15.3.1.6 Wheelchairs, Control, Design, Ssystem

Chapter Contents (Back)
Autonomous Vehicles. Wheelchairs.

Katevas, N.L., Sgouros, N.M., Tzafestas, S.G., Papakonstantinou, G., Beattie, P., Bishop, J.M., Tsanakas, P., Koutsouris, D.,
The Autonomous Mobile Robot Senario: A Sensor-Aided Intelligent Navigation System for Powered Wheelchairs,
RAMag(4), No. 4, December 1997, pp. 60-70. 9801
BibRef

Crisman, J.D.[Jill D.], Cleary, M.E.[Michael E.], Rojas, J.C.[Juan Carlos],
The Deictically Controlled Wheelchair,
IVC(16), No. 4, March 1998, pp. 235-249.
Elsevier DOI 9804
BibRef

Galindo, C., Gonzalez, J., Fernandez-Madrigal, J.A.,
Control Architecture for Human-Robot Integration: Application to a Robotic Wheelchair,
SMC-B(36), No. 5, October 2006, pp. 1053-1067.
IEEE DOI 0609
BibRef

Satoh, Y.[Yutaka], Sakaue, K.[Katsuhiko],
An Omnidirectional Stereo Vision-Based Smart Wheelchair,
JIVP(2007), 2007, pp. xx-yy.
DOI Link 0804
BibRef
Earlier:
Development of Omni-directional Stereo Vision-based Intelligent Electric Wheelchair,
ICPR06(IV: 799-804).
IEEE DOI 0609
BibRef

Andreopoulos, A.[Alexander], Tsotsos, J.K.[John K.],
A Computational Learning Theory of Active Object Recognition Under Uncertainty,
IJCV(101), No. 1, January 2013, pp. 95-142.
WWW Link. 1302
BibRef
Earlier:
A theory of active object localization,
ICCV09(903-910).
IEEE DOI 0909
BibRef
Earlier:
Active Vision for Door Localization and Door Opening using Playbot: A Computer Controlled Wheelchair for People with Mobility Impairments,
CRV08(3-10).
IEEE DOI 0805
BibRef

Leishman, F., Monfort, V., Horn, O., Bourhis, G.,
Driving Assistance by Deictic Control for a Smart Wheelchair: The Assessment Issue,
HMS(44), No. 1, February 2014, pp. 66-77.
IEEE DOI 1403
cognition BibRef

Jiang, H.R.[Hai-Rong], Zhang, T.[Ting], Wachs, J.P.[Juan P.], Duerstock, B.S.[Bradley S.],
Enhanced control of a wheelchair-mounted robotic manipulator using 3-D vision and multimodal interaction,
CVIU(149), No. 1, 2016, pp. 21-31.
Elsevier DOI 1606
3D vision BibRef

Narayanan, V.K.[Vishnu K.], Pasteau, F.[François], Marchal, M.[Maud], Krupa, A.[Alexandre], Babel, M.[Marie],
Vision-based adaptive assistance and haptic guidance for safe wheelchair corridor following,
CVIU(149), No. 1, 2016, pp. 171-185.
Elsevier DOI 1606
Vision-based robotics BibRef

Leaman, J., La, H.M.,
A Comprehensive Review of Smart Wheelchairs: Past, Present, and Future,
HMS(47), No. 4, August 2017, pp. 486-499.
IEEE DOI 1708
Batteries, Computers, Human factors, Mobile robots, Sensors, Technological innovation, Wheelchairs, Autonomous wheelchair, human factors, intelligent wheelchair, robotic wheelchair, smart, wheelchair, (SW) BibRef

Scudellari, M.,
Self-driving wheelchairs debut in hospitals and airports,
Spectrum(54), No. 10, October 2017, pp. 14-14.
IEEE DOI 1710
News Item. airports, hospitals, remotely operated vehicles, wheelchairs, Japanese airport, SMART, Singapore Changi general hospital, Singapore-MIT Alliance, autonomous vehicle, electric taxi, golf cart, robotic wheelchair, self-driving, wheelchair BibRef

