15.2.12.1 Pushbroom Camera Calibration Issues

Chapter Contents (Back)
Camera Calibration. Pushbroom Camera. Stripes:
See also Destriping Images, Pushbroom, Scanner, Remote Sensing Imagry.

Kim, T.J.[Tae-Jung], Shin, D.S.[Dong-Seok], Lee, Y.R.[Young-Ran],
Development of a Robust Algorithm for Transformation of a 3D Object Point onto a 2D Image Point for Linear Pushbroom Imagery,
PhEngRS(67), No. 4, April 2001, pp. 449-452.
WWW Link. 0105
BibRef

Chen, T.[Tianen], Shibasaki, R.Y.[R. Yosuke], Lin, Z.J.[Zong-Jian],
A Rigorous Laboratory Calibration Method for Interior Orientation of an Airborne Linear Push-Broom Camera,
PhEngRS(73), No. 4, April 2007, pp. 369-374.
WWW Link. 0704
A rigorous, high accuracy calibration method for three-line imaging systems. BibRef

Poli, D.[Daniela],
A Rigorous Model for Spaceborne Linear Array Sensors,
PhEngRS(73), No. 2, February 2007, pp. 187-196.
WWW Link. 0704
A rigorous sensor model for the orientation of pushbroom sensors with along-track stereo viewing and the results obtained in various applications. BibRef

Poli, D.[Daniela],
Indirect Georeferencing of Airborne Multi-Line Array Sensors: A Simulated Case Study,
PCV02(A: 246). 0305
BibRef

Poli, D., Remondino, F., Angiuli, E., Agugiaro, G.,
Evaluation of PLEIADES-1A Triplet on Trento Testfield,
Hannover13(287-292).
DOI Link 1308
BibRef

Agugiaro, G., Poli, D., Remondino, F.,
Testfield Trento: Geometric Evaluation Of Very High Resolution Satellite Imagery,
ISPRS12(XXXIX-B1:191-196).
DOI Link 1209
BibRef

Gianinetto, M.[Marco], Scaioni, M.[Marco],
Automated Geometric Correction of High-resolution Pushbroom Satellite Data,
PhEngRS(74), No. 1, January 2008, pp. 107-116.
WWW Link. 0803
A new automatic ground control point extraction technique for increasing the automation for geometric correction of satellite imagery. BibRef

Jung, H.S.[Hyung-Sup], Won, J.S.[Joong-Sun],
Formulation of distortion error for the line-of-sight (LOS) vector adjustment model and its role in restitution of SPOT imagery,
PandRS(63), No. 6, November 2008, pp. 610-620.
Elsevier DOI 0811
LOS vector adjustment model; Distortion error; Satellite orbit; Pushbroom imagery; SPOT BibRef

Leprince, S., Muse, P., Avouac, J.P.,
In-Flight CCD Distortion Calibration for Pushbroom Satellites Based on Subpixel Correlation,
GeoRS(46), No. 9, September 2008, pp. 2675-2683.
IEEE DOI 0810
BibRef

Dell'Endice, F.[Francesco], Nieke, J.[Jens], Koetz, B.[Benjamin], Schaepman, M.E.[Michael E.], Itten, K.[Klaus],
Improving radiometry of imaging spectrometers by using programmable spectral regions of interest,
PandRS(64), No. 6, November 2009, pp. 632-639.
Elsevier DOI 1001
Calibration; Algorithms; Pushbroom; Radiometric; Imaging spectrometer BibRef

Jama, M.[Michal], Lewis, C.[Chris], Schinstock, D.[Dale],
Identifying degrees of freedom in pushbroom bundle adjustment,
PandRS(66), No. 4, July 2011, pp. 400-407.
Elsevier DOI 1107
Bundle adjustment; Pushbroom camera; Degrees of freedom; DEM; HiRISE BibRef

Reguera-Salgado, J., Calvino-Cancela, M., Martin-Herrero, J.,
GPU Geocorrection for Airborne Pushbroom Imagers,
GeoRS(50), No. 11, November 2012, pp. 4409-4419.
IEEE DOI 1210
BibRef

Zhang, A.[Aiwu], Hu, S.X.[Shao-Xing], Meng, X.G.[Xian-Gang], Yang, L.B.[Ling-Bo], Li, H.L.[Han-Lun],
Toward High Altitude Airship Ground-Based Boresight Calibration of Hyperspectral Pushbroom Imaging Sensors,
RS(7), No. 12, 2015, pp. 15883.
DOI Link 1601
BibRef

