Fernandez-Navarro, F.[Francisco],
Hervas-Martinez, C.[Cesar],
Gutierrez, P.A.[Pedro Antonio],
A dynamic over-sampling procedure based on sensitivity for multi-class
problems,
PR(44), No. 8, August 2011, pp. 1821-1833.
Elsevier DOI
1104
Classification; Multi-class; Sensitivity; Accuracy; Memetic algorithm;
Imbalanced datasets; Over-sampling method; SMOTE
BibRef
Tahir, M.A.[Muhammad Atif],
Kittler, J.V.[Josef V.],
Yan, F.[Fei],
Inverse random under sampling for class imbalance problem and its
application to multi-label classification,
PR(45), No. 10, October 2012, pp. 3738-3750.
Elsevier DOI
1206
Class imbalance problem; Multi-label classification; Inverse random
under sampling
BibRef
Galar, M.[Mikel],
Fernández, A.[Alberto],
Barrenechea, E.[Edurne],
Herrera, F.[Francisco],
EUSBoost: Enhancing ensembles for highly imbalanced data-sets by
evolutionary undersampling,
PR(46), No. 12, 2013, pp. 3460-3471.
Elsevier DOI
1308
Classification
See also Dynamic classifier selection for One-vs-One strategy: Avoiding non-competent classifiers.
BibRef
d'Addabbo, A.[Annarita],
Maglietta, R.[Rosalia],
Parallel selective sampling method for imbalanced and large data
classification,
PRL(62), No. 1, 2015, pp. 61-67.
Elsevier DOI
1507
Imbalanced learning
BibRef
Sáez, J.A.[José A.],
Krawczyk, B.[Bartosz],
Wozniak, M.[Michal],
Analyzing the oversampling of different classes and types of examples
in multi-class imbalanced datasets,
PR(57), No. 1, 2016, pp. 164-178.
Elsevier DOI
1605
Machine learning
BibRef
Devi, D.[Debashree],
Biswas, S.K.[Saroj K.],
Purkayastha, B.[Biswajit],
Redundancy-driven modified Tomek-link based undersampling:
A solution to class imbalance,
PRL(93), No. 1, 2017, pp. 3-12.
Elsevier DOI
1706
Data, mining
BibRef
Zhu, T.F.[Tuan-Fei],
Lin, Y.P.[Ya-Ping],
Liu, Y.H.[Yong-He],
Synthetic minority oversampling technique for multiclass imbalance
problems,
PR(72), No. 1, 2017, pp. 327-340.
Elsevier DOI
1708
Multiclass imbalance problems
BibRef
Kang, Q.,
Chen, X.,
Li, S.,
Zhou, M.,
A Noise-Filtered Under-Sampling Scheme for Imbalanced Classification,
Cyber(47), No. 12, December 2017, pp. 4263-4274.
IEEE DOI
1712
Approximation algorithms, Benchmark testing, Computers,
Cybernetics, Data preprocessing, Noise measurement, Training, under-sampling
BibRef
Castellanos, F.J.[Francisco J.],
Valero-Mas, J.J.[Jose J.],
Calvo-Zaragoza, J.[Jorge],
Rico-Juan, J.R.[Juan R.],
Oversampling imbalanced data in the string space,
PRL(103), 2018, pp. 32-38.
Elsevier DOI
1802
Class imbalance problem, Oversampling, String space, SMOTE
BibRef
Sadhukhan, P.[Payel],
Palit, S.[Sarbani],
Reverse-nearest neighborhood based oversampling for imbalanced,
multi-label datasets,
PRL(125), 2019, pp. 813-820.
Elsevier DOI
1909
Reverse nearest neighborhood, Multi-label classification,
Multi-label learning, Class-imbalance, Oversampling
BibRef
Kim, Y.G.[Young-Geun],
Kwon, Y.C.[Yong-Chan],
Paik, M.C.[Myunghee Cho],
Valid oversampling schemes to handle imbalance,
PRL(125), 2019, pp. 661-667.
Elsevier DOI
1909
Imbalance, Oversampling,
Optimal oversampling target proportion, Resampling at random, Medical imaging
BibRef
Koziarski, M.[Michal],
Radial-Based Undersampling for imbalanced data classification,
PR(102), 2020, pp. 107262.
Elsevier DOI
2003
Machine learning, Classification, Imbalanced data,
Undersampling, Radial basis functions
BibRef
Sadhukhan, P.[Payel],
Palit, S.[Sarbani],
Adaptive learning of minority class prior to minority oversampling,
PRL(136), 2020, pp. 16-24.
