Yang, C.Y.[Chun-Yu],
Zhou, J.[Jie],
Non-stationary data sequence classification using online class priors
estimation,
PR(41), No. 8, August 2008, pp. 2656-2664.
Elsevier DOI
0805
Concept drift; Online classification; EM
BibRef
Zhang, Z.H.[Zhi-Hao],
Zhou, J.[Jie],
Transfer estimation of evolving class priors in data stream
classification,
PR(43), No. 9, September 2010, pp. 3151-3161.
Elsevier DOI
1006
Concept drift; Transfer learning; Prior estimation
BibRef
Gao, X.B.[Xin-Bo],
Wang, X.M.[Xiu-Mei],
Li, X.L.[Xue-Long],
Tao, D.C.[Da-Cheng],
Transfer latent variable model based on divergence analysis,
PR(44), No. 10-11, October-November 2011, pp. 2358-2366.
Elsevier DOI
1101
Dimensionality reduction; Latent variable model; Transfer learning;
Bregman divergence
BibRef
Pang, J.,
Huang, Q.,
Yan, S.,
Jiang, S.,
Qin, L.,
Transferring Boosted Detectors Towards Viewpoint and Scene Adaptiveness,
IP(20), No. 5, May 2011, pp. 1388-1400.
IEEE DOI
1104
Training set isn't exactly the same as test data.
BibRef
di Carlo, S.,
Falasconi, M.,
Sanchez, E.,
Scionti, A.,
Squillero, G.,
Tonda, A.,
Increasing pattern recognition accuracy for chemical sensing by
evolutionary based drift compensation,
PRL(32), No. 13, 1 October 2011, pp. 1594-1603.
Elsevier DOI
1109
Sensor drift; Evolutionary strategy; Classification systems
BibRef
Gonçalves, Jr., P.M.[Paulo Mauricio],
Maior de Barros, R.S.[Roberto Souto],
RCD: A recurring concept drift framework,
PRL(34), No. 9, July 2013, pp. 1018-1025.
Elsevier DOI
1305
Data streams; Concept drift; Recurring contexts; On-line learning;
Multivariate non-parametric statistical test
BibRef
Salakhutdinov, R.[Ruslan],
Tenenbaum, J.B.[Joshua B.],
Torralba, A.B.[Antonio B.],
Learning with Hierarchical-Deep Models,
PAMI(35), No. 8, 2013, pp. 1958-1971.
IEEE DOI
1307
BibRef
Earlier: A1, A3, A2:
Learning to share visual appearance for multiclass object detection,
CVPR11(1481-1488).
IEEE DOI
1106
Bayesian methods; Deep networks.
Rare objects "borrow" statistical info from related common objects.
Learn hierarchy of objects.
BibRef
Lin, D.[Di],
An, X.[Xing],
Zhang, J.[Jian],
Double-bootstrapping source data selection for instance-based transfer
learning,
PRL(34), No. 11, 1 August 2013, pp. 1279-1285.
Elsevier DOI
1306
Transfer learning; Instance-based transfer learning; Source
data selection; Bagging
BibRef
Varga, R.,
Nedevschi, S.,
Label Transfer by Measuring Compactness,
IP(22), No. 12, 2013, pp. 4711-4723.
IEEE DOI
1312
feature extraction
BibRef
Li, Q.[Qing],
Chen, X.[Xiaowu],
Song, Y.[Yafei],
Zhang, Y.,
Jin, X.[Xin],
Zhao, Q.P.[Qin-Ping],
Geodesic Propagation for Semantic Labeling,
IP(23), No. 11, November 2014, pp. 4812-4825.
IEEE DOI
1410
BibRef
Earlier: A2, A1, A3, A5, A6, Only:
Supervised Geodesic Propagation for Semantic Label Transfer,
ECCV12(III: 553-565).
Springer DOI
1210
Image color analysis
BibRef
Khamis, S.[Sameh],
Lampert, C.H.[Christoph H.],
CoConut: Co-Classification with Output Space Regularization,
BMVC14(xx-yy).
HTML Version.
1410
Jointly classifying multiple, otherwise independent, data samples.
BibRef
Fang, M.[Min],
Guo, Y.[Yong],
Zhang, X.S.[Xiao-Song],
Li, X.[Xiao],
Multi-source transfer learning based on label shared subspace,
PRL(51), No. 1, 2015, pp. 101-106.
Elsevier DOI
1412
Transfer learning
BibRef
Sun, C.[Chao],
Bao, B.K.[Bing-Kun],
Xu, C.S.[Chang-Sheng],
Knowing Verb From Object:
Retagging With Transfer Learning on Verb-Object Concept Images,
MultMed(17), No. 10, October 2015, pp. 1747-1759.
IEEE DOI
1511
Bayes methods
BibRef
Xu, Y.,
Fang, X.,
Wu, J.,
Li, X.,
Zhang, D.,
Discriminative Transfer Subspace Learning via Low-Rank and Sparse
Representation,
IP(25), No. 2, February 2016, pp. 850-863.
IEEE DOI
1601
Adaptation models
BibRef
Deng, C.,
Tang, X.,
Yan, J.,
Liu, W.,
Gao, X.,
Discriminative Dictionary Learning With Common Label Alignment for
Cross-Modal Retrieval,
MultMed(18), No. 2, February 2016, pp. 208-218.
IEEE DOI
1601
Correlation
BibRef
Mudunuri, S.P.[Sivaram Prasad],
Biswas, S.[Soma],
A coupled discriminative dictionary and transformation learning
approach with applications to cross domain matching,
PRL(71), No. 1, 2016, pp. 38-44.
Elsevier DOI
1602
Face recognition
BibRef
Mandal, D.,
Biswas, S.[Soma],
Generalized Coupled Dictionary Learning Approach With Applications to
Cross-Modal Matching,
IP(25), No. 8, August 2016, pp. 3826-3837.
IEEE DOI
1608
Correlation
BibRef
Das, N.,
Mandal, D.,
Biswas, S.[Soma],
Simultaneous Semi-Coupled Dictionary Learning for Matching in
Canonical Space,
IP(26), No. 8, August 2017, pp. 3995-4004.
IEEE DOI
1707
BibRef
Earlier:
Simultaneous Semi-Coupled Dictionary Learning for Matching RGBD Data,
Biometrics16(243-251)
IEEE DOI
1612
image matching, image representation,
Mahalanobis metric, canonical representation, canonical space,
cross-modal recognition,
simultaneous semicoupled dictionary learning,
sparse coefficients, Couplings, Dictionaries,
Linear programming, Measurement, Testing, Training,
Cross-modal matching, RGBD data, audio-image data,
privileged information, text-image, data
BibRef
An, T.H.[Taeg-Hyun],
Hong, K.S.[Ki-Sang],
Label transfer via sparse representation,
PRL(70), No. 1, 2016, pp. 1-7.
Elsevier DOI
1602
Scene parsing
BibRef
Zhang, L.[Lei],
Zuo, W.M.[Wang-Meng],
Zhang, D.,
LSDT: Latent Sparse Domain Transfer Learning for Visual Adaptation,
IP(25), No. 3, March 2016, pp. 1177-1191.
IEEE DOI
1602
Big Data
BibRef
Zhou, S.[Shuang],
Smirnov, E.[Evgueni],
Schoenmakers, G.[Gijs],
Driessens, K.[Kurt],
Peeters, R.[Ralf],
Testing exchangeability for transfer decision,
PRL(88), No. 1, 2017, pp. 64-71.
Elsevier DOI
1703
Instance-transfer learning
BibRef
Shoeleh, F.[Farzaneh],
Asadpour, M.[Masoud],
Graph based skill acquisition and transfer Learning for continuous
reinforcement learning domains,
PRL(87), No. 1, 2017, pp. 104-116.
Elsevier DOI
1703
Reinforcement learning
BibRef
Wang, J.[Jie],
Luo, C.[Chang],
Huang, H.Q.[Han-Qiao],
Zhao, H.Z.[Hui-Zhen],
Wang, S.Q.[Shi-Qiang],
Transferring Pre-Trained Deep CNNs for Remote Scene Classification
with General Features Learned from Linear PCA Network,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Qi, G.J.,
Liu, W.,
Aggarwal, C.,
Huang, T.,
Joint Intermodal and Intramodal Label Transfers for Extremely Rare or
Unseen Classes,
PAMI(39), No. 7, July 2017, pp. 1360-1373.
IEEE DOI
1706
Bridges, Noise measurement, Semantics, Training, Transfer functions,
Videos, Visualization, Multimodal analysis, image classification,
intermodal and intramodal label transfers (I2LT), zero-shot, learning
BibRef
Wang, J.[Jun],
Wang, G.Q.[Guo-Qing],
Li, L.[Leida],
Image Pattern Similarity Index and Its Application to Task-Specific
Transfer Learning,
IEICE(E100-D), No. 12, December 2017, pp. 3032-3035.
WWW Link.
1712
BibRef
Gao, N.N.[Neng-Neng],
Huang, S.J.[Sheng-Jun],
Yan, Y.F.[Yi-Fan],
Chen, S.C.[Song-Can],
Cross modal similarity learning with active queries,
PR(75), No. 1, 2018, pp. 214-222.
Elsevier DOI
1712
Active learning
BibRef
Zhang, B.C.[Bao-Chang],
Perina, A.[Alessandro],
Li, C.[Ce],
Ye, Q.X.[Qi-Xiang],
Murino, V.[Vittorio],
del Bue, A.[Alessio],
Manifold constraint transfer for visual structure-driven optimization,
PR(77), 2018, pp. 87-98.
Elsevier DOI
1802
Manifold, Transfer learning,
Alternating direction method of multipliers, Object tracking,
Object categorization
BibRef
Kumar, S.[Suren],
Dhiman, V.[Vikas],
Koch, P.A.[Parker A.],
Corso, J.J.[Jason J.],
Learning Compositional Sparse Bimodal Models,
PAMI(40), No. 5, May 2018, pp. 1032-1044.
IEEE DOI
1804
Transfer from, e.g., red triangles/blue squares to
red squares/blue triangles.
Dictionaries, Encoding, Poles and towers, Robot sensing systems,
Semantics, Visualization, Multimodal learning,
tabletop robotics
BibRef
Zheng, F.[Feng],
Tang, Y.[Yi],
Shao, L.[Ling],
Hetero-Manifold Regularisation for Cross-Modal Hashing,
PAMI(40), No. 5, May 2018, pp. 1059-1071.
IEEE DOI
1804
Data models, Euclidean distance, Hamming distance, Manifolds,
Semantics, Support vector machines, Training, Cross-modal hashing,
manifold regularisation
BibRef
Zhu, F.[Fan],
Shao, L.[Ling],
Tang, J.[Jun],
Boosted Cross-Domain Categorization,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Chang, H.[Hang],
Han, J.[Ju],
Zhong, C.[Cheng],
Snijders, A.M.[Antoine M.],
Mao, J.H.[Jian-Hua],
Unsupervised Transfer Learning via Multi-Scale Convolutional Sparse
Coding for Biomedical Applications,
PAMI(40), No. 5, May 2018, pp. 1182-1194.
IEEE DOI
1804
Biological neural networks, Convolutional codes, Encoding,
Feature extraction, Knowledge engineering, Training,
sharable information
BibRef
Peng, P.X.[Pei-Xi],
Tian, Y.H.[Yong-Hong],
Xiang, T.[Tao],
Wang, Y.W.[Yao-Wei],
Pontil, M.[Massimiliano],
Huang, T.J.[Tie-Jun],
Joint Semantic and Latent Attribute Modelling for Cross-Class
Transfer Learning,
PAMI(40), No. 7, July 2018, pp. 1625-1638.
IEEE DOI
1806
Adaptation models, Computational modeling, Data models,
Dictionaries, Semantics, Training, Visualization, Attribute learning,
zero-shot learning
BibRef
Guo, X.[Xin],
Wang, S.[Song],
Tie, Y.[Yun],
Qi, L.[Lin],
Guan, L.[Ling],
Joint intermodal and intramodal correlation preservation for
semi-paired learning,
PR(81), 2018, pp. 36-49.
Elsevier DOI
1806
Semi-paired learning, Canonical correlation analysis, Clustering
BibRef
Shi, Q.,
Liu, X.,
Huang, X.,
An Active Relearning Framework for Remote Sensing Image
Classification,
GeoRS(56), No. 6, June 2018, pp. 3468-3486.
IEEE DOI
1806
Adaptation models, Convergence, Feature extraction, Remote sensing,
Spectral analysis, Training, Uncertainty, Active learning (AL),
relearning
BibRef
Han, W.[Wei],
Feng, R.[Ruyi],
Wang, L.Z.[Li-Zhe],
Cheng, Y.F.[Ya-Fan],
A semi-supervised generative framework with deep learning features
for high-resolution remote sensing image scene classification,
PandRS(145), 2018, pp. 23-43.
Elsevier DOI
1810
Scene classification, Deep learning, Self-label,
High resolution remote sensing images
BibRef
Ding, Z.,
Fu, Y.,
Dual Low-Rank Decompositions for Robust Cross-View Learning,
IP(28), No. 1, January 2019, pp. 194-204.