Perrier, R.[Régis], Arnaud, E.[Elise], Sturm, P.F.[Peter F.], Ortner, M.[Mathias],
Estimation of an Observation Satellite's Attitude Using Multimodal Pushbroom Cameras,
PAMI(37), No. 5, May 2015, pp. 987-1000.
IEEE DOI 1504
BibRef
Earlier:
Sensor Measurements and Image Registration Fusion to Retrieve Variations of Satellite Attitude,
ACCV10(IV: 361-372).
Springer DOI 1011
BibRef
And:
Satellite image registration for attitude estimation with a constrained polynomial model,
ICIP10(925-928).
IEEE DOI 1009
BibRef
And:
Estimating satellite attitude from pushbroom sensors,
CVPR10(591-598).
IEEE DOI 1006
BibRef

de Franchis, C.[Carlo], Meinhardt-Llopis, E.[Enric], Greslou, D.[Daniel], Facciolo, G.[Gabriele],
Attitude Refinement for Orbiting Pushbroom Cameras: A Simple Polynomial Fitting Method,
IPOL(5), 2015, pp. 328-361.
DOI Link 1601
BibRef

Bettemir, Ö.H.,
Prediction of Georeferencing Precision of Pushbroom Scanner Images,
GeoRS(50), No. 3, March 2012, pp. 831-838.
IEEE DOI 1203
BibRef

Zhang, Y., Wan, Y., Huang, X., Ling, X.,
DEM-Assisted RFM Block Adjustment of Pushbroom Nadir Viewing HRS Imagery,
GeoRS(54), No. 2, February 2016, pp. 1025-1034.
IEEE DOI 1601
Accuracy BibRef

Oh, K.Y.[Kwan-Young], Jung, H.S.[Hyung-Sup],
Automated Bias-Compensation Approach for Pushbroom Sensor Modeling Using Digital Elevation Model,
GeoRS(54), No. 6, June 2016, pp. 3400-3409.
IEEE DOI 1606
Bias compensation of rational polynomial coefficients. digital elevation models BibRef

Wan, Y.[Yi], Zhang, Y.J.[Yong-Jun],
The P2L method of mismatch detection for push broom high-resolution satellite images,
PandRS(130), No. 1, 2017, pp. 317-328.
Elsevier DOI 1708
Remote, sensing BibRef

Wan, Y.[Yi], Zhang, Y.J.[Yong-Jun], Liu, X.[Xinyi],
An a-contrario method of mismatch detection for two-view pushbroom satellite images,
PandRS(153), 2019, pp. 123-136.
Elsevier DOI 1906
Image matching, Mismatch detection, Remote sensing, Satellite image, method BibRef

Hu, B.L.[Bin-Lin], Hao, S.J.[Shi-Jing], Sun, D.X.[De-Xin], Liu, Y.N.[Yin-Nian],
A novel scene-based non-uniformity correction method for SWIR push-broom hyperspectral sensors,
PandRS(131), No. 1, 2017, pp. 160-169.
Elsevier DOI 1709
Hyperspectral BibRef

Jannati, M.[Mojtaba], Zoej, M.J.V.[Mohammad Javad Valadan], Mokhtarzade, M.[Mehdi],
A novel approach for epipolar resampling of cross-track linear pushbroom imagery using orbital parameters model,
PandRS(137), 2018, pp. 1-14.
Elsevier DOI 1802
Epipolar resampling, Linear pushbroom imagery, Cross-track imaging, Orbital parameters model BibRef

Zhang, G.[Guo], Xu, K.[Kai], Zhang, Q.J.[Qing-Jun], Li, D.R.[De-Ren],
Correction of Pushbroom Satellite Imagery Interior Distortions Independent of Ground Control Points,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link 1802
BibRef

Barbieux, K.[Kévin],
Pushbroom Hyperspectral Data Orientation by Combining Feature-Based and Area-Based Co-Registration Techniques,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Jiang, Y.H.[Yong-Hua], Cui, Z.[Zihao], Zhang, G.[Guo], Wang, J.Y.[Jing-Yin], Xu, M.Z.[Miao-Zhong], Zhao, Y.B.[Yan-Bin], Xu, Y.[Yi],
CCD distortion calibration without accurate ground control data for pushbroom satellites,
PandRS(142), 2018, pp. 21-26.
Elsevier DOI 1807
Linear CCD array, Pushbroom satellite, Geometric positioning, Interior calibration, Rational polynomial coefficient BibRef

Ait-Aider, O.[Omar], Berry, F.[François],
A flexible calibration method for the intrinsic and mechanical parameters of panoramic line-scan cameras,
CVIU(180), 2019, pp. 47-58.
Elsevier DOI 1903
Camera modeling, Panoramic cameras, Calibration BibRef