Elsevier DOI
2008
Class imbalance, Relative neighborhood graph,
Minority set estimation, Oversampling
BibRef
Koziarski, M.[Michal],
Potential Anchoring for imbalanced data classification,
PR(120), 2021, pp. 108114.
Elsevier DOI
2109
Machine learning, Classification, Imbalanced data, Oversampling,
Undersampling, Radial basis functions
BibRef
Liu, B.[Bin],
Blekas, K.[Konstantinos],
Tsoumakas, G.[Grigorios],
Multi-label sampling based on local label imbalance,
PR(122), 2022, pp. 108294.
Elsevier DOI
2112
Multi-label learning, Class imbalance,
Oversampling and undersampling, Local label imbalance, Ensemble methods
BibRef
Maldonado, S.[Sebastián],
Vairetti, C.[Carla],
Fernandez, A.[Alberto],
Herrera, F.[Francisco],
FW-SMOTE: A feature-weighted oversampling approach for imbalanced
classification,
PR(124), 2022, pp. 108511.
Elsevier DOI
2203
Data resampling, SMOTE, OWA Operators, Feature selection,
Imbalanced data classification
BibRef
Sridhar, S.,
Kalaivani, A.,
Performance Analysis of Two-Stage Iterative Ensemble Method over Random
Oversampling Methods on Multiclass Imbalanced Datasets,
IJIG(22), No. 2, April 2022, pp. 2250025.
DOI Link
2205
BibRef
Liu, Y.X.[Yong-Xu],
Liu, Y.[Yan],
Yu, B.X.B.[Bruce X.B.],
Zhong, S.H.[Sheng-Hua],
Hu, Z.J.[Zhe-Jing],
Noise-robust oversampling for imbalanced data classification,
PR(133), 2023, pp. 109008.
Elsevier DOI
2210
Imbalanced learning, Classification, Clustering
BibRef
Ren, J.J.[Jin-Jun],
Wang, Y.P.[Yu-Ping],
Cheung, Y.M.[Yiu-Ming],
Gao, X.Z.[Xiao-Zhi],
Guo, X.F.[Xiao-Fang],
Grouping-based Oversampling in Kernel Space for Imbalanced Data
Classification,
PR(133), 2023, pp. 108992.
Elsevier DOI
2210
Imbalanced data classification, Kernel method,
Support vector machine, Oversampling
BibRef
Liu, C.L.[Chien-Liang],
Chang, Y.H.[Yu-Hua],
Learning From Imbalanced Data With Deep Density Hybrid Sampling,
SMCS(52), No. 11, November 2022, pp. 7065-7077.
IEEE DOI
2210
Boosting, Training, Euclidean distance, Sampling methods, Costs,
Hybrid power systems, Estimation, Class imbalance, synthetic data
BibRef
Datta, D.[Debaleena],
Mallick, P.K.[Pradeep Kumar],
Reddy, A.V.N.[Annapareddy V. N.],
Mohammed, M.A.[Mazin Abed],
Jaber, M.M.[Mustafa Musa],
Alghawli, A.S.[Abed Saif],
Al-Qaness, M.A.A.[Mohammed A. A.],
A Hybrid Classification of Imbalanced Hyperspectral Images Using
ADASYN and Enhanced Deep Subsampled Multi-Grained Cascaded Forest,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Soltanzadeh, P.[Paria],
Feizi-Derakhshi, M.R.[M. Reza],
Hashemzadeh, M.[Mahdi],
Addressing the class-imbalance and class-overlap problems by a
metaheuristic-based under-sampling approach,
PR(143), 2023, pp. 109721.
Elsevier DOI
2310
Imbalanced classification, Imbalanced datasets, Class overlap,
Class imbalance, Metaheuristic algorithms, Under-sampling
BibRef
Schultz, K.[Kristian],
Bej, S.[Saptarshi],
Hahn, W.[Waldemar],
Wolfien, M.[Markus],
Srivastava, P.[Prashant],
Wolkenhauer, O.[Olaf],
ConvGeN: A convex space learning approach for deep-generative
oversampling and imbalanced classification of small tabular datasets,
PR(147), 2024, pp. 110138.
Elsevier DOI
2312
Imbalanced data, Convex space learning, LoRAS, GAN, Tabular data
BibRef
Yu, H.[Hao],
Du, Y.X.[Ying-Xiao],
Wu, J.X.[Jian-Xin],
Reviving undersampling for long-tailed learning,
PR(161), 2025, pp. 111200.
