithms,
Algorithm design and analysis, Feature extraction,
ensemble
BibRef
Bento, J.[José],
Furmaniak, R.[Ralph],
Ray, S.[Surjyendu],
On the Complexity of the Weighted Fused Lasso,
SPLetters(25), No. 10, October 2018, pp. 1595-1599.
IEEE DOI
1810
dynamic programming, least squares approximations,
piecewise linear techniques, string matching,
weights
BibRef
Fosson, S.M.,
A Biconvex Analysis for Lasso L_1 Reweighting,
SPLetters(25), No. 12, December 2018, pp. 1795-1799.
IEEE DOI
1812
compressed sensing, convergence of numerical methods,
convex programming, iterative methods, regression analysis,
reweighting algorithms
BibRef
Ren, S.G.[Shao-Gang],
Huang, S.A.[Shu-Ai],
Ye, J.P.[Jie-Ping],
Qian, X.N.[Xiao-Ning],
Safe Feature Screening for Generalized LASSO,
PAMI(40), No. 12, December 2018, pp. 2992-3006.
IEEE DOI
1811
Optimization, Estimation, Sparse matrices, Linear regression,
Logistics, Heuristic algorithms, Feature detection,
feature screening
BibRef
Jung, A.[Alexander],
On the Duality Between Network Flows and Network Lasso,
SPLetters(27), 2020, pp. 940-944.
IEEE DOI
2007
TV, Optimization, Minimization, Data models, Linear programming,
Clustering algorithms, Signal processing algorithms,
optimization methods
BibRef
Wang, X.,
Benesty, J.,
Chen, J.,
Cohen, I.,
Beamforming With Small-Spacing Microphone Arrays Using
Constrained/Generalized LASSO,
SPLetters(27), 2020, pp. 356-360.
IEEE DOI
2004
Beamforming, white noise gain, directivity factor,
signal-to-scattered-interference-ratio gain, LASSO
BibRef
Li, D.,
Cui, F.,
Wang, A.,
Li, Y.,
Wu, J.,
Qiao, Y.,
Adaptive Detection Algorithm for Hazardous Clouds Based on Infrared
Remote Sensing Spectroscopy and the LASSO Method,
GeoRS(58), No. 12, December 2020, pp. 8649-8664.
IEEE DOI
2012
Atmospheric measurements, Clouds, Atmospheric modeling,
Brightness temperature, Feature extraction, Remote sensing,
remote sensing
BibRef
Mao, R.Y.[Ru-Yong],
Chen, Z.Y.[Zheng-Yu],
Hu, G.B.[Guo-Bing],
Robust temporal low-rank representation for traffic data recovery via
fused LASSO,
IET-ITS(15), No. 2, 2021, pp. 175-186.
DOI Link
2106
BibRef
Jung, A.,
Sarcheshmeh Pour, Y.,
Local Graph Clustering With Network Lasso,
SPLetters(28), 2021, pp. 106-110.
IEEE DOI
2101
TV, Clustering methods, Optimization, Minimization,
Laplace equations, Message passing, Convergence,
semisupervised learning
BibRef
Jarret, A.[Adrian],
Fageot, J.[Julien],
Simeoni, M.[Matthieu],
A Fast and Scalable Polyatomic Frank-Wolfe Algorithm for the LASSO,
SPLetters(29), 2022, pp. 637-641.
IEEE DOI
2203
Signal processing algorithms, Approximation algorithms,
Matching pursuit algorithms, Convergence, Optimization,
convex optimisation
BibRef
Masuda, R.[Ryo],
Inoue, R.[Ryo],
Point Event Cluster Detection via the Bayesian Generalized Fused
Lasso,
IJGI(11), No. 3, 2022, pp. xx-yy.
DOI Link
2204
BibRef
Shang, P.[Pan],
Kong, L.C.[Ling-Chen],
Liu, D.[Dashuai],
A Safe Feature Screening Rule for Rank Lasso,
SPLetters(29), 2022, pp. 1062-1066.
IEEE DOI
2205
Data models, Computational modeling, Tuning,
Computational efficiency, Task analysis, Mathematical models,
screening rule
BibRef
Gao, R.[Rui],
Särkkä, S.[Simo],
Claveria-Vega, R.[Rubén],
Godsill, S.[Simon],
Autonomous Tracking and State Estimation With Generalized Group Lasso,
Cyber(52), No. 11, November 2022, pp. 12056-12070.
IEEE DOI
2211
State estimation, Minimization, Target tracking, Smoothing methods,
Bayes methods, Autonomous vehicles, Vehicle dynamics,
state estimation
BibRef
Wang, J.Y.[Jian-Yu],
Zhang, X.L.[Xiao-Lei],
Deep Topic Modeling by Multilayer Bootstrap Network and Lasso,
ICPR21(2470-2475)
IEEE DOI
2105
Dimensionality reduction, Analytical models, Text analysis,
Clustering algorithms, Nonhomogeneous media, Data models
BibRef
Seghouane, A.K.,
Qadar, M.A.,
Sparsity Preserved Canonical Correlation Analysis,
ICIP20(31-35)
IEEE DOI
2011
Loading, Correlation, Matrix decomposition,
Functional magnetic resonance imaging, Data analysis,
group lasso.
