Zhang, N.[Ning],
Yang, G.J.[Gui-Jun],
Pan, Y.C.[Yu-Chun],
Yang, X.D.[Xiao-Dong],
Chen, L.P.[Li-Ping],
Zhao, C.J.[Chun-Jiang],
A Review of Advanced Technologies and Development for
Hyperspectral-Based Plant Disease Detection in the Past Three Decades,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
Survey, Plant Disease.
BibRef
Shin, J.Y.[Ju-Young],
Kim, B.Y.[Bu-Yo],
Park, J.[Junsang],
Kim, K.R.[Kyu Rang],
Cha, J.W.[Joo Wan],
Prediction of Leaf Wetness Duration Using Geostationary Satellite
Observations and Machine Learning Algorithms,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
Leaf wetness duration (LWD) and plant diseases are strongly associated
BibRef
Sinha, A.[Aditya],
Shekhawat, R.S.[Rajveer Singh],
Review of image processing approaches for detecting plant diseases,
IET-IPR(14), No. 8, 19 June 2020, pp. 1427-1439.
DOI Link
2005
BibRef
Poblete, T.,
Camino, C.,
Beck, P.S.A.,
Hornero, A.,
Kattenborn, T.,
Saponari, M.,
Boscia, D.,
Navas-Cortes, J.A.,
Zarco-Tejada, P.J.,
Detection of Xylella fastidiosa infection symptoms with airborne
multispectral and thermal imagery: Assessing bandset reduction
performance from hyperspectral analysis,
PandRS(162), 2020, pp. 27-40.
Elsevier DOI
2004
Hyperspectral, Multispectral, Thermal, Radiative transfer,
Airborne, Machine learning
BibRef
Liu, X.,
Min, W.,
Mei, S.,
Wang, L.,
Jiang, S.,
Plant Disease Recognition: A Large-Scale Benchmark Dataset and a
Visual Region and Loss Reweighting Approach,
IP(30), 2021, pp. 2003-2015.
IEEE DOI
2101
Diseases, Agriculture, Plants (biology), Visualization,
Image recognition, Feature extraction, Medical diagnosis, feature aggregation
BibRef
Gunasekaran, S.[Suresh],
Gunavathi, K.[Kandasamy],
Delta tributary network: An efficient alternate approach for
bottleneck layers in CNN for plant disease classification,
IET-IPR(15), No. 3, 2021, pp. 818-832.
DOI Link
2106
BibRef
Chen, J.[Junde],
Zhang, D.[Defu],
Suzauddola, M.[Md],
Nanehkaran, Y.A.[Yaser Ahangari],
Sun, Y.D.[Yuan-Dong],
Identification of plant disease images via a squeeze-and-excitation
MobileNet model and twice transfer learning,
IET-IPR(15), No. 5, 2021, pp. 1115-1127.
DOI Link
2106
BibRef
Ouhami, M.[Maryam],
Hafiane, A.[Adel],
Es-Saady, Y.[Youssef],
El Hajji, M.[Mohamed],
Canals, R.[Raphael],
Computer Vision, IoT and Data Fusion for Crop Disease Detection Using
Machine Learning: A Survey and Ongoing Research,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Oh, S.C.[Sung-Chan],
Lee, D.Y.[Da-Young],
Gongora-Canul, C.[Carlos],
Ashapure, A.[Akash],
Carpenter, J.[Joshua],
Cruz, A.P.,
Fernandez-Campos, M.[Mariela],
Lane, B.Z.[Brenden Z.],
Telenko, D.E.P.[Darcy E. P.],
Jung, J.H.[Jin-Ha],
Cruz, C.D.,
Tar Spot Disease Quantification Using Unmanned Aircraft Systems (UAS)
Data,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Wei, X.[Xing],
Johnson, M.A.[Marcela A.],
Langston, D.B.[David B.],
Mehl, H.L.[Hillary L.],
Li, S.[Song],
Identifying Optimal Wavelengths as Disease Signatures Using
Hyperspectral Sensor and Machine Learning,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Neupane, K.[Krishna],
Baysal-Gurel, F.[Fulya],
Automatic Identification and Monitoring of Plant Diseases Using
Unmanned Aerial Vehicles: A Review,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Liang, G.C.[Gui-Chou],
Ouyang, Y.C.[Yen-Chieh],