Wohlfeil, J.[Jürgen], Bucher, T.[Tilman], Börner, A.[Anko], Fischer, C.[Christian], Frauenberger, O.[Olaf], Piltz, B.[Björn],
In-orbit Geometric Calibration of Firebird's Infrared Line Cameras,
PSIVT19(45-58).
Springer DOI 2003
BibRef

Funatomi, T.[Takuya], Ogawa, T.[Takehiro], Tanaka, K.[Kenichiro], Kubo, H.[Hiroyuki], Caron, G.[Guillaume], Mouaddib, E.[El_Mustapha], Matsushita, Y.[Yasuyuki], Mukaigawa, Y.[Yasuhiro],
Eliminating Temporal Illumination Variations in Whisk-broom Hyperspectral Imaging,
IJCV(130), No. 5, May 2022, pp. 1310-1324. 2205
BibRef

Xu, X.P.[Xiang-Peng], Zhuge, S.[Sheng], Guan, B.L.[Bang-Lei], Lin, B.[Bin], Gan, S.[Shuwei], Yang, X.[Xia], Zhang, X.H.[Xiao-Hu],
On-Orbit Calibration for Spaceborne Line Array Camera and LiDAR,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Begeman, C.[Christopher], Helder, D.[Dennis], Leigh, L.[Larry], Pinkert, C.[Chase],
Relative Radiometric Correction of Pushbroom Satellites Using the Yaw Maneuver,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Song, L.[Liyao], Li, H.W.[Hai-Wei], Chen, T.Q.[Tie-Qiao], Chen, J.Y.[Jun-Yu], Liu, S.[Song], Fan, J.C.[Jian-Cun], Wang, Q.[Quan],
An Integrated Solution of UAV Push-Broom Hyperspectral System Based on Geometric Correction with MSI and Radiation Correction Considering Outdoor Illumination Variation,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Wang, Z.[Zhuo], Li, H.W.[Hai-Wei], Wang, S.[Shuang], Song, L.[Liyao], Chen, J.Y.[Jun-Yu],
Methodology and Modeling of UAV Push-Broom Hyperspectral BRDF Observation Considering Illumination Correction,
RS(16), No. 3, 2024, pp. 543.
DOI Link 2402
BibRef

Li, L.T.[Li-Tao], Li, Z.[Zhen], Wang, Z.X.[Zhi-Xin], Jiang, Y.H.[Yong-Hua], Shen, X.[Xin], Wu, J.Q.[Jia-Qi],
On-Orbit Relative Radiometric Calibration of the Bayer Pattern Push-Broom Sensor for Zhuhai-1 Video Satellites,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link 2301
BibRef


Haase, I., Gläser, P., Oberst, J.,
Bundle Adjustment of Spaceborne Double-camera Push-broom Imagers And Its Application to Lroc Nac Imagery,
PRSM19(1397-1404).
DOI Link 1912
BibRef

Geng, X., Xing, S., Xu, Q.,
A Generic Rigorous Sensor Model for Photogrammetric Processing Of Pushbroom Planetary Images,
PRSM19(1389-1396).
DOI Link 1912
BibRef

Donné, S., Luong, H., Dhondt, S., Wuyts, N., Inzé, D., Goossens, B., Philips, W.,
Robust plane-based calibration for linear cameras,
ICIP17(36-40)
IEEE DOI 1803
Calibration, Cameras, Satellites, Sensor arrays, Transmission line matrix methods, linear camera BibRef

Barbieux, K., Constantin, D., Merminod, B.,
Correction Of Airborne Pushbroom Images Orientation Using Bundle Adjustment Of Frame Images,
ISPRS16(B3: 813-818).
DOI Link 1610
BibRef

Sheikh, Y.[Yaser], Gritai, A.[Alexei], Shah, M.[Mubarak],
On the Spacetime Geometry of Galilean Cameras,
CVPR07(1-8).
IEEE DOI 0706
Camera moving at constant velocity. Perspective and pushbroom. BibRef

Yu, J.Y.[Jing-Yi], McMillan, L.[Leonard],
General Linear Cameras,
ECCV04(Vol II: 14-27).
Springer DOI 0405
unifies many previous camera models into a single representation. capable of describing all perspective (pinhole), orthographic, and many multiperspective (including pushbroom and two-slit) cameras, as well as epipolar plane images. BibRef

Chapter on Active Vision, Camera Calibration, Mobile Robots, Navigation, Road Following continues in
Refractive, Water, Underwater Camera Calibration .


Last update:Mar 16, 2024 at 20:36:19