BibRef
Oyedotun, O.K.,
Aouada, D.,
Ottersten, B.,
Structured Compression of Deep Neural Networks with Debiased Elastic
Group LASSO,
WACV20(2266-2275)
IEEE DOI
2006
Computational modeling, Feature extraction, Training,
Cost function, Training data, Task analysis, Neural networks
BibRef
Alshawaqfeh, M.[Mustafa],
Al Kawam, A.[Ahmad],
Serpedin, E.[Erchin],
Robust Fussed Lasso Model for Recurrent Copy Number Variation
Detection,
ICPR18(3772-3777)
IEEE DOI
1812
Probes, Sparse matrices, Mathematical model, DNA,
Matrix decomposition, Diseases, Adaptation models
BibRef
Tan, H.L.[Han-Lin],
Xiao, H.X.[Hua-Xin],
Liu, Y.[Yu],
Zhang, M.J.[Mao-Jun],
Wang, B.[Bin],
LASSO approximation and application to image super-resolution with
CUDA acceleration,
ICIVC17(483-488)
IEEE DOI
1708
Acceleration, Dictionaries, Graphics processing units,
Image resolution, Inverse problems, Learning systems,
Signal resolution, CUDA, LASSO, super-resolution
BibRef
Bibi, A.,
Itani, H.,
Ghanem, B.[Bernard],
FFTLasso: Large-Scale LASSO in the Fourier Domain,
CVPR17(4371-4380)
IEEE DOI
1711
Convolutional codes, Dictionaries, Encoding, Face recognition,
Graphics processing units, Linear systems, Sparse, matrices
BibRef
Aliquintuy, M.[Marcelo],
Frandi, E.[Emanuele],
Ńanculef, R.[Ricardo],
Suykens, J.A.K.[Johan A. K.],
Efficient Sparse Approximation of Support Vector Machines Solving a
Kernel Lasso,
CIARP16(208-216).
Springer DOI
1703
BibRef
Li, Q.[Qiang],
Qiao, M.Y.[Mao-Ying],
Bian, W.[Wei],
Tao, D.C.[Da-Cheng],
Conditional Graphical Lasso for Multi-label Image Classification,
CVPR16(2977-2986)
IEEE DOI
1612
BibRef
Xin, B.[Bo],
Tian, Y.[Yuan],
Wang, Y.Z.[Yi-Zhou],
Gao, W.[Wen],
Background Subtraction via generalized fused LASSO foreground
modeling,
CVPR15(4676-4684)
IEEE DOI
1510
BibRef
Zhao, K.[Kaili],
Zhang, H.G.[Hong-Gang],
Guo, J.[Jun],
An adaptive group LASSO based multi-label regression approach for
facial expression analysis,
ICIP14(1435-1439)
IEEE DOI
1502
Algorithm design and analysis
BibRef
Zhao, K.[Kaili],
Zhang, H.G.[Hong-Gang],
Dong, M.Z.[Ming-Zhi],
Guo, J.[Jun],
Qi, Y.G.[Yong-Gang],
Song, Y.Z.[Yi-Zhe],
A multi-label classification approach for Facial Expression
Recognition,
VCIP13(1-6)
IEEE DOI
1402
convex programming
BibRef
Nafornita, C.,
Isar, A.,
Nelson, J.D.B.,
Regularised, semi-local hurst estimation via generalised lasso and
dual-tree complex wavelets,
ICIP14(2689-2693)
IEEE DOI
1502
Estimation
BibRef
Hung, T.Y.[Tzu-Yi],
Lu, J.W.[Ji-Wen],
Tan, Y.P.[Yap-Peng],
Gao, S.H.[Sheng-Hua],
Efficient Sparsity Estimation via Marginal-Lasso Coding,
ECCV14(IV: 578-592).
Springer DOI
1408
BibRef
Zini, L.[Luca],
Odone, F.[Francesca],
Efficient pedestrian detection with group lasso,
VS11(1777-1784).
IEEE DOI
1201
BibRef
Vogt, J.E.[Julia E.],
Roth, V.[Volker],
The Group-Lasso: L1,inf Regularization versus L1,2 Regularization,
DAGM10(252-261).
Springer DOI
1009
Award, GCPR, HM.
BibRef
Wang, J.[Jing],
Su, G.D.[Guang-Da],
Chen, J.S.[Jian-Sheng],
Moon, Y.S.[Yiu-Sang],
CPGL: A classification method combining PCA and the Group Lasso method,
ICIP10(4529-4532).
IEEE DOI
1009
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Locally Linear Embedding, Nonlinear Embedding .