IEEE DOI
1810
Manifolds, Robustness, Feature extraction, Face, Task analysis,
Data models, Sensors, Cross-view learning, low-rank modeling, graph embedding
BibRef
Ma, Z.C.[Zhong-Chen],
Chen, S.C.[Song-Can],
Ma, D.[Di],
Heterogeneous multi-output classification by structured conditional
risk minimization,
PRL(116), 2018, pp. 50-57.
Elsevier DOI
1812
Multi-output classification, Problem transformation,
Output structures, Heterogeneity, Structured prediction
BibRef
Duan, L.J.[Li-Juan],
En, Q.[Qing],
Qiao, Y.H.[Yuan-Hua],
Cui, S.[Song],
Qing, L.Y.[Lai-Yun],
Deep feature representation based on privileged knowledge transfer,
PRL(119), 2019, pp. 62-70.
Elsevier DOI
1902
Feature representation, Privileged knowledge transfer,
Deep neural network, Multi-object retrieval
BibRef
Shi, Q.[Qian],
Zhang, Y.P.[Yi-Peng],
Liu, X.P.[Xiao-Ping],
Zhao, K.[Kefei],
Regularised transfer learning for hyperspectral image classification,
IET-CV(13), No. 2, March 2019, pp. 188-193.
DOI Link
1902
BibRef
Tang, X.Y.[Xin-Yao],
Du, B.[Bo],
Huang, J.Z.[Jian-Zhong],
Wang, Z.[Zengmao],
Zhang, L.F.[Le-Fei],
On combining active and transfer learning for medical data
classification,
IET-CV(13), No. 2, March 2019, pp. 194-205.
DOI Link
1902
BibRef
Luo, Y.[Yong],
Wen, Y.G.[Yong-Gang],
Liu, T.L.[Tong-Liang],
Tao, D.C.[Da-Cheng],
Transferring Knowledge Fragments for Learning Distance Metric from a
Heterogeneous Domain,
PAMI(41), No. 4, April 2019, pp. 1013-1026.
IEEE DOI
1903
Measurement, Task analysis, Face, Visualization, Feature extraction,
Training, Pattern recognition, Transfer learning,
nonlinear
BibRef
Deng, C.[Cheng],
Xue, Y.M.[Yu-Meng],
Liu, X.L.[Xiang-Long],
Li, C.[Chao],
Tao, D.C.[Da-Cheng],
Active Transfer Learning Network: A Unified Deep Joint
Spectral-Spatial Feature Learning Model for Hyperspectral Image
Classification,
GeoRS(57), No. 3, March 2019, pp. 1741-1754.
IEEE DOI
1903
feature extraction, geophysical image processing,
image classification, learning (artificial intelligence),
transfer learning (TL)
BibRef
Ji, R.R.[Rong-Rong],
Gao, Y.[Yue],
Hong, R.C.[Ri-Chang],
Liu, Q.[Qiong],
Tao, D.C.[Da-Cheng],
Li, X.L.[Xue-Long],
Spectral-Spatial Constraint Hyperspectral Image Classification,
GeoRS(52), No. 3, March 2014, pp. 1811-1824.
IEEE DOI
1403
hyperspectral imaging
BibRef
Luo, F.[Fulin],
Du, B.[Bo],
Zhang, L.P.[Liang-Pei],
Zhang, L.F.[Le-Fei],
Tao, D.C.[Da-Cheng],
Feature Learning Using Spatial-Spectral Hypergraph Discriminant
Analysis for Hyperspectral Image,
Cyber(49), No. 7, July 2019, pp. 2406-2419.
IEEE DOI
1905
Feature extraction, Laplace equations, Learning systems,
Cybernetics, Hyperspectral imaging, Image reconstruction,
spatial-spectral information
BibRef
Basavaraju, S.[Sathisha],
Gaj, S.[Sibaji],
Sur, A.[Arijit],
Object Memorability Prediction using Deep Learning:
Location and Size Bias,
JVCIR(59), 2019, pp. 117-127.
Elsevier DOI
1903
Object Memorability, Deep Learning, Transfer Learning
BibRef
Ye, R.[Rui],
Dai, Q.[Qun],
Li, M.[MeiLing],
A hybrid transfer learning algorithm incorporating TrSVM with GASEN,
PR(92), 2019, pp. 192-202.
Elsevier DOI
1905
Transfer learning, Ensemble selection,
Genetic Algorithm based Selective Ensemble algorithm (GASEN),
Transfer Learning algorithm incorporating TrSVM with GASEN (TrGASVM)
BibRef
Wang, C.[Chao],
Tuo, H.Y.[Hong-Ya],
Wang, J.X.[Jie-Xin],
Qiao, L.F.[Ling-Feng],
Discriminative transfer learning via local and global structure
preservation,
SIViP(13), No. 4, June 2019, pp. 753-760.
Springer DOI
1906
BibRef
Zhang, J.[Jing],
Li, W.Q.[Wan-Qing],
Ogunbona, P.[Philip],
Xu, D.[Dong],
Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition:
A Problem-Oriented Perspective,
Surveys(51), No. 1, February 2019, pp. Article No 7.
DOI Link
1906
Survey, Transfer Learning.
BibRef
Xue, S.[Shan],
Lu, J.[Jie],
Zhang, G.Q.[Guang-Quan],
Cross-domain network representations,
PR(94), 2019, pp. 135-148.
Elsevier DOI
1906
Network representation, Transfer learning, Random walk,
Information network, Unsupervised learning, Feature learning
BibRef
Yu, X.[Xu],
Jiang, F.[Feng],
Du, J.W.[Jun-Wei],
Gong, D.W.[Dun-Wei],
A cross-domain collaborative filtering algorithm with expanding user
and item features via the latent factor space of auxiliary domains,
PR(94), 2019, pp. 96-109.
Elsevier DOI
1906
Cross-domain collaborative filtering, Feature expansion,
Funk-SVD decomposition, Classification, Latent factor space
BibRef
Rostami, M.[Mohammad],
Kolouri, S.[Soheil],
Eaton, E.[Eric],
Kim, K.[Kyungnam],
Deep Transfer Learning for Few-Shot SAR Image Classification,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Hong, D.,
Yokoya, N.,
Chanussot, J.,
Zhu, X.X.,
CoSpace: Common Subspace Learning From Hyperspectral-Multispectral
Correspondences,
GeoRS(57), No. 7, July 2019, pp. 4349-4359.
IEEE DOI
1907
Hyperspectral imaging, Optimization, Satellites, Earth, Manifolds,
Common subspace learning (CoSpace), cross-modality learning,
remote sensing
BibRef
Chen, W.,
Hsu, T.H.,
Tsai, Y.H.,
Chen, M.,
Wang, Y.F.,
Transfer Neural Trees: Semi-Supervised Heterogeneous Domain
Adaptation and Beyond,
IP(28), No. 9, Sep. 2019, pp. 4620-4633.
IEEE DOI
1908
image classification, learning (artificial intelligence),
pattern classification, trees (mathematics),
zero-shot learning
BibRef
Tan, M.[Min],
Yu, J.[Jun],
Zhang, H.Y.[Hong-Yuan],
Rui, Y.[Yong],
Tao, D.C.[Da-Cheng],
Image Recognition by Predicted User Click Feature With Multidomain
Multitask Transfer Deep Network,
IP(28), No. 12, December 2019, pp. 6047-6062.
IEEE DOI
1909
Image recognition, Task analysis, Visualization, Predictive models,
Adaptation models, Correlation, Computational modeling,
word embedding
BibRef
Yan, C.,
Li, L.,
Zhang, C.,
Liu, B.,
Zhang, Y.,
Dai, Q.,
Cross-Modality Bridging and Knowledge Transferring for Image
Understanding,
MultMed(21), No. 10, October 2019, pp. 2675-2685.
IEEE DOI
1910
feature extraction, image classification, image representation,
learning (artificial intelligence), multimedia systems,
knowledge transferring
BibRef
Li, X.H.[Xu-Hong],
Grandvalet, Y.[Yves],
Davoine, F.[Franck],
A baseline regularization scheme for transfer learning with
convolutional neural networks,
PR(98), 2020, pp. 107049.
Elsevier DOI
1911
Transfer learning, Regularization, Convolutional networks
BibRef
Sanodiya, R.K.[Rakesh Kumar],
Mathew, J.[Jimson],
A novel unsupervised Globality-Locality Preserving Projections in
transfer learning,
IVC(90), 2019, pp. 103802.
Elsevier DOI
1912
Discriminant analysis, Transfer learning, Domain adaptation,
Manifold, Classification, Unsupervised learning, Dimensionality reduction
BibRef
Han, N.,
Wu, J.,
Fang, X.,
Xie, S.,
Zhan, S.,
Xie, K.,
Li, X.,
Latent Elastic-Net Transfer Learning,
IP(29), 2020, pp. 2820-2833.
IEEE DOI
2001
Transfer learning, elastic-net, source domain, target domain, machine learning
BibRef
Pires de Lima, R.[Rafael],
Marfurt, K.[Kurt],
Convolutional Neural Network for Remote-Sensing Scene Classification:
Transfer Learning Analysis,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Zhang, B.,
Yang, W.,
Wang, Z.,
Zhuo, L.,
Han, J.,
Zhen, X.,
The Structure Transfer Machine: Theory and Applications,
IP(29), 2020, pp. 2889-2902.
IEEE DOI
2002
Manifolds, Deep learning, Training, Probabilistic logic,
Object tracking, Task analysis, Transfer learning,
learning theory
BibRef
Das, D.,
Lee, C.S.G.,
A Two-Stage Approach to Few-Shot Learning for Image Recognition,
IP(29), 2020, pp. 3336-3350.
IEEE DOI
2002
Transfer learning, convolutional neural network,
few-shot learning, image classification
BibRef
Gholenji, E.[Elahe],
Tahmoresnezhad, J.[Jafar],
Joint local and statistical discriminant learning via feature alignment,
SIViP(14), No. 3, April 2020, pp. 609-616.
Springer DOI
2004
Machine learning applied to unseen items. Domain shift.
BibRef
Peng, Z.,
Zhang, W.,
Han, N.,
Fang, X.,
Kang, P.,
Teng, L.,
Active Transfer Learning,
CirSysVideo(30), No. 4, April 2020, pp. 1022-1036.
IEEE DOI
2004
Task analysis, Kernel, Bicycles, Linear programming,
Machine learning, Training, Optimization, Negative transfer,
information diversity
BibRef
Dong, R.M.[Run-Min],
Li, C.[Cong],
Fu, H.H.[Hao-Huan],
Wang, J.[Jie],
Li, W.J.[Wei-Jia],
Yao, Y.[Yi],
Gan, L.[Lin],
Yu, L.[Le],
Gong, P.[Peng],
Improving 3-m Resolution Land Cover Mapping through Efficient
Learning from an Imperfect 10-m Resolution Map,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Liu, W.,
Qin, R.,
A MultiKernel Domain Adaptation Method for Unsupervised Transfer
Learning on Cross-Source and Cross-Region Remote Sensing Data
Classification,
GeoRS(58), No. 6, June 2020, pp. 4279-4289.
IEEE DOI
2005
Domain adaptation (DA), image classification, remote sensing,
stable index, transfer learning (TL), unsupervised learning
BibRef
Lu, Y.[Ying],
Luo, L.K.[Ling-Kun],
Huang, D.[Di],
Wang, Y.H.[Yun-Hong],
Chen, L.M.[Li-Ming],
Knowledge Transfer in Vision Recognition: A Survey,
Surveys(53), No. 2, April 2020, pp. xx-yy.
DOI Link
2007
vision recognition, transfer learning,
Knowledge transfer, machine learning
BibRef
Geng, J.,
Deng, X.,
Ma, X.,
Jiang, W.,
Transfer Learning for SAR Image Classification Via Deep Joint
Distribution Adaptation Networks,
GeoRS(58), No. 8, August 2020, pp. 5377-5392.
IEEE DOI
2007
Radar polarimetry, Probability distribution,
Synthetic aperture radar, Training, Task analysis,
transfer learning
BibRef
Zhou, J.H.[Jian-Hang],
Zeng, S.N.[Shao-Ning],
Zhang, B.[Bob],
Two-stage knowledge transfer framework for image classification,
PR(107), 2020, pp. 107529.
Elsevier DOI
2008
Image classification, Teacher-student model,
Two-stage classification, Sparse representation
BibRef
Tamaazousti, Y.[Youssef],
Le Borgne, H.[Hervé],
Hudelot, C.[Céline],
Seddik, M.E.A.[Mohamed-El-Amine],
Tamaazousti, M.[Mohamed],
Learning More Universal Representations for Transfer-Learning,
PAMI(42), No. 9, September 2020, pp. 2212-2224.
IEEE DOI
2008
Task analysis, Visualization, Measurement, Semantics, Additives, Veins,
Training, Universal representations, universality evaluation,
visual recognition
BibRef
Peng, Z.,
Jia, Y.,
Hou, J.,
Non-Negative Transfer Learning With Consistent Inter-Domain
Distribution,
SPLetters(27), 2020, pp. 1720-1724.