Elsevier DOI Code:
WWW Link.
2502
Image classification, Long-tailed learning, Undersampling
BibRef
Zhao, L.Y.[Ling-Yun],
Han, F.[Fei],
Ling, Q.H.[Qing-Hua],
Ge, Y.[Yubin],
Zhang, Y.Z.[Yu-Ze],
Liu, Q.[Qing],
Han, H.[Henry],
Contribution-based imbalanced hybrid resampling ensemble,
PR(164), 2025, pp. 111553.
Elsevier DOI
2504
Class-imbalanced learning, Hybrid resampling,
Sample contribution, Ensemble learning, Semi-supervised Learning
BibRef
Wei, Z.[Zhen],
Zhang, L.[Li],
Zhao, L.[Lei],
DSPOTE: Density-induced Selection Probability-based Oversampling
TEchnique for Imbalanced Learning,
ICPR22(1-7)
IEEE DOI
2212
Filtering, Probability, Noise measurement, Task analysis
BibRef
Dam, T.[Tanmoy],
Ferdaus, M.M.[Md Meftahul],
Pratama, M.[Mahardhika],
Anavatti, S.G.[Sreenatha G.],
Jayavelu, S.[Senthilnath],
Abbass, H.[Hussein],
Latent Preserving Generative Adversarial Network for Imbalance
Classification,
ICIP22(3712-3716)
IEEE DOI
2211
Costs, Codes, Fault detection, Games,
Generative adversarial networks, Generators, class imbalance,
oversampling techniques
BibRef
Park, S.[Seulki],
Hong, Y.[Youngkyu],
Heo, B.[Byeongho],
Yun, S.[Sangdoo],
Choi, J.Y.[Jin Young],
The Majority Can Help the Minority: Context-rich Minority
Oversampling for Long-tailed Classification,
CVPR22(6877-6886)
IEEE DOI
2210
Codes, Benchmark testing,
Classification algorithms, retrieval
BibRef
Tripathi, A.[Ayush],
Chakraborty, R.[Rupayan],
Kopparapu, S.I.K.[Sun-Il Kumar],
A Novel Adaptive Minority Oversampling Technique for Improved
Classification in Data Imbalanced Scenarios,
ICPR21(10650-10657)
IEEE DOI
2105
Training, Measurement, Machine learning algorithms,
Clustering algorithms, Machine learning, Partitioning algorithms,
Minority class
BibRef
Rong, T.,
Tian, X.,
Ng, W.W.Y.,
Location bagging-based undersampling for imbalanced classification
problems,
ICWAPR16(72-77)
IEEE DOI
1611
Pattern recognition
BibRef
Mera, C.[Carlos],
Arrieta, J.[Jose],
Orozco-Alzate, M.[Mauricio],
Branch, J.[John],
A Bag Oversampling Approach for Class Imbalance in Multiple Instance
Learning,
CIARP15(724-731).
Springer DOI
1511
BibRef
Mera, C.[Carlos],
Orozco-Alzate, M.[Mauricio],
Branch, J.[John],
Improving Representation of the Positive Class in Imbalanced
Multiple-Instance Learning,
ICIAR14(I: 266-273).
Springer DOI
1410
BibRef
Sandhan, T.[Tushar],
Choi, J.Y.[Jin Young],
Handling Imbalanced Datasets by Partially Guided Hybrid Sampling for
Pattern Recognition,
ICPR14(1449-1453)
IEEE DOI
1412
Databases
BibRef
Hernandez, J.[Julio],
Carrasco-Ochoa, J.A.[Jesús Ariel],
Martínez-Trinidad, J.F.[José Francisco],
An Empirical Study of Oversampling and Undersampling for Instance
Selection Methods on Imbalance Datasets,
CIARP13(I:262-269).
Springer DOI
1311
See also New Method for Skeleton Pruning, A.
See also Prototype Selection for Graph Embedding Using Instance Selection.
BibRef
González-Barcenas, V.M.,
Rendón, E.,
Alejo, R.,
Granda-Gutiérrez, E.E.,
Valdovinos, R.M.,
Addressing the Big Data Multi-class Imbalance Problem with Oversampling
and Deep Learning Neural Networks,
IbPRIA19(I:216-224).
Springer DOI
1910
BibRef
Alejo, R.,
Martínez Sotoca, J.[José],
Casañ, G.A.,
An Empirical Study for the Multi-class Imbalance Problem with Neural
Networks,
CIARP08(479-486).
Springer DOI
0809
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Transfer Learning from Other Tasks, Other Classes .