Cruz, A., Pires, G., Lopes, A., Carona, C., Nunes, U.J.,
A Self-Paced BCI With a Collaborative Controller for Highly Reliable Wheelchair Driving: Experimental Tests With Physically Disabled Individuals,
HMS(51), No. 2, April 2021, pp. 109-119.
IEEE DOI 2103
Wheelchairs, Navigation, Task analysis, Collaboration, Reliability, Usability, Control systems, Brain-computer interface (BCI), self-paced BibRef

Seki, H.[Hirokazu], Kuramoto, T.[Tatsuya],
Fuzzy Inference-Based Driving Control System for Pushrim-Activated Power-Assisted Wheelchairs Considering User Characteristics,
HMS(52), No. 5, October 2022, pp. 1049-1059.
IEEE DOI 2209
Wheelchairs, Torque, Training, Control systems, Estimation, Turning, Wheels, Driving control, fuzzy inference, operation training, target position estimation BibRef

Luo, H.T.[Hai-Tao], Yang, Z.M.[Zong-Ming], Yin, P.[Peng], Brooks, J.O.[Johnell O.], Li, B.[Bing],
Modeling and Prediction of User Stability and Comfortability on Autonomous Wheelchairs With 3-D Mapping,
HMS(52), No. 6, December 2022, pp. 1216-1226.
IEEE DOI 2212
Wheelchairs, Biological system modeling, Wheels, Vibrations, Stability criteria, Solid modeling, Autonomous vehicles, user comfortability BibRef

Yuan, M.[Meng], Wang, Y.[Ye], Li, L.[Lei], Chai, T.Y.[Tian-You], Ang, W.T.[Wei Tech],
Safety-Based Speed Control of a Wheelchair Using Robust Adaptive Model Predictive Control,
Cyber(54), No. 8, August 2024, pp. 4464-4474.
IEEE DOI 2408
Wheelchairs, Mobile robots, Wheels, Task analysis, Safety, Velocity control, Tracking, Model predictive control (MPC), speed tracking BibRef


Kutbi, M., Chang, Y., Sun, B., Mordohai, P.,
Learning to Navigate Robotic Wheelchairs from Demonstration: Is Training in Simulation Viable?,
ACVR19(2522-2531)
IEEE DOI 2004
control engineering computing, handicapped aids, learning (artificial intelligence), mobile robots, navigation, assistive robotics BibRef

Ahmadi, A., Argany, M., Neysani Samany, N., Rasooli, M.,
Urban Vision Development in Order to Monitor Wheelchair Users Based On The Yolo Algorithm,
SMPR19(25-27).
DOI Link 1912
BibRef

Manero, A.[Albert], Oskarsson, B.[Bjorn], Sparkman, J.[John], Smith, P.A.[Peter A.], Dombrowski, M.[Matt], Peddinti, M.[Mrudula], Rodriguez, A.[Angel], Vila, J.[Juan], Jones, B.[Brendan],
Xavier Electromyographic Wheelchair Control and Virtual Training,
VAMR19(I:133-142).
Springer DOI 1909
BibRef

Ferreira, V.C.T.[Veridianna Cristina Teodoro], Carvalho, A.[Agda],
Inclusive Design and Textile Technology in the Everyday Lives of Wheelchair Dependent,
DHM18(295-307).
Springer DOI 1807
BibRef

Mukhtar, A., Cree, M.J., Scott, J.B., Streeter, L.,
Mobility Aids Detection Using Convolution Neural Network (CNN),
IVCNZ18(1-5)
IEEE DOI 1902
Training, Videos, Databases, Neural networks, Convolution, Surveillance, Wheelchairs, convolutional neural network, YOLO BibRef

Mamun, S.A.[Shamim Al], Fukuda, H.[Hisato], Lam, A.[Antony], Kobayashi, Y.[Yoshinori], Kuno, Y.[Yoshinori],
Autonomous Bus Boarding Robotic Wheelchair Using Bidirectional Sensing Systems,
ISVC18(737-747).
Springer DOI 1811
BibRef