IEEE DOI
2010
Correlation, Optimization, Knowledge transfer, Task analysis,
Learning systems, Signal processing algorithms, Kernel,
negative transfer
BibRef
Liu, W.F.[Wei-Feng],
Li, J.F.[Jin-Feng],
Liu, B.[Baodi],
Guan, W.[Weili],
Zhou, Y.C.[Yi-Cong],
Xu, C.S.[Chang-Sheng],
Unified Cross-domain Classification via Geometric and Statistical
Adaptations,
PR(110), 2021, pp. 107658.
Elsevier DOI
2011
Domain adaptation, Statistical adaptation,
Maximum mean discrepancy (MMD), Geometric adaptation, Nyström method
BibRef
Liu, Y.S.[Yi-Shu],
Ding, L.W.[Li-Wang],
Chen, C.H.[Cong-Hui],
Liu, Y.B.[Ying-Bin],
Similarity-Based Unsupervised Deep Transfer Learning for Remote
Sensing Image Retrieval,
GeoRS(58), No. 11, November 2020, pp. 7872-7889.
IEEE DOI
2011
Training, Feature extraction, Image retrieval, Remote sensing,
Task analysis, Convolutional neural networks, Machine learning,
weighted Wasserstein ordinal (WWO) loss
BibRef
Zhuang, F.Z.[Fu-Zhen],
Qi, Z.Y.[Zhi-Yuan],
Duan, K.Y.[Ke-Yu],
Xi, D.B.[Dong-Bo],
Zhu, Y.C.[Yong-Chun],
Zhu, H.S.[Heng-Shu],
Xiong, H.[Hui],
He, Q.[Qing],
A Comprehensive Survey on Transfer Learning,
PIEEE(109), No. 1, January 2021, pp. 43-76.
IEEE DOI
2012
Survey, Transfer Learning. Task analysis, Semisupervised learning, Data models,
Covariance matrices, Machine learning, Adaptation models, Kernel,
transfer learning
BibRef
Meng, M.[Min],
Lan, M.C.[Meng-Cheng],
Yu, J.[Jun],
Wu, J.G.[Ji-Gang],
Coupled Knowledge Transfer for Visual Data Recognition,
CirSysVideo(31), No. 5, 2021, pp. 1776-1789.
IEEE DOI
2105
BibRef
Lu, Y.[Yuwu],
Wang, W.J.[Wen-Jing],
Yuan, C.[Chun],
Li, X.L.[Xue-Long],
Lai, Z.H.[Zhi-Hui],
Manifold Transfer Learning via Discriminant Regression Analysis,
MultMed(23), 2021, pp. 2056-2070.
IEEE DOI
2107
Learning systems, Manifolds, Sparse matrices, Task analysis,
Image classification, Convergence, Regression analysis, Manifold.
BibRef
Wen, Y.[Yang],
Chen, L.T.[Lei-Ting],
Deng, Y.[Yu],
Zhou, C.[Chuan],
Rethinking pre-training on medical imaging,
JVCIR(78), 2021, pp. 103145.
Elsevier DOI
2107
Transfer learning, Medical image analysis,
Convolutional neural network, Survival prediction
BibRef
Liu, T.H.[Tai-Heng],
Deng, X.Q.[Xiu-Qin],
He, Z.S.[Zhao-Shui],
Long, Y.H.[Yong-Hong],
TCD-CF: Triple cross-domain collaborative filtering recommendation,
PRL(149), 2021, pp. 185-192.
Elsevier DOI
2108
Cross-domain collaborative filtering, Transfer learning,
Data sparsity, Co-clustering
BibRef
García-Ramírez, J.[Jesús],
Morales, E.[Eduardo],
Escalante, H.J.[Hugo Jair],
Multi-source Transfer Learning for Deep Reinforcement Learning,
MCPR21(131-140).
Springer DOI
2108
BibRef
Azzam, M.[Mohamed],
Wu, W.H.[Wen-Hao],
Cao, W.M.[Wen-Ming],
Wu, S.[Si],
Wong, H.S.[Hau-San],
KTransGAN: Variational Inference-Based Knowledge Transfer for
Unsupervised Conditional Generative Learning,
MultMed(23), 2021, pp. 3318-3331.
IEEE DOI
2109
Training, Data models, Generators, Adaptation models, Task analysis,
image classification
BibRef
Shan, X.X.[Xin-Xin],
Lu, Y.[Yue],
Li, Q.L.[Qing-Li],
Wen, Y.[Ying],
Model-Based Transfer Learning and Sparse Coding for Partial Face
Recognition,
CirSysVideo(31), No. 11, November 2021, pp. 4347-4356.
IEEE DOI
2112
Face recognition, Feature extraction, Probes, Encoding,
Image reconstruction, Training, Videos, Partial face recognition,
feature reconstruction
BibRef
Yu, Z.X.[Zheng-Xu],
Shen, D.[Dong],
Jin, Z.M.[Zhong-Ming],
Huang, J.Q.[Jian-Qiang],
Cai, D.[Deng],
Hua, X.S.[Xian-Sheng],
Progressive Transfer Learning,
IP(31), 2022, pp. 1340-1348.
IEEE DOI
2202
Task analysis, Transfer learning, Feature extraction,
Training, Proposals, Data models, image classification
BibRef
Sun, Q.[Qianru],
Liu, Y.Y.[Yao-Yao],
Chen, Z.Z.[Zhao-Zheng],
Chua, T.S.[Tat-Seng],
Schiele, B.[Bernt],
Meta-Transfer Learning Through Hard Tasks,
PAMI(44), No. 3, March 2022, pp. 1443-1456.
IEEE DOI
2202
Task analysis, Adaptation models, Training, Feature extraction,
Training data, Data models, Measurement, Few-shot learning,
image classification
BibRef
Hwang, R.[Rakhoon],
Lee, H.J.[Han-Jin],
Hwang, H.J.[Hyung Ju],
Option compatible reward inverse reinforcement learning,
PRL(154), 2022, pp. 83-89.
Elsevier DOI
2202
Reinforcement learning, Inverse reinforcement learning,
Transfer learning, Machine learning
BibRef
Özkanoglu, M.A.[Mehmet Akif],
Ozer, S.[Sedat],
InfraGAN: A GAN architecture to transfer visible images to infrared
domain,
PRL(155), 2022, pp. 69-76.
Elsevier DOI
2203
Domain transfer, GANs, Infrared image generation
BibRef
Nicholaus, I.T.[Isack Thomas],
Kang, D.K.[Dae-Ki],
Robust experience replay sampling for multi-agent reinforcement
learning,
PRL(155), 2022, pp. 135-142.
Elsevier DOI
2203
Reinforcement learning, Multi-agent, Sampling, Experience replay
BibRef
Saleh, N.[Neven],
Wahed, M.A.[Manal Abdel],
Salaheldin, A.M.[Ahmed M.],
Transfer learning-based platform for detecting multi-classification
retinal disorders using optical coherence tomography images,
IJIST(32), No. 3, 2022, pp. 740-752.
DOI Link
2205
Inception V3 Net, optical coherence tomography,
retinal disorders, SqueezeNet, transfer learning
BibRef
Fang, B.[Bei],
Liu, Y.[Yu],
Zhang, H.[Haokui],
He, J.[Juhou],
Hyperspectral Image Classification Based on 3D Asymmetric Inception
Network with Data Fusion Transfer Learning,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Jing, Z.H.[Ze-Huan],
Li, P.[Peng],
Wu, B.[Bin],
Yuan, S.[Shibo],
Chen, Y.C.[Ying-Chao],
An Adaptive Focal Loss Function Based on Transfer Learning for
Few-Shot Radar Signal Intra-Pulse Modulation Classification,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Cai, J.J.[Jing-Jing],
Gan, F.M.[Feng-Ming],
Cao, X.H.[Xiang-Hai],
Liu, W.[Wei],
Li, P.[Peng],
Radar Intra-Pulse Signal Modulation Classification with Contrastive
Learning,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Guo, S.Q.[Shang-Qi],
Yan, Q.[Qi],
Su, X.[Xin],
Hu, X.L.[Xiao-Lin],
Chen, F.[Feng],
State-Temporal Compression in Reinforcement Learning With the
Reward-Restricted Geodesic Metric,
PAMI(44), No. 9, September 2022, pp. 5572-5589.
IEEE DOI
2208
Measurement, Task analysis, Reinforcement learning,
Neural networks, Time-domain analysis,
reinforcement learning (RL)
BibRef
Han, K.[Kai],
Rebuffi, S.A.[Sylvestre-Alvise],
Ehrhardt, S.[Sébastien],
Vedaldi, A.[Andrea],
Zisserman, A.[Andrew],
AutoNovel: Automatically Discovering and Learning Novel Visual
Categories,
PAMI(44), No. 10, October 2022, pp. 6767-6781.
IEEE DOI
2209
BibRef
Earlier: A1, A4, A5, Only:
Learning to Discover Novel Visual Categories via Deep Transfer
Clustering,
ICCV19(8400-8408)
IEEE DOI
2004
Task analysis, Ranking (statistics), Data models, Annotations,
Benchmark testing, Visualization, Transfer learning,
incremental learning.
image classification, learning (artificial intelligence),
object recognition, pattern clustering, known classes, Dogs
BibRef
Xu, T.[Tian],
Li, Z.N.[Zi-Niu],
Yu, Y.[Yang],
Error Bounds of Imitating Policies and Environments for Reinforcement
Learning,
PAMI(44), No. 10, October 2022, pp. 6968-6980.
IEEE DOI
2209
Planning, Reinforcement learning, Cloning, Complexity theory,
Supervised learning, Decision making, Upper bound,
model-based reinforcement learning
BibRef
Mensink, T.[Thomas],
Uijlings, J.[Jasper],
Kuznetsova, A.[Alina],
Gygli, M.[Michael],
Ferrari, V.[Vittorio],
Factors of Influence for Transfer Learning Across Diverse Appearance
Domains and Task Types,
PAMI(44), No. 12, December 2022, pp. 9298-9314.
IEEE DOI
2212
Task analysis, Transfer learning, Semantics, Image segmentation,
Training, Object detection, Transfer learning, computer vision
BibRef
Zhang, T.[Tong],
Gao, P.[Peng],
Dong, H.[Hao],
Zhuang, Y.[Yin],
Wang, G.Q.[Guan-Qun],
Zhang, W.[Wei],
Chen, H.[He],
Consecutive Pre-Training: A Knowledge Transfer Learning Strategy with
Relevant Unlabeled Data for Remote Sensing Domain,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Nguyen, C.[Cuong],
Do, T.T.[Thanh-Toan],
Carneiro, G.[Gustavo],
PAC-Bayes Meta-Learning With Implicit Task-Specific Posteriors,
PAMI(45), No. 1, January 2023, pp. 841-851.
IEEE DOI
2212
Task analysis, Data models, Training, Adaptation models,
Optimization, Predictive models, Gaussian distribution, PAC bayes,
transfer learning
BibRef
Cao, Z.J.[Zhang-Jie],
You, K.[Kaichao],
Zhang, Z.[Ziyang],
Wang, J.M.[Jian-Min],
Long, M.S.[Ming-Sheng],
From Big to Small: Adaptive Learning to Partial-Set Domains,
PAMI(45), No. 2, February 2023, pp. 1766-1780.
IEEE DOI
2301
Handheld computers, Task analysis, Adaptation models, Training,
Transfer learning, Shape, Generative adversarial networks,
theoretical analysis
BibRef
Huang, W.[Wei],
Shi, Y.L.[Yi-Lei],
Xiong, Z.[Zhitong],
Wang, Q.[Qi],
Zhu, X.X.[Xiao Xiang],
Semi-supervised bidirectional alignment for Remote Sensing
cross-domain scene classification,
PandRS(195), 2023, pp. 192-203.
Elsevier DOI
2301
Remote sensing, Semi-supervised domain adaptation,
Cross-domain classification, Bidirectional sample-class alignment
BibRef
Huang, F.X.[Fu-Xian],
Ji, N.[Naye],
Ni, H.J.[Hua-Jian],
Li, S.J.[Shi-Jian],
Li, X.[Xi],
Adaptive cooperative exploration for reinforcement learning from
imperfect demonstrations,
PRL(165), 2023, pp. 176-182.
Elsevier DOI
2301
Reinforcement learning, Imitation learning,
Cooperative exploration, Imperfect demonstrations,
BibRef
Ren, C.X.[Chuan-Xian],
Luo, Y.W.[You-Wei],
Dai, D.Q.[Dao-Qing],
BuresNet:
Conditional Bures Metric for Transferable Representation Learning,
PAMI(45), No. 4, April 2023, pp. 4198-4213.
IEEE DOI
2303
Measurement, Task analysis, Kernel, Transfer learning, Training, Estimation,
Manifolds, Transfer learning, conditional shift, few-shot learning
BibRef
Gomez, D.[Diego],
Quijano, N.[Nicanor],
Giraldo, L.F.[Luis Felipe],
Information Optimization and Transferable State Abstractions in Deep
Reinforcement Learning,
PAMI(45), No. 4, April 2023, pp. 4782-4793.
IEEE DOI
2303
Task analysis, Reinforcement learning, Multitasking,
Transfer learning, Optimization, Standards, Behavioral sciences,
information theory
BibRef
Sun, Y.[Yuan],
Wang, X.[Xu],
Peng, D.Z.[De-Zhong],
Ren, Z.[Zhenwen],
Shen, X.B.[Xiao-Bo],
Hierarchical Hashing Learning for Image Set Classification,
IP(32), 2023, pp. 1732-1744.
IEEE DOI
2303
Semantics, Hash functions, Task analysis, Kernel, Binary codes, Probes,
Transforms, Image set classification, hierarchical hashing,
bidirectional semantic representation
BibRef
Moon, S.[Suhong],
Buracas, D.[Domas],
Park, S.H.[Seung-Hyun],
Kim, J.[Jinkyu],
Canny, J.[John],
An Embedding-Dynamic Approach to Self-Supervised Learning,
WACV23(2749-2757)
IEEE DOI
2302
Training, Semantic segmentation, Force, Dynamics, Transfer learning,
Self-supervised learning, Object detection,
and algorithms (including transfer)
BibRef
Lee, H.J.[Hyun-Jae],
Lee, G.[Gihyeon],
Kim, J.[Junhwan],
Cho, S.J.[Sung-Jun],
Kim, D.[Dohyun],
Yoo, D.[Donggeun],
Improving Multi-fidelity Optimization with a Recurring Learning Rate
for Hyperparameter Tuning,
WACV23(2308-2317)
IEEE DOI
2302
Training, Schedules, Transfer learning, Optimization methods,
Semisupervised learning, Convolutional neural networks,
visual reasoning
BibRef
Zengeler, N.[Nico],
Glasmachers, T.[Tobias],
Handmann, U.[Uwe],
Transfer Meta Learning,
ICPR22(4471-4478)
IEEE DOI
2212
Reuse previous knowledge.
Systematics, Source coding, Transfer learning, Metadata,
Predictive models, Multilayer perceptrons
BibRef
Xu, C.F.[Chen-Feng],
Yang, S.[Shijia],
Galanti, T.[Tomer],
Wu, B.[Bichen],
Yue, X.Y.[Xiang-Yu],
Zhai, B.[Bohan],
Zhan, W.[Wei],
Vajda, P.[Peter],
Keutzer, K.[Kurt],
Tomizuka, M.[Masayoshi],
Image2Point:
3D Point-Cloud Understanding with 2D Image Pretrained Models,
ECCV22(XXXVII:638-656).
Springer DOI
2211
WWW Link. Explore transfer of 2D to 3D.
BibRef
Wei, L.[Longhui],
Xie, L.X.[Ling-Xi],
Zhou, W.G.[Wen-Gang],
Li, H.Q.[Hou-Qiang],
Tian, Q.[Qi],
MVP: Multimodality-Guided Visual Pre-training,
ECCV22(XXX:337-353).
Springer DOI
2211
BibRef
Ding, N.[Nan],
Chen, X.[Xi],
Levinboim, T.[Tomer],
Changpinyo, S.[Soravit],
Soricut, R.[Radu],
PACTran: PAC-Bayesian Metrics for Estimating the Transferability of
Pretrained Models to Classification Tasks,
ECCV22(XXXIV:252-268).
Springer DOI
2211
BibRef
Shao, W.Q.[Wen-Qi],
Zhao, X.[Xun],
Ge, Y.X.[Yi-Xiao],
Zhang, Z.Y.[Zhao-Yang],
Yang, L.[Lei],
Wang, X.G.[Xiao-Gang],
Shan, Y.[Ying],
Luo, P.[Ping],
Not All Models Are Equal: Predicting Model Transferability in a
Self-challenging Fisher Space,
ECCV22(XXXIV:286-302).
Springer DOI
2211
BibRef
Agostinelli, A.[Andrea],
Pándy, M.[Michal],
Uijlings, J.[Jasper],
Mensink, T.[Thomas],
Ferrari, V.[Vittorio],
How Stable Are Transferability Metrics Evaluations?,
ECCV22(XXXIV:303-321).
Springer DOI
2211
BibRef
Yu, P.C.[Ping-Chung],
Sun, C.[Cheng],
Sun, M.[Min],
Data Efficient 3D Learner via Knowledge Transferred from 2D Model,
ECCV22(XXIX:182-198).
Springer DOI
2211
BibRef
Cui, Q.[Quan],
Zhao, B.C.[Bing-Chen],
Chen, Z.M.[Zhao-Min],
Zhao, B.R.[Bo-Rui],
Song, R.J.[Ren-Jie],
Zhou, B.Y.[Bo-Yan],
Liang, J.J.[Jia-Jun],
Yoshie, O.[Osamu],
Discriminability-Transferability Trade-Off:
An Information-Theoretic Perspective,
ECCV22(XXVI:20-37).
Springer DOI
2211
BibRef
Yuan, Z.W.[Zhuo-Wen],
Wu, F.[Fan],
Long, Y.H.[Yun-Hui],
Xiao, C.W.[Chao-Wei],
Li, B.[Bo],
SecretGen: Privacy Recovery on Pre-trained Models via Distribution
Discrimination,
ECCV22(V:139-155).
Springer DOI
2211
BibRef
Idris, A.[Azeez],
Khaleel, M.[Mohammed],
Tavanapong, W.[Wallapak],
Oh, J.[JungHwan],
de Groen, P.[Piet],
Training Strategy for Limited Labeled Data by Learning from Confusion,
ICIP22(1926-1930)
IEEE DOI
2211
Training, Deep learning, Costs, Transfer learning,
Supervised learning, Training data, Weak Supervision, Training Strategy
BibRef
Jiang, Z.[Ziyu],
Chen, T.L.[Tian-Long],
Chen, X.[Xuxi],
Cheng, Y.[Yu],
Zhou, L.[Luowei],
Yuan, L.[Lu],
Awadallah, A.[Ahmed],
Wang, Z.Y.[Zhang-Yang],
DnA: Improving Few-Shot Transfer Learning with Low-Rank Decomposition
and Alignment,
ECCV22(XX:239-256).
Springer DOI
2211
BibRef
Ahmed, S.M.[Sk Miraj],
Lohit, S.[Suhas],
Peng, K.C.[Kuan-Chuan],
Jones, M.J.[Michael J.],
Roy-Chowdhury, A.K.[Amit K.],
Cross-Modal Knowledge Transfer Without Task-Relevant Source Data,
ECCV22(XXXIV:111-127).
Springer DOI
2211
BibRef
Sinha, S.[Samarth],
Roth, K.[Karsten],
Goyal, A.[Anirudh],
Ghassemi, M.[Marzyeh],
Akata, Z.[Zeynep],
Larochelle, H.[Hugo],
Garg, A.[Animesh],
Uniform Priors for Data-Efficient Learning,
L3D-IVU22(4016-4027)
IEEE DOI
2210
Measurement, Training, Deep learning, Adaptation models, Scalability,
Machine vision, Transfer learning
BibRef
Zhai, X.H.[Xiao-Hua],
Wang, X.[Xiao],
Mustafa, B.[Basil],
Steiner, A.[Andreas],
Keysers, D.[Daniel],
Kolesnikov, A.[Alexander],
Beyer, L.[Lucas],
LiT: Zero-Shot Transfer with Locked-Image text Tuning,
CVPR22(18102-18112)
IEEE DOI
2210
Training, Representation learning, Adaptation models,
Computational modeling, Transformers, Data models,
Transfer/low-shot/long-tail learning
BibRef
Agostinelli, A.[Andrea],
Uijlings, J.[Jasper],
Mensink, T.[Thomas],
Ferrari, V.[Vittorio],
Transferability Metrics for Selecting Source Model Ensembles,
CVPR22(7926-7936)
IEEE DOI
2210
Measurement, Training, Image segmentation, Computational modeling,
Transfer learning, Semantics,
Deep learning architectures and techniques
BibRef
Lu, Y.N.[Yu-Ning],
Liu, J.Z.[Jian-Zhuang],
Zhang, Y.G.[Yong-Gang],
Liu, Y.J.[Ya-Jing],
Tian, X.M.[Xin-Mei],
Prompt Distribution Learning,
CVPR22(5196-5205)
IEEE DOI
2210
Training, Visualization, Adaptation models, Gaussian distribution,
Pattern recognition, Task analysis, Vision+language,
Transfer/low-shot/long-tail learning
BibRef
Chakraborty, S.[Shuvam],
Uzkent, B.[Burak],
Ayush, K.[Kumar],
Tanmay, K.[Kumar],
Sheehan, E.[Evan],
Ermon, S.[Stefano],
Efficient Conditional Pre-training for Transfer Learning,
L3D-IVU22(4240-4249)
IEEE DOI
2210
Training, Costs, Image resolution, Filtering, Computational modeling,
Transfer learning
BibRef
Byun, J.[Junyoung],
Cho, S.[Seungju],
Kwon, M.J.[Myung-Joon],
Kim, H.S.[Hee-Seon],
Kim, C.[Changick],
Improving the Transferability of Targeted Adversarial Examples
through Object-Based Diverse Input,
CVPR22(15223-15232)
IEEE DOI
2210
Solid modeling, Image recognition, Codes, Face recognition,
Computational modeling, Adversarial attack and defense, Machine learning
BibRef
Li, Z.W.[Zhao-Wen],
Zhu, Y.S.[You-Song],
Yang, F.[Fan],
Li, W.[Wei],
Zhao, C.Y.[Chao-Yang],
Chen, Y.Y.[Ying-Ying],
Chen, Z.Y.[Zhi-Yang],
Xie, J.H.[Jia-Hao],
Wu, L.W.[Li-Wei],
Zhao, R.[Rui],
Tang, M.[Ming],
Wang, J.Q.[Jin-Qiao],
UniVIP: A Unified Framework for Self-Supervised Visual Pre-training,
CVPR22(14607-14616)
IEEE DOI
2210
Representation learning, Visualization, Image segmentation,
Correlation, Semantics, Self-supervised learning, Object detection,
Transfer/low-shot/long-tail learning
BibRef
Yang, M.[Muli],
Zhu, Y.[Yuehua],
Yu, J.P.[Jia-Ping],
Wu, A.[Aming],
Deng, C.[Cheng],
Divide and Conquer: Compositional Experts for Generalized Novel Class
Discovery,
CVPR22(14248-14257)
IEEE DOI
2210
Training, Annotations, Semantics, Benchmark testing,
Pattern recognition, Task analysis, Recognition: detection,
Self- semi- meta- Transfer/low-shot/long-tail learning
BibRef
Garau, N.[Nicola],
Bisagno, N.[Niccoló],
Sambugaro, Z.[Zeno],
Conci, N.[Nicola],
Interpretable part-whole hierarchies and conceptual-semantic
relationships in neural networks,
CVPR22(13679-13688)
IEEE DOI
2210
Deep learning, Visualization, Shape, Neural networks,
Pattern recognition, Behavioral sciences,
Transfer/low-shot/long-tail learning
BibRef
Iofinova, E.[Eugenia],
Peste, A.[Alexandra],
Kurtz, M.[Mark],
Alistarh, D.[Dan],
How Well Do Sparse ImageNet Models Transfer?,
CVPR22(12256-12266)
IEEE DOI
2210
Training, Adaptation models, Image coding, Transfer learning,
Pattern recognition, Convolutional neural networks,
Transfer/low-shot/long-tail learning
BibRef
Yang, L.[Li],
Rakin, A.S.[Adnan Siraj],
Fan, D.L.[De-Liang],
RepNet: Efficient On-Device Learning via Feature Reprogramming,
CVPR22(12267-12276)
IEEE DOI
2210
Training, Connectors, Deep learning, Computational modeling,
Transfer learning, Memory management, Transfer/low-shot/long-tail learning
BibRef
Pándy, M.[Michal],
Agostinelli, A.[Andrea],
Uijlings, J.[Jasper],
Ferrari, V.[Vittorio],
Mensink, T.[Thomas],
Transferability Estimation using Bhattacharyya Class Separability,
CVPR22(9162-9172)
IEEE DOI
2210
Measurement, Adaptation models, Image segmentation,
Computational modeling, Transfer learning, Semantics,
Transfer/low-shot/long-tail learning
BibRef
Wang, Y.Z.[Yi-Zhou],
Tang, S.X.[Shi-Xiang],
Zhu, F.[Feng],
Bai, L.[Lei],
Zhao, R.[Rui],
Qi, D.L.[Dong-Lian],
Ouyang, W.L.[Wan-Li],
Revisiting the Transferability of Supervised Pretraining:
An MLP Perspective,
CVPR22(9173-9183)
IEEE DOI
2210
Visualization, Redundancy, Pipelines, Object detection,
Multilayer perceptrons, Benchmark testing, Transfer/low-shot/long-tail learning
BibRef
Mishra, S.[Samarth],
Panda, R.[Rameswar],
Phoo, C.P.[Cheng Perng],
Chen, C.F.R.[Chun-Fu Richard],
Karlinsky, L.[Leonid],
Saenko, K.[Kate],
Saligrama, V.[Venkatesh],
Feris, R.S.[Rogerio S.],
Task2Sim: Towards Effective Pre-training and Transfer from Synthetic
Data,
CVPR22(9184-9194)
IEEE DOI
2210
Graphics, Training, Representation learning, Adaptation models,
Computational modeling, Data models,
retrieval
BibRef
Renggli, C.[Cedric],
Pinto, A.S.[André Susano],
Rimanic, L.[Luka],
Puigcerver, J.[Joan],
Riquelme, C.[Carlos],
Zhang, C.[Ce],
Lucic, M.[Mario],
Which Model to Transfer? Finding the Needle in the Growing Haystack,
CVPR22(9195-9204)
IEEE DOI
2210
Training, Solid modeling, Computational modeling,
Transfer learning, Search problems, Solids, Transfer/low-shot/long-tail learning
BibRef
Vaze, S.[Sagar],
Hant, K.[Kai],
Vedaldi, A.[Andrea],
Zisserman, A.[Andrew],
Generalized Category Discovery,
CVPR22(7482-7491)
IEEE DOI
2210
Representation learning, Image recognition, Limiting, Codes,
Semantics, Clustering algorithms, Recognition: detection,
Self- semi- meta- Transfer/low-shot/long-tail learning
BibRef
Rajeswar, S.[Sai],
Rodríguez, P.[Pau],
Singhal, S.[Soumye],
Vazquez, D.[David],
Courville, A.[Aaron],
Multi-label Iterated Learning for Image Classification with Label
Ambiguity,
CVPR22(4773-4783)
IEEE DOI
2210
Training, Visualization, Systematics, Computational modeling,
Transfer learning, Predictive models, Recognition: detection, Visual reasoning
BibRef
Yazdanpanah, M.[Moslem],
Rahman, A.A.[Aamer Abdul],
Chaudhary, M.[Muawiz],
Desrosiers, C.[Christian],
Havaei, M.[Mohammad],
Belilovsky, E.[Eugene],
Kahou, S.E.[Samira Ebrahimi],
Revisiting Learnable Affines for Batch Norm in Few-Shot Transfer
Learning,
CVPR22(9099-9108)
IEEE DOI
2210
Training, Machine vision, Transfer learning,
Statistical distributions, Robustness,
Vision applications and systems
BibRef
Singh, M.[Mannat],
Gustafson, L.[Laura],
Adcock, A.[Aaron],
de Freitas-Reis, V.[Vinicius],
Gedik, B.[Bugra],
Kosaraju, R.P.[Raj Prateek],
Mahajan, D.[Dhruv],
Girshick, R.[Ross],
Dollár, P.[Piotr],
van der Maaten, L.[Laurens],
Revisiting Weakly Supervised Pre-Training of Visual Perception Models,
CVPR22(794-804)
IEEE DOI
2210
Visualization, Computational modeling, Supervised learning,
Self-supervised learning, Pattern recognition, Standards,
Transfer/low-shot/long-tail learning
BibRef
Conder, J.[Jonathan],
Jefferson, J.[Josephine],
Pages, N.[Nathan],
Jawed, K.[Khurram],
Nejati, A.[Alireza],
Sagar, M.[Mark],
Efficient Transfer Learning for Visual Tasks via Continuous
Optimization of Prompts,
CIAP22(I:297-309).