Fu, J.C.[Ji-Cheng], Li, F.[Fang], Ong, M.[Marcus], Cook, T.[Tyler], Qian, G.[Gang], Zhao, Y.D.[Yan Daniel],
A Novel Approach for Assessing Power Wheelchair Users' Mobility by Using Curve Fitting,
DHM18(158-168).
Springer DOI 1807
BibRef

Chang, Y., Kutbi, M., Agadakos, N., Sun, B., Mordohai, P.,
A Shared Autonomy Approach for Wheelchair Navigation Based on Learned User Preferences,
ACVR17(1490-1499)
IEEE DOI 1802
Collision avoidance, Mobile robots, Navigation, Path planning, Safety, Wheelchairs BibRef

Kondori, F.A.[F. Abedan], Yousefi, S., Liu, L.[Li], Li, H.B.[Hai-Bo],
Head operated electric wheelchair,
Southwest14(53-56)
IEEE DOI 1406
handicapped aids BibRef

Ghorbel, A., Amor, N.B.[N. Ben], Jallouli, M.,
An embedded real-time hands free control of an electrical wheelchair,
VCIP14(221-224)
IEEE DOI 1504
control engineering computing BibRef

Ji, Y.G.[Yeoung-Gwang], Lee, M.J.[Myeong-Jin], Kim, E.Y.[Eun Yi],
An Intelligent Wheelchair to Enable Safe Mobility of the Disabled People with Motor and Cognitive Impairments,
ACVR14(702-715).
Springer DOI 1504
BibRef

Suzuki, R.[Ryota], Yamada, T.[Taichi], Arai, M.[Masaya], Sato, Y.[Yoshihisa], Kobayashi, Y.[Yoshinori], Kuno, Y.[Yoshinori],
Multiple Robotic Wheelchair System Considering Group Communication,
ISVC14(I: 805-814).
Springer DOI 1501
BibRef

Nakanishi, M.[Masaki], Mitsukura, Y.[Yasue],
Wheelchair control system by using electrooculogram signal processing,
FCV13(137-142).
IEEE DOI 1304
BibRef

Miro, J.V.[Jaime Valls], Poon, J.[James], Huang, S.D.[Shou-Dong],
Low-cost visual tracking with an intelligent wheelchair for innovative assistive care,
ICARCV12(1540-1545).
IEEE DOI 1304
BibRef

Wang, C.[Chao], Savkin, A.V.[Andrey V.], Nguyen, T.N.[Tuan Nghia], Nguyen, H.T.[Hung T.],
An algorithm for collision free navigation of an intelligent powered wheelchair in dynamic environments,
ICARCV12(1571-1575).
IEEE DOI 1304
BibRef

Kinpara, Y.[Yuki], Takano, E.[Elly], Kobayashi, Y.[Yoshinori], Kuno, Y.[Yoshinori],
Situation-driven control of a robotic wheelchair to follow a caregiver,
FCV11(1-6).
IEEE DOI 1102
BibRef

Gong, K., Green, R.,
Ground-plane detection using stereo depth values for wheelchair guidance,
IVCNZ09(97-101).
IEEE DOI 0911
BibRef

van Workum, K., Green, R.,
Smart wheelchair guidance using optical flow,
IVCNZ09(7-11).
IEEE DOI 0911
BibRef

Murarka, A., Modayil, J., Kuipers, B.,
Building Local Safety Maps for a Wheelchair Robot using Vision and Lasers,
CRV06(25-25).
IEEE DOI 0607
BibRef

Kuno, Y., Nakanishi, S., Murashima, T., Shimada, N., Shirai, Y.,
Robotic wheelchair observing its inside and outside,
CIAP99(502-507).
IEEE DOI 9909
BibRef

Chapter on Active Vision, Camera Calibration, Mobile Robots, Navigation, Road Following continues in
Legged Locomotion Robots, Assistants .


Last update:Aug 28, 2024 at 16:02:19