Springer DOI
2205
BibRef
Schöntag, P.[Patricia],
Nakath, D.[David],
Röhrl, S.[Stefan],
Köser, K.[Kevin],
Towards Cross Domain Transfer Learning for Underwater Correspondence
Search,
CIAP22(III:461-472).
Springer DOI
2205
BibRef
Mañas, O.[Oscar],
Lacoste, A.[Alexandre],
Giró-i-Nieto, X.[Xavier],
Vazquez, D.[David],
Rodríguez, P.[Pau],
Seasonal Contrast:
Unsupervised Pre-Training from Uncurated Remote Sensing Data,
ICCV21(9394-9403)
IEEE DOI
2203
Earth, Deep learning, Satellites, Transfer learning, Pipelines,
Supervised learning, Data models, Vision applications and systems
BibRef
Xu, S.C.[Shi-Chao],
Wang, L.[Lixu],
Wang, Y.X.[Yi-Xuan],
Zhu, Q.[Qi],
Weak Adaptation Learning:
Addressing Cross-domain Data Insufficiency with Weak Annotator,
ICCV21(8897-8906)
IEEE DOI
2203
Learning systems, Labeling, Task analysis,
Transfer/Low-shot/Semi/Unsupervised Learning,
Machine learning architectures and formulations
BibRef
Zhuang, W.M.[Wei-Ming],
Gan, X.[Xin],
Wen, Y.G.[Yong-Gang],
Zhang, S.[Shuai],
Yi, S.[Shuai],
Collaborative Unsupervised Visual Representation Learning from
Decentralized Data,
ICCV21(4892-4901)
IEEE DOI
2203
Representation learning, Training, Data privacy, Visualization,
Protocols, Aggregates, Mobile handsets,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Sun, Q.[Qi],
Bai, C.[Chen],
Chen, T.H.[Ting-Huan],
Geng, H.[Hao],
Zhang, X.Y.[Xin-Yun],
Bai, Y.[Yang],
Yu, B.[Bei],
Fast and Efficient DNN Deployment via Deep Gaussian Transfer Learning,
ICCV21(5360-5370)
IEEE DOI
2203
Knowledge engineering, Computational modeling, Transfer learning,
Neural networks, Gaussian processes, Inference algorithms,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Greer, H.[Hastings],
Kwitt, R.[Roland],
Vialard, F.X.[François-Xavier],
Niethammer, M.[Marc],
ICON: Learning Regular Maps Through Inverse Consistency,
ICCV21(3376-3385)
IEEE DOI
2203
Representation learning, Solid modeling, Computational modeling,
Sociology, Loss measurement, Task analysis, Medical, biological,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Kim, B.[Beomyoung],
Yoo, Y.J.[Young-Joon],
Rhee, C.E.[Chae Eun],
Kim, J.[Junmo],
Beyond Semantic to Instance Segmentation: Weakly-Supervised Instance
Segmentation via Semantic Knowledge Transfer and Self-Refinement,
CVPR22(4268-4277)
IEEE DOI
2210
Training, Location awareness, Image segmentation, Shape, Semantics,
Pattern recognition, Proposals, Segmentation,
Self- semi- meta- unsupervised learning
BibRef
Hong, S.[Seungbum],
Yoon, J.[Jihun],
Choi, M.K.[Min-Kook],
Kim, J.[Junmo],
Self-Supervised Knowledge Transfer via Loosely Supervised Auxiliary
Tasks,
WACV22(2947-2956)
IEEE DOI
2202
Training, Knowledge engineering, Codes,
Transfer learning, Heterogeneous networks,
Semi- and Un- supervised Learning
BibRef
Suzuki, S.[Satoshi],
Takeda, S.[Shoichiro],
Tanida, R.[Ryuichi],
Kimata, H.[Hideaki],
Shouno, H.[Hayaru],
Knowledge Transferred Fine-Tuning for Anti-Aliased Convolutional
Neural Network in Data-Limited Situation,
ICIP21(864-868)
IEEE DOI
2201
Knowledge engineering, Training, Image recognition, Training data,
Convolutional neural networks, Knowledge transfer,
data-limited situation
BibRef
Hong, G.Z.[Guan-Zhe],
Mao, Z.Y.[Zhi-Yuan],
Lin, X.J.[Xiao-Jun],
Chan, S.H.[Stanley H.],
Student-Teacher Learning from Clean Inputs to Noisy Inputs,
CVPR21(12070-12079)
IEEE DOI
2111
Training, Learning systems, Knowledge engineering,
Systematics, Protocols, Numerical analysis
BibRef
Klopp, J.P.[Jan P.],
Liu, K.C.[Keng-Chi],
Chen, L.G.[Liang-Gee],
Chien, S.Y.[Shao-Yi],
How to Exploit the Transferability of Learned Image Compression to
Conventional Codecs,
CVPR21(16160-16169)
IEEE DOI
2111
Image coding, Codecs, Pipelines, Signal processing algorithms,
Generative adversarial networks, Distortion, Loss measurement
BibRef
Abuduweili, A.[Abulikemu],
Li, X.J.[Xing-Jian],
Shi, H.[Humphrey],
Xu, C.Z.[Cheng-Zhong],
Dou, D.J.[De-Jing],
Adaptive Consistency Regularization for Semi-Supervised Transfer
Learning,
CVPR21(6919-6928)
IEEE DOI
2111
Adaptation models, Codes, Transfer learning,
Supervised learning, Semisupervised learning, Benchmark testing
BibRef
Eckart, B.[Benjamin],
Yuan, W.T.[Wen-Tao],
Liu, C.[Chao],
Kautz, J.[Jan],
Self-Supervised Learning on 3D Point Clouds by Learning Discrete
Generative Models,
CVPR21(8244-8253)
IEEE DOI
2111
Adaptation models, Solid modeling,
Computational modeling, Transfer learning, Semantics, Neural networks
BibRef
Xu, Q.W.[Qin-Wei],
Zhang, R.P.[Rui-Peng],
Zhang, Y.[Ya],
Wang, Y.F.[Yan-Feng],
Tian, Q.[Qi],
A Fourier-based Framework for Domain Generalization,
CVPR21(14378-14387)
IEEE DOI
2111
Degradation, Deep learning, Semantics, Force,
Training data, Focusing
BibRef
Jamal, M.A.[Muhammad Abdullah],
Wang, L.Q.[Li-Qiang],
Gong, B.Q.[Bo-Qing],
A Lazy Approach to Long-Horizon Gradient-Based Meta-Learning,
ICCV21(6557-6566)
IEEE DOI
2203
Computational modeling, Space exploration, Object recognition,
Task analysis, Optimization and learning methods,
Efficient training and inference methods
BibRef
Yun, S.[Sangdoo],
Oh, S.J.[Seong Joon],
Heo, B.[Byeongho],
Han, D.Y.[Dong-Yoon],
Choe, J.[Junsuk],
Chun, S.[Sanghyuk],
Re-labeling ImageNet:
From Single to Multi-Labels, from Global to Localized Labels,
CVPR21(2340-2350)
IEEE DOI
2111
Training, Visualization, Costs, Annotations,
Transfer learning, Crops, Transforms
BibRef
Pouransari, H.[Hadi],
Javaheripi, M.[Mojan],
Sharma, V.[Vinay],
Tuzel, O.[Oncel],
Extracurricular Learning: Knowledge Transfer Beyond Empirical
Distribution,
ECV21(3026-3036)
IEEE DOI
2109
Training, Uncertainty, Neural networks, Estimation, Data models,
Pattern recognition, Task analysis
BibRef
de la Comble, A.[Aloïs],
Prepin, K.[Ken],
Efficient transfer learning for multi-channel convolutional neural
networks,
MVA21(1-6)
DOI Link
2109
Training, Image sensors, Perturbation methods,
Transfer learning, Network architecture
BibRef
Hou, J.[Jinyong],
Deng, J.D.[Jeremiah D.],
Cranefield, S.[Stephen],
Ding, X.J.[Xue-Jie],
Cross-Domain Latent Modulation for Variational Transfer Learning,
WACV21(3148-3157)
IEEE DOI
2106
Adaptation models, Visualization,
Perturbation methods, Transfer learning, Modulation
BibRef
Wei, P.F.[Peng-Fei],
Leong, T.Y.[Tze Yun],
Randomized Transferable Machine,
ICPR21(8711-8718)
IEEE DOI
2105
Training, Sociology, Transfer learning, Training data, Data models,
Noise measurement
BibRef
Marini, N.[Niccolò],
Otálora, S.[Sebastian],
Müller, H.[Henning],
Atzori, M.[Manfredo],
Semi-supervised Learning with a Teacher-Student Paradigm for
Histopathology Classification: A Resource to Face Data Heterogeneity
and Lack of Local Annotations,
AIDP20(105-119).
Springer DOI
2103
BibRef
Rahimi, A.[Amir],
Shaban, A.[Amirreza],
Ajanthan, T.[Thalaiyasingam],
Hartley, R.I.[Richard I.],
Boots, B.[Byron],
Pairwise Similarity Knowledge Transfer for Weakly Supervised Object
Localization,
ECCV20(XXIV:395-412).
Springer DOI
2012
BibRef
Sun, M.[Ming],
Dou, H.X.[Hao-Xuan],
Yan, J.J.[Jun-Jie],
Efficient Transfer Learning via Joint Adaptation of Network
Architecture and Weight,
ECCV20(XIII:463-480).
Springer DOI
2011
BibRef
Zhu, L.C.[Lin-Chao],
Arik, S.Ö.[Sercan Ö.],
Yang, Y.[Yi],
Pfister, T.[Tomas],
Learning to Transfer Learn:
Reinforcement Learning-based Selection for Adaptive Transfer Learning,
ECCV20(XXVII:342-358).
Springer DOI
2011
BibRef
Wang, W.,
Zhai, W.,
Cao, Y.,
Deep Inhomogeneous Regularization For Transfer Learning,
ICIP20(221-225)
IEEE DOI
2011
Training, Aircraft, Task analysis, Nonhomogeneous media,
Optimization, Automobiles, Neural networks, Transfer Learning,
Deep Learning
BibRef
Zhong, Y.Y.[Yuan-Yi],
Wang, J.F.[Jian-Feng],
Peng, J.[Jian],
Zhang, L.[Lei],
Boosting Weakly Supervised Object Detection with Progressive Knowledge
Transfer,
ECCV20(XXVI:615-631).
Springer DOI
2011
BibRef
Dwivedi, K.[Kshitij],
Huang, J.H.[Jia-Hui],
Cichy, R.M.[Radoslaw Martin],
Roig, G.[Gemma],
Duality Diagram Similarity: A Generic Framework for Initialization
Selection in Task Transfer Learning,
ECCV20(XXVI:497-513).
Springer DOI
2011
BibRef
Luo, S.[Sihui],
Pan, W.W.[Wen-Wen],
Wang, X.C.[Xin-Chao],
Wang, D.Z.[Da-Zhou],
Tang, H.H.[Hai-Hong],
Song, M.L.[Ming-Li],
Collaboration by Competition: Self-coordinated Knowledge Amalgamation
for Multi-Talent Student Learning,
ECCV20(VI:631-646).
Springer DOI
2011
BibRef
Chen, L.C.[Liang-Chieh],
Lopes, R.G.[Raphael Gontijo],
Cheng, B.[Bowen],
Collins, M.D.[Maxwell D.],
Cubuk, E.D.[Ekin D.],
Zoph, B.[Barret],
Adam, H.[Hartwig],
Shlens, J.[Jonathon],
Naive-Student: Leveraging Semi-supervised Learning in Video Sequences
for Urban Scene Segmentation,
ECCV20(IX:695-714).
Springer DOI
2011
semi-supervised learning in unlabeled video sequences and extra images
to improve the performance on urban scene segmentation.
BibRef
Zhao, L.[Long],
Peng, X.[Xi],
Chen, Y.X.[Yu-Xiao],
Kapadia, M.[Mubbasir],
Metaxas, D.N.[Dimitris N.],
Knowledge As Priors: Cross-Modal Knowledge Generalization for
Datasets Without Superior Knowledge,
CVPR20(6527-6536)
IEEE DOI
2008
Knowledge engineering, Pose estimation, Training, Neural networks,
Probabilistic logic, Maximum likelihood estimation
BibRef
Yan, X.T.[Xue-Ting],
Misra, I.[Ishan],
Gupta, A.[Abhinav],
Ghadiyaram, D.[Deepti],
Mahajan, D.[Dhruv],
ClusterFit: Improving Generalization of Visual Representations,
CVPR20(6508-6517)
IEEE DOI
2008
Pre-training.
Task analysis, Training, Feature extraction, Visualization, Videos,
Tagging, Twitter
BibRef
Wang, Y.,
Chen, X.,
You, Y.,
Li, L.E.,
Hariharan, B.,
Campbell, M.,
Weinberger, K.Q.[Kilian Q.],
Chao, W.,
Train in Germany, Test in the USA:
Making 3D Object Detectors Generalize,
CVPR20(11710-11720)
IEEE DOI
2008
Laser radar, Automobiles, Detectors,
Object detection, Cameras, Training
BibRef
Bhattacharjee, B.,
Render, J.R.,
Hill, M.,
Dube, P.,
Huo, S.,
Glass, M.R.,
Belgodere, B.,
Pankanti, S.,
Codella, N.,
Watson, P.,
P2L: Predicting Transfer Learning for Images and Semantic Relations,
DeepVision20(3284-3293)
IEEE DOI
2008
Task analysis, Training, Computational modeling, Data models,
Machine learning, Adaptation models, Semantics
BibRef
Zhong, Y.,
Maki, A.,
Regularizing CNN Transfer Learning With Randomised Regression,
CVPR20(13634-13643)
IEEE DOI
2008
Task analysis, Training, Image representation,
Adaptation models, Neurons, Data models
BibRef
Yan, X.,
Acuna, D.,
Fidler, S.,
Neural Data Server:
A Large-Scale Search Engine for Transfer Learning Data,
CVPR20(3892-3901)
IEEE DOI
2008
Servers, Data models, Task analysis, Computational modeling,
Search engines, Training, Machine learning
BibRef
Kim, Y.,
Soh, J.W.,
Park, G.Y.,
Cho, N.I.,
Transfer Learning From Synthetic to Real-Noise Denoising With
Adaptive Instance Normalization,
CVPR20(3479-3489)
IEEE DOI
2008
Training, Noise level, Noise reduction, Convolution, Cameras,
Pipelines, Image reconstruction
BibRef
Royer, A.,
Lampert, C.H.,
A Flexible Selection Scheme for Minimum-Effort Transfer Learning,
WACV20(2180-2189)
IEEE DOI
2006
Task analysis, Training, Tuning, Feature extraction, Visualization,
Knowledge engineering, Training data
BibRef
Lamb, A.[Alex],
Ozair, S.[Sherjil],
Verma, V.[Vikas],
Ha, D.[David],
SketchTransfer: A Challenging New Task for Exploring
Detail-Invariance and the Abstractions Learned by Deep Networks,
WACV20(952-961)
IEEE DOI
2006
Domain transfer applied to sketch recognition. Result are not great.
Training, Task analysis, Cats, Dogs, Automobiles, Perturbation methods, Ear
BibRef
Li, J.,
Xu, Z.,
Wang, Y.,
Zhao, Q.,
Kankanhalli, M.S.,
GradMix: Multi-source Transfer across Domains and Tasks,
WACV20(3008-3016)
IEEE DOI
2006
Task analysis, Training, Adaptation models, Silicon,
Optimization, Training data
BibRef
Bi, S.[Sai],
Sunkavalli, K.[Kalyan],
Perazzi, F.[Federico],
Shechtman, E.[Eli],
Kim, V.[Vladimir],
Ramamoorthi, R.[Ravi],
Deep CG2Real: Synthetic-to-Real Translation via Image Disentanglement,
ICCV19(2730-2739)
IEEE DOI
2004
Train on synthetic.
image processing, learning (artificial intelligence),
two-stage pipeline, improved CycleGAN network, Training
BibRef
Tran, A.T.[Anh Tuan],
Nguyen, C.[Cuong],
Hassner, T.[Tal],
Transferability and Hardness of Supervised Classification Tasks,
ICCV19(1395-1405)
IEEE DOI
2004
entropy, face recognition, image classification,
learning (artificial intelligence), object recognition,
Computational modeling
BibRef
Wu, Y.W.[Yuan-Wei],
Zhang, Z.M.[Zi-Ming],
Wang, G.H.[Guang-Hui],
Unsupervised Deep Feature Transfer for Low Resolution Image
Classification,
RLQ19(1065-1069)
IEEE DOI
2004
data structures, feature extraction, image classification,
image enhancement, image resolution, neural nets,
low resolution image classificatin
BibRef
Li, K.,
Zhang, Y.,
Li, K.,
Li, Y.,
Fu, Y.,
Attention Bridging Network for Knowledge Transfer,
ICCV19(5197-5206)
IEEE DOI
2004
image segmentation, learning (artificial intelligence),
neural nets, pattern classification, classification network,
Knowledge transfer
BibRef
Kuen, J.,
Perazzi, F.,
Lin, Z.,
Zhang, J.,
Tan, Y.,
Scaling Object Detection by Transferring Classification Weights,
ICCV19(6043-6052)
IEEE DOI
2004
feature extraction, genomics, image classification,
information retrieval, learning (artificial intelligence),
Knowledge engineering
BibRef
Huang, H.,
Jain, V.,
Mehta, H.,
Ku, A.,
Magalhaes, G.,
Baldridge, J.,
Ie, E.,
Transferable Representation Learning in Vision-and-Language
Navigation,
ICCV19(7403-7412)
IEEE DOI
2004
image sequences,
learning (artificial intelligence), Length measurement
BibRef
Durall, R.,
Pfreundt, F.J.,
Keuper, J.,
Semi Few-Shot Attribute Translation,
IVCNZ19(1-8)
IEEE DOI
2004
image processing, learning (artificial intelligence),
semifew-shot attribute translation, image-to-image translation,
generative transfer learning
BibRef
Iqbal, A.,
Richard, A.,
Gall, J.,
Enhancing Temporal Action Localization with Transfer Learning from
Action Recognition,
CoView19(1533-1540)
IEEE DOI
2004
feature extraction, image classification, image motion analysis,
image segmentation, image sequences, inference mechanisms, Action Detection
BibRef
Liu, B.,
Wu, Z.,
Hu, H.,
Lin, S.,
Deep Metric Transfer for Label Propagation with Limited Annotated
Data,
MDALC19(1317-1326)
IEEE DOI
2004
Code, Learning.
WWW Link. image annotation, object recognition, unsupervised learning,
deep metric transfer, limited annotated data, object class,
self supervised learning
BibRef
Jakubovitz, D.,
Rodrigues, M.R.D.,
Giryes, R.,
Lautum Regularization for Semi-Supervised Transfer Learning,
SDL-CV19(763-767)
IEEE DOI
2004
information theory, learning (artificial intelligence),
neural nets, source dataset, deep neural network, Information Theory
BibRef
Cicek, S.,
Soatto, S.,
Unsupervised Domain Adaptation via Regularized Conditional Alignment,
ICCV19(1416-1425)
IEEE DOI
2004
pattern classification, statistical distributions,
unsupervised learning, classifier performance, Neural networks
BibRef
Dwivedi, K.[Kshitij],
Roig, G.[Gemma],
Representation Similarity Analysis for Efficient Task Taxonomy and
Transfer Learning,
CVPR19(12379-12388).
IEEE DOI
2002
BibRef
Wang, Z.[Zirui],
Dai, Z.[Zihang],
Poczos, B.[Barnabas],
Carbonell, J.[Jaime],
Characterizing and Avoiding Negative Transfer,
CVPR19(11285-11294).
IEEE DOI
2002
BibRef
Simon, C.[Christian],
Koniusz, P.[Piotr],
Nock, R.[Richard],
Harandi, M.[Mehrtash],
On Modulating the Gradient for Meta-learning,
ECCV20(VIII:556-572).
Springer DOI
2011
BibRef
Herath, S.[Samitha],
Harandi, M.[Mehrtash],
Fernando, B.[Basura],
Nock, R.[Richard],
Min-Max Statistical Alignment for Transfer Learning,
CVPR19(9280-9289).
IEEE DOI
2002
BibRef
Chen, Y.C.[Yun-Chun],
Lin, Y.Y.[Yen-Yu],
Yang, M.H.[Ming-Hsuan],
Huang, J.B.[Jia-Bin],
CrDoCo: Pixel-Level Domain Transfer With Cross-Domain Consistency,
CVPR19(1791-1800).
IEEE DOI
2002
BibRef
Wang, P.[Pei],
Vasconcelos, N.M.[Nuno M.],
A Machine Teaching Framework for Scalable Recognition,
ICCV21(4925-4934)
IEEE DOI
2203
Crowdsourcing, Costs, Education, Pipelines, Data collection,
Prediction algorithms, Vision applications and systems,
Transfer/Low-shot/Semi/Unsupervised Learning
BibRef
Li, Y.S.[Yun-Sheng],
Vasconcelos, N.M.[Nuno M.],
Efficient Multi-Domain Learning by Covariance Normalization,
CVPR19(5419-5428).
IEEE DOI
2002
BibRef
Essich, M.[Michael],
Ludl, D.[Dennis],
Gulde, T.[Thomas],
Curio, C.[Cristóbal],
Learning to Translate Between Real World and Simulated 3D Sensors
While Transferring Task Models,
3DV19(681-689)
IEEE DOI
1911
Real data not like trained data
Sensors, Data models, Task analysis, Adaptation models,
Training, Character Animation
BibRef
Coors, B.[Benjamin],
Condurache, A.P.[Alexandru Paul],
Geiger, A.[Andreas],
NoVA: Learning to See in Novel Viewpoints and Domains,
3DV19(116-125)
IEEE DOI
1911
Adaptation models, Task analysis, Estimation, Semantics,
Image segmentation, Cameras, Geometry, Novel Viewpoint Adaptation,
Viewpoint Invariance
BibRef
Bao, Y.,
Li, Y.,
Huang, S.,
Zhang, L.,
Zheng, L.,
Zamir, A.,
Guibas, L.J.[Leonidas J.],
An Information-Theoretic Approach to Transferability in Task Transfer
Learning,
ICIP19(2309-2313)
IEEE DOI
1910
Task transfer learning, Transferability, H-Score,
Image recognition & classification
BibRef
Deng, X.Q.[Xue-Qing],
Zhu, Y.[Yi],
Tian, Y.X.[Yu-Xin],
Newsam, S.[Shawn],
Scale Aware Adaptation for Land-Cover Classification in Remote
Sensing Imagery,
WACV21(2159-2168)
IEEE DOI
2106
Training, Earth, Image segmentation, Adaptation models, Semantics,
Neural networks, Task analysis
BibRef
Zhu, Y.[Yi],
Xue, J.[Jia],
Newsam, S.[Shawn],
Gated Transfer Network for Transfer Learning,
ACCV18(IV:354-369).
Springer DOI
1906
BibRef
Kim, J.[Jaekyum],
Koh, J.[Junho],
Kim, Y.[Yecheol],
Choi, J.[Jaehyung],
Hwang, Y.[Youngbae],
Choi, J.W.[Jun Won],
Robust Deep Multi-modal Learning Based on Gated Information Fusion
Network,
ACCV18(IV:90-106).
Springer DOI
1906
BibRef
Zhong, Y.[Yang],
Li, V.[Vladimir],
Okada, R.[Ryuzo],
Maki, A.[Atsuto],
Target Aware Network Adaptation for Efficient Representation Learning,
CEFR-LCV18(IV:450-467).
Springer DOI
1905
Finding the CNN that works.
BibRef
Okatani, T.[Takayuki],
Liu, X.[Xing],
Suganuma, M.[Masanori],
Improving Generalization Ability of Deep Neural Networks for Visual
Recognition Tasks,
CCIW19(3-13).
Springer DOI
1905
BibRef
Sawatzky, J.[Johann],
Garbade, M.[Martin],
Gall, J.[Juergen],
Ex Paucis Plura: Learning Affordance Segmentation from Very Few
Examples,
GCPR18(169-184).
Springer DOI
1905
Use existing annotated datasets to annotate new ones (reduce what needs
more work).
BibRef
Sayed, N.[Nawid],
Brattoli, B.[Biagio],
Ommer, B.[Björn],
Cross and Learn: Cross-Modal Self-supervision,
GCPR18(228-243).
Springer DOI
1905
BibRef
Rahman, M.M.[Mohammad Mahfujur],
Fookes, C.[Clinton],
Baktashmotlagh, M.[Mahsa],
Sridharan, S.[Sridha],
Multi-Component Image Translation for Deep Domain Generalization,
WACV19(579-588)
IEEE DOI
1904
image classification, learning (artificial intelligence),
neural nets, protocols, protocol, synthetic images,
Adaptation models
BibRef
Chen, D.,
Liang, X.,
Wang, Y.,
Gao, W.,
Soft Transfer Learning via Gradient Diagnosis for Visual Relationship
Detection,
WACV19(1118-1126)
IEEE DOI
1904
inference mechanisms, learning (artificial intelligence),
object detection, optimisation, diverse language ambiguities,
Dogs
BibRef
Wang, T.,
Huan, J.,
Zhu, M.,
Instance-Based Deep Transfer Learning,
WACV19(367-375)
IEEE DOI
1904
image classification,
learning (artificial intelligence),
Load modeling
BibRef
Li, J.S.[Jian-Shu],
Zhou, P.[Pan],
Chen, Y.P.[Yun-Peng],
Zhao, J.[Jian],
Roy, S.[Sujoy],
Yan, S.C.[Shui-Cheng],
Feng, J.S.[Jia-Shi],
Sim, T.[Terence],
Task Relation Networks,
WACV19(932-940)
IEEE DOI
1904
covariance matrices, learning (artificial intelligence),
task analysis, task covariance modeling,
Heuristic algorithms
See also Estimation of Affective Level in the Wild with Multiple Memory Networks.
BibRef
Zhang, Y.[Ying],
Xiang, T.[Tao],
Hospedales, T.M.[Timothy M.],
Lu, H.C.[Hu-Chuan],
Deep Mutual Learning,
CVPR18(4320-4328)
IEEE DOI
1812
Training, Computational modeling, Task analysis,
Supervised learning, Optimization, Entropy, Neural networks
BibRef
Kundu, J.N.[Jogendra Nath],
Uppala, P.K.[Phani Krishna],
Pahuja, A.[Anuj],
Babu, R.V.[R. Venkatesh],
AdaDepth: Unsupervised Content Congruent Adaptation for Depth
Estimation,
CVPR18(2656-2665)
IEEE DOI
1812
Task analysis, Estimation, Semantics, Adaptation models, Training,
Predictive models.
BibRef
Lee, K.,
He, X.,
Zhang, L.,
Yang, L.,
CleanNet: Transfer Learning for Scalable Image Classifier Training
with Label Noise,
CVPR18(5447-5456)
IEEE DOI
1812
Noise measurement, Feature extraction, Training, Task analysis,
Neural networks, Labeling, Manuals
BibRef
Zamir, A.R.,
Sax, A.,
Cheerla, N.,
Suri, R.,
Cao, Z.,
Malik, J.,
Guibas, L.J.,
Robust Learning Through Cross-Task Consistency,
CVPR20(11194-11203)
IEEE DOI
2008
Task analysis, Training, Image edge detection, Neural networks,
Uncertainty
BibRef
Zamir, A.R.,
Sax, A.,
Shen, W.,
Guibas, L.J.[Leonidas J.],
Malik, J.,
Savarese, S.,
Taskonomy: Disentangling Task Transfer Learning,
CVPR18(3712-3722)
IEEE DOI
1812
Award, CVPR. Task analysis, Computational modeling, Taxonomy, Dictionaries
BibRef
Chen, S.,
Zhang, C.,
Dong, M.,
Coupled End-to-End Transfer Learning with Generalized Fisher
Information,
CVPR18(4329-4338)
IEEE DOI
1812
Task analysis, Training, Decoding, Neural networks,
Adaptation models, Image reconstruction, Feature extraction
BibRef
Huang, X.,
Peng, Y.,
Deep Cross-Media Knowledge Transfer,
CVPR18(8837-8846)
IEEE DOI
1812
Media, Training, Correlation, Semantics, Adaptation models,
Knowledge transfer, Computational modeling
BibRef
Noroozi, M.,
Vinjimoor, A.,
Favaro, P.,
Pirsiavash, H.,
Boosting Self-Supervised Learning via Knowledge Transfer,
CVPR18(9359-9367)
IEEE DOI
1812
Task analysis, Computational modeling,
Training, Feature extraction, Data models, Measurement
BibRef
Mormont, R.,
Geurts, P.,
Marée, R.,
Comparison of Deep Transfer Learning Strategies for Digital Pathology,
Microscopy18(2343-234309)
IEEE DOI
1812
Feature extraction, Task analysis, Biomedical imaging, Training,
Support vector machines
BibRef
Lu, W.,
Chung, F.,
A Deep Graphical Model for Layered Knowledge Transfer,
ICPR18(260-265)
IEEE DOI
1812
Task analysis, Dictionaries, Adaptation models,
Inference algorithms, Graphical models, Training
BibRef
Passalis, N.,
Tefas, A.,
Neural Network Knowledge Transfer using Unsupervised Similarity
Matching,
ICPR18(716-721)
IEEE DOI
1812
a
Receivers, Knowledge transfer, Training, Knowledge engineering,
Neural networks, Computational modeling, Geometry
BibRef
Pan, X.G.[Xin-Gang],
Luo, P.[Ping],
Shi, J.P.[Jian-Ping],
Tang, X.[Xiaoou],
Two at Once: Enhancing Learning and Generalization Capacities via
IBN-Net,
ECCV18(II: 484-500).
Springer DOI
1810
Instance normalization and batch normalization for expanding domain.
BibRef
Huang, H.S.[Hao-Shuo],
Huang, Q.X.[Qi-Xing],
Krähenbühl, P.[Philipp],
Domain Transfer Through Deep Activation Matching,
ECCV18(XVI: 611-626).
Springer DOI
1810
BibRef
Tao, Q.Y.[Qing-Yi],
Yang, H.[Hao],
Cai, J.F.[Jian-Fei],
Zero-Annotation Object Detection with Web Knowledge Transfer,
ECCV18(XI: 387-403).
Springer DOI
1810
BibRef
Paul, A.[Angshuman],
Majumdar, A.[Angshul],
Mukherjee, D.P.[Dipti Prasad],
Discriminative Autoencoder,
ICIP18(3049-3053)
IEEE DOI
1809
Minimization, Linear programming, Training, Encoding,
Biomedical imaging, Decoding, Autoencoder, discriminative,
cross-dataset
BibRef
Inoue, T.,
Choudhury, S.,
de Magistris, G.,
Dasgupta, S.,
Transfer Learning from Synthetic to Real Images Using Variational
Autoencoders for Precise Position Detection,
ICIP18(2725-2729)
IEEE DOI
1809
Lighting, Training, Task analysis, Robots, Decoding,
Image color analysis, Cameras, deep learning, position detection,
computer simulation
BibRef
Liu, X.,
Wang, C.,
Hu, Y.,
Zeng, Z.,
Bai, J.,
Liao, G.,
Transfer Learning with Convolutional Neural Network for Early Gastric
Cancer Classification on Magnifiying Narrow-Band Imaging Images,
ICIP18(1388-1392)
IEEE DOI
1809
Feature extraction, Task analysis, Cancer,
Training, Sensitivity, Convolutional neural networks,
convolutional neural networks (CNNs)
BibRef
Bai, T.,
Yang, J.,
Chen, J.,
Guo, X.,
Huang, X.,
Yao, Y.,
Double-Task Deep Q-Learning with Multiple Views,
CEFR-LCV17(1050-1058)
IEEE DOI
1802
Aerospace electronics, Cameras, Robot kinematics,
Robot vision systems, Training
BibRef
Chang, J.H.R.[J.H. Rick],
Li, C.L.[Chun-Liang],
Póczos, B.[Barnabás],
Kumar, B.V.K.V.[B. V. K. Vijaya],
One Network to Solve Them All:
Solving Linear Inverse Problems Using Deep Projection Models,
ICCV17(5889-5898)
IEEE DOI
1802
compressed sensing, image restoration, inverse problems,
iterative methods, learning (artificial intelligence),
Signal resolution
BibRef
Li, D.,
Yang, Y.,
Song, Y.Z.,
Hospedales, T.M.,
Deeper, Broader and Artier Domain Generalization,
ICCV17(5543-5551)
IEEE DOI
1802
learning (artificial intelligence),
DG alternatives, DG benchmark dataset, DG methods, benchmarks,
Painting
BibRef
Kim, K.I.[Kwang In],
Richardt, C.[Christian],
Chang, H.J.[Hyung Jin],
Combining Task Predictors via Enhancing Joint Predictability,
ECCV20(XVI: 439-455).
Springer DOI
2010
BibRef
Kim, K.I.[Kwang In],
Tompkin, J.[James],
Testing using Privileged Information by Adapting Features with
Statistical Dependence,
ICCV21(9385-9393)
IEEE DOI
2203
Training, Visualization, Toy manufacturing industry, Training data,
Feature extraction, Prediction algorithms,
Machine learning architectures and formulations
BibRef
Kim, K.I.[Kwang In],
Tompkin, J.[James],
Richardt, C.[Christian],
Predictor Combination at Test Time,
ICCV17(3573-3581)
IEEE DOI
1802
differential geometry, image denoising,
learning (artificial intelligence), prediction theory,
Training
BibRef
Aygün, M.,
Aytar, Y.,
Ekenel, H.K.,
Exploiting Convolution Filter Patterns for Transfer Learning,
TASKCV17(2674-2680)
IEEE DOI
1802
Analytical models, Convolution,
Covariance matrices, Detectors, Training
BibRef
Devi, V.S.[V. Sowmini],
Padmanabhan, V.[Vineet],
Pujari, A.K.[Arun K.],
A Matrix Factorization & Clustering Based Approach for Transfer
Learning,
PReMI17(77-83).
Springer DOI
1711
BibRef
Zhang, J.,
Li, W.,
Ogunbona, P.,
Joint Geometrical and Statistical Alignment for Visual Domain
Adaptation,
CVPR17(5150-5158)
IEEE DOI
1711
Image recognition, Linear programming, Minimization,
Pattern recognition, Training, Visualization
BibRef
Ge, W.,
Yu, Y.,
Borrowing Treasures from the Wealthy:
Deep Transfer Learning through Selective Joint Fine-Tuning,
CVPR17(10-19)
IEEE DOI
1711
Kernel, Machine learning, Neural networks, Training data, Visualization
BibRef
Yu, L.J.[Liang-Jiang],
Fan, G.L.[Guo-Liang],
Rare Class Oriented Scene Labeling Using CNN Incorporated Label
Transfer,
ISVC16(I: 309-320).
Springer DOI
1701
BibRef
Littwin, E.,
Wolf, L.,
Complexity of multiverse networks and their multilayer generalization,
ICPR16(372-377)
IEEE DOI
1705
Complexity theory, Feeds, Joining processes, Neural networks,
Nonhomogeneous media, Training, Upper, bound
BibRef
Littwin, E.,
Wolf, L.,
The Multiverse Loss for Robust Transfer Learning,
CVPR16(3957-3966)
IEEE DOI
1612
BibRef
Sharmanska, V.,
Quadrianto, N.,
Learning from the Mistakes of Others:
Matching Errors in Cross-Dataset Learning,
CVPR16(3967-3975)
IEEE DOI
1612
BibRef
Chu, B.[Brian],
Madhavan, V.[Vashisht],
Beijbom, O.[Oscar],
Hoffman, J.[Judy],
Darrell, T.J.[Trevor J.],
Best Practices for Fine-Tuning Visual Classifiers to New Domains,
TASKCV16(III: 435-442).
Springer DOI
1611
Fine tuned generic to specific domain.
BibRef
Heravi, E.J.[Elnaz Jahani],
Aghdam, H.H.[Hamed Habibi],
Puig, D.[Domenec],
Training a Mentee Network by Transferring Knowledge from a Mentor
Network,
TASKCV16(III: 500-507).
Springer DOI
1611
BibRef
Yan, Y.G.[Yu-Guang],
Wu, Q.Y.[Qing-Yao],
Tan, M.K.[Ming-Kui],
Min, H.Q.[Hua-Qing],
Online Heterogeneous Transfer Learning by Weighted Offline and Online
Classifiers,
TASKCV16(III: 467-474).
Springer DOI
1611
BibRef
Sun, B.,
Peng, X.C.[Xing-Chao],
Yu, S.X.,
Saenko, K.,
Ground2sky label transfer for fine-grained aerial car recognition,
ICIP17(360-364)
IEEE DOI
1803
Automobiles, Google, Image color analysis, Image recognition,
Image resolution, Object recognition, Task analysis,
Label Transfer
BibRef
Peng, X.C.[Xing-Chao],
Hoffman, J.,
Yu, S.X.,
Saenko, K.[Kate],
Fine-to-coarse knowledge transfer for low-res image classification,
ICIP16(3683-3687)
IEEE DOI
1610
Automobiles
BibRef
Irie, G.[Go],
Arai, H.[Hiroyuki],
Taniguchi, Y.[Yukinobu],
Alternating Co-Quantization for Cross-Modal Hashing,
ICCV15(1886-1894)
IEEE DOI
1602
Binary codes
BibRef
Shkodrani, S.[Sindi],
Hofmann, M.[Michael],
Gavves, E.[Efstratios],
Dynamic Adaptation on Non-stationary Visual Domains,
TASKCV18(II:158-171).
Springer DOI
1905
BibRef
Gavves, E.,
Mensink, T.,
Tommasi, T.,
Snoek, C.G.M.,
Tuytelaars, T.,
Active Transfer Learning with Zero-Shot Priors:
Reusing Past Datasets for Future Tasks,
ICCV15(2731-2739)
IEEE DOI
1602
Computer vision
BibRef
Paul, A.,
Rottensteiner, F.,
Heipke, C.,
Transfer Learning Based on Logistic Regression,
CMRT15(145-152).
DOI Link
1602
BibRef
Liu, P.C.[Peng-Cheng],
Wang, C.[Chong],
Yang, P.P.[Pei-Pei],
Huang, K.Q.[Kai-Qi],
Tan, T.N.[Tie-Niu],
Cross-Domain Object Recognition Using Object Alignment,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Rochan, M.[Mrigank],
Wang, Y.[Yang],
Weakly supervised localization of novel objects using appearance
transfer,
CVPR15(4315-4324)
IEEE DOI
1510
BibRef
Dai, D.X.[Deng-Xin],
Kroeger, T.[Till],
Timofte, R.[Radu],
Van Gool, L.J.[Luc J.],
Metric imitation by manifold transfer for efficient vision
applications,
CVPR15(3527-3536)
IEEE DOI
1510
BibRef
Niu, L.[Li],
Li, W.[Wen],
Xu, D.[Dong],
Visual recognition by learning from web data:
A weakly supervised domain generalization approach,
CVPR15(2774-2783)
IEEE DOI
1510
BibRef
Isola, P.[Phillip],
Lim, J.J.[Joseph J.],
Adelson, E.H.[Edward H.],
Discovering states and transformations in image collections,
CVPR15(1383-1391)
IEEE DOI
1510
BibRef
Royer, A.[Amelie],
Lampert, C.H.[Christoph H.],
Classifier adaptation at prediction time,
CVPR15(1401-1409)
IEEE DOI
1510
BibRef
Lu, Y.[Ying],
Chen, L.M.[Li-Ming],
Saidi, A.[Alexandre],
Zhang, Z.X.[Zhao-Xiang],
Wang, Y.H.[Yun-Hong],
Learning visual categories through a sparse representation classifier
based cross-category knowledge transfer,
ICIP14(165-169)
IEEE DOI
1502
Computer vision
BibRef
Kim, J.[Jongdae],
Collomosse, J.P.[John P.],
Incremental transfer learning for object recognition in streaming
video,
ICIP14(2729-2733)
IEEE DOI
1502
Kernel
BibRef
Wang, Z.H.[Zi-Heng],
Gao, T.[Tian],
Ji, Q.A.[Qi-Ang],
Learning with Hidden Information Using a Max-Margin Latent Variable
Model,
ICPR14(1389-1394)
IEEE DOI
1412
Data models
BibRef
Zhou, Y.[Yun],
Ioannou, I.[Ioanna],
Wijewickrema, S.[Sudanthi],
Bailey, J.[James],
Piromchai, P.[Patorn],
Kennedy, G.[Gregor],
OLeary, S.[Stephen],
Transfer Learning of a Temporal Bone Performance Model via Anatomical
Feature Registration,
ICPR14(1916-1921)
IEEE DOI
1412
Adaptation models
BibRef
Fang, Z.[Zheng],
Zhang, Z.F.[Zhong-Fei],
Cross Domain Shared Subspace Learning for Unsupervised Transfer
Classification,
ICPR14(3927-3932)
IEEE DOI
1412
Accuracy
BibRef
Samanta, S.[Suranjana],
Selvan, T.[Tirumarai],
Das, S.[Sukhendu],
Modeling Sequential Domain Shift through Estimation of Optimal
Sub-spaces for Categorization,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Farajidavar, N.[Nazli],
de Campos, T.[Teofilo],
Kittler, J.V.[Josef V.],
Transductive Transfer Machine,
ACCV14(III: 623-639).
Springer DOI
1504
BibRef
And:
Adaptive Transductive Transfer Machine,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Amaral, T.[Telmo],
Silva, L.M.[Luís M.],
Alexandre, L.A.[Luís A.],
Kandaswamy, C.[Chetak],
de Sá, J.M.[Joaquim Marques],
Santos, J.M.[Jorge M.],
Transfer Learning Using Rotated Image Data to Improve Deep Neural
Network Performance,
ICIAR14(I: 290-300).
Springer DOI
1410
BibRef
Branson, S.[Steve],
Hjorleifsson, K.E.[Kristjan Eldjarn],
Perona, P.[Pietro],
Active Annotation Translation,
CVPR14(3702-3709)
IEEE DOI
1409
active learning. Quickly annotate when previous annotations exist.
BibRef
Zhang, B.[Bang],
Wang, Y.[Yi],
Wang, Y.[Yang],
Chen, F.[Fang],
Stable Learning in Coding Space for Multi-class Decoding and Its
Extension for Multi-class Hypothesis Transfer Learning,
CVPR14(1075-1081)
IEEE DOI
1409
Multi-class classification; output coding framework; transfer learning
BibRef
Tsuchiya, M.,
Yamauchi, Y.,
Fujiyoshi, H.,
Yamashita, T.,
Hybrid Transfer Learning for Efficient Learning in Object Detection,
ACPR13(69-73)
IEEE DOI
1408
feature extraction
BibRef
Rana, A.[Aakanksha],
Zepeda, J.[Joaquin],
Perez, P.[Patrick],
Feature Learning for the Image Retrieval Task,
FSLCV14(III: 152-165).
Springer DOI
1504
BibRef
Kulkarni, P.[Praveen],
Zepeda, J.[Joaquin],
Jurie, F.[Frederic],
Pérez, P.[Patrick],
Chevallier, L.[Louis],
Learning the Structure of Deep Architectures Using L1 Regularization,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Kulkarni, P.[Praveen],
Sharma, G.[Gaurav],
Zepeda, J.[Joaquin],
Chevallier, L.[Louis],
Transfer learning via attributes for improved on-the-fly
classification,
WACV14(220-226)
IEEE DOI
1406
Animals
BibRef
Long, M.S.[Ming-Sheng],
Ding, G.G.[Gui-Guang],
Wang, J.M.[Jian-Min],
Sun, J.G.[Jia-Guang],
Guo, Y.C.[Yu-Chen],
Yu, P.S.[Philip S.],
Transfer Sparse Coding for Robust Image Representation,
CVPR13(407-414)
IEEE DOI
1309
image representation; sparse coding; transfer learning
BibRef
Kobetski, M.[Miroslav],
Sullivan, J.[Josephine],
Discriminative tree-based feature mapping,
BMVC13(xx-yy).
DOI Link
1402
BibRef
Kobetski, M.[Miroslav],
Sullivan, J.[Josephine],
Apprenticeship Learning: Transfer of Knowledge via Dataset Augmentation,
SCIA13(432-443).
Springer DOI
1311
BibRef
Garcia, E.O.[Esteban O.],
de Cote, E.M.[Enrique Munoz],
Morales, E.F.[Eduardo F.],
Qualitative Transfer for Reinforcement Learning with Continuous State
and Action Spaces,
CIARP13(I:198-205).
Springer DOI
1311
BibRef
Chen, S.K.[Shao-Kang],
Sanderson, C.[Conrad],
Harandi, M.T.[Mehrtash T.],
Lovell, B.C.[Brian C.],
Improved Image Set Classification via Joint Sparse Approximated
Nearest Subspaces,
CVPR13(452-459)
IEEE DOI
1309
Adaptive Clustering
BibRef
Kuzborskij, I.[Ilja],
Orabona, F.[Francesco],
Caputo, B.[Barbara],
Transfer Learning Through Greedy Subset Selection,
CIAP15(I:3-14).
Springer DOI
1511
BibRef
Earlier:
From N to N+1: Multiclass Transfer Incremental Learning,
CVPR13(3358-3365)
IEEE DOI
1309
LSSVM
BibRef
Sharmanska, V.[Viktoriia],
Quadrianto, N.[Novi],
Lampert, C.H.[Christoph H.],
Learning to Rank Using Privileged Information,
ICCV13(825-832)
IEEE DOI
1403
Learning to rank with more data in training than in test.
BibRef
Liu, J.C.[Jing-Chen],
McCloskey, S.[Scott],
Liu, Y.X.[Yan-Xi],
Training data recycling for multi-level learning,
ICPR12(2314-2318).
WWW Link.
1302
BibRef
Costa Pereira, J.[Jose],
Vasconcelos, N.M.[Nuno M.],
On the regularization of image semantics by modal expansion,
CVPR12(3093-3099).
IEEE DOI
1208
BibRef
Guillaumin, M.[Matthieu],
Ferrari, V.[Vittorio],
Large-scale knowledge transfer for object localization in ImageNet,
CVPR12(3202-3209).
IEEE DOI
1208
BibRef
Ye, G.N.[Guang-Nan],
Liu, D.[Dong],
Jhuo, I.H.[I-Hong],
Chang, S.F.[Shih-Fu],
Robust late fusion with rank minimization,
CVPR12(3021-3028).
IEEE DOI
1208
BibRef
Aytar, Y.[Yusuf],
Zisserman, A.[Andrew],
Tabula rasa: Model transfer for object category detection,
ICCV11(2252-2259).
IEEE DOI
1201
Transfer learning for categories.
BibRef
Wang, H.[Hua],
Nie, F.P.[Fei-Ping],
Huang, H.[Heng],
Ding, C.[Chris],
Dyadic transfer learning for cross-domain image classification,
ICCV11(551-556).
IEEE DOI
1201
BibRef
Yu, X.D.[Xiao-Dong],
Aloimonos, Y.F.[Yi-Fannis],
Attribute-Based Transfer Learning for Object Categorization with
Zero/One Training Example,
ECCV10(V: 127-140).
Springer DOI
1009
BibRef
Yao, Y.[Yi],
Doretto, G.[Gianfranco],
Boosting for transfer learning with multiple sources,
CVPR10(1855-1862).
IEEE DOI
1006
Transfer info between domains.
BibRef
Lampert, C.H.[Christoph H.],
Krömer, O.[Oliver],
Weakly-Paired Maximum Covariance Analysis for Multimodal Dimensionality
Reduction and Transfer Learning,
ECCV10(II: 566-579).
Springer DOI
1009
BibRef
Ahmed, A.[Amr],
Yu, K.[Kai],
Xu, W.[Wei],
Gong, Y.H.[Yi-Hong],
Xing, E.[Eric],
Training Hierarchical Feed-Forward Visual Recognition Models Using
Transfer Learning from Pseudo-Tasks,
ECCV08(III: 69-82).
Springer DOI
0810
BibRef
Quattoni, A.[Ariadna],
Collins, M.[Michael],
Darrell, T.J.[Trevor J.],
Transfer learning for image classification with sparse prototype
representations,
CVPR08(1-8).
IEEE DOI
0806
BibRef
And:
CSAIL-2008-012, March 2008.
WWW Link.
BibRef
Earlier:
Learning Visual Representations using Images with Captions,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Domain Adaptation .