Dai, S.M.[Shu-Mei],
Detection and Classification of Rice Infestation with Rice Leaf
Folder (Cnaphalocrocis medinalis) Using Hyperspectral Imaging
Techniques,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Luo, L.[Lili],
Chang, Q.R.[Qing-Rui],
Wang, Q.[Qi],
Huang, Y.[Yong],
Identification and Severity Monitoring of Maize Dwarf Mosaic Virus
Infection Based on Hyperspectral Measurements,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhang, Y.[Yan],
Wa, S.Y.[Shi-Yun],
Liu, Y.T.[Yu-Tong],
Zhou, X.Y.[Xiao-Ya],
Sun, P.[Pengshuo],
Ma, Q.[Qin],
High-Accuracy Detection of Maize Leaf Diseases CNN Based on
Multi-Pathway Activation Function Module,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Lei, S.H.[Shu-Han],
Luo, J.B.[Jian-Biao],
Tao, X.J.[Xiao-Jun],
Qiu, Z.X.[Zi-Xuan],
Remote Sensing Detecting of Yellow Leaf Disease of Arecanut Based on
UAV Multisource Sensors,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Pane, C.[Catello],
Manganiello, G.[Gelsomina],
Nicastro, N.[Nicola],
Carotenuto, F.[Francesco],
Early Detection of Wild Rocket Tracheofusariosis Using Hyperspectral
Image-Based Machine Learning,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
McDonald, M.R.[Mary Ruth],
Tayviah, C.S.[Cyril Selasi],
Gossen, B.D.[Bruce D.],
Human vs. Machine, the Eyes Have It. Assessment of Stemphylium Leaf
Blight on Onion Using Aerial Photographs from an NIR Camera,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Chen, Y.P.[Yi-Peng],
Xu, K.[Ke],
Zhou, P.[Peng],
Ban, X.J.[Xiao-Juan],
He, D.[Di],
Improved cross entropy loss for noisy labels in vision leaf disease
classification,
IET-IPR(16), No. 6, 2022, pp. 1511-1519.
DOI Link
2204
BibRef
Wang, Y.M.[Yeniu Mickey],
Ostendorf, B.[Bertram],
Gautam, D.[Deepak],
Habili, N.[Nuredin],
Pagay, V.[Vinay],
Plant Viral Disease Detection: From Molecular Diagnosis to Optical
Sensing Technology: A Multidisciplinary Review,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Guan, Q.[Qiang],
Song, K.[Kai],
Feng, S.[Shuai],
Yu, F.H.[Feng-Hua],
Xu, T.Y.[Tong-Yu],
Detection of Peanut Leaf Spot Disease Based on Leaf-, Plant-, and
Field-Scale Hyperspectral Reflectance,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Prasad, A.[Aaditya],
Mehta, N.[Nikhil],
Horak, M.[Matthew],
Bae, W.D.[Wan D.],
A Two-Step Machine Learning Approach for Crop Disease Detection Using
GAN and UAV Technology,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Kuswidiyanto, L.W.[Lukas Wiku],
Noh, H.H.[Hyun-Ho],
Han, X.Z.[Xiong-Zhe],
Plant Disease Diagnosis Using Deep Learning Based on Aerial
Hyperspectral Images: A Review,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Shahi, T.B.[Tej Bahadur],
Xu, C.Y.[Cheng-Yuan],
Neupane, A.[Arjun],
Guo, W.[William],
Recent Advances in Crop Disease Detection Using UAV and Deep Learning
Techniques,
RS(15), No. 9, 2023, pp. xx-yy.
DOI Link
2305
BibRef
Pumhirunroj, B.[Benjamabhorn],
Littidej, P.[Patiwat],
Boonmars, T.[Thidarut],
Bootyothee, K.[Kanokwan],
Artchayasawat, A.[Atchara],
Khamphilung, P.[Phusit],
Slack, D.[Donald],
Machine-Learning-Based Forest Classification and Regression (FCR) for
Spatial Prediction of Liver Fluke Opisthorchis viverrini (OV)
Infection in Small Sub-Watersheds,
IJGI(12), No. 12, 2023, pp. 503.
DOI Link
2312
food-borne trematode parasite.
BibRef
Lyu, Y.[Yang],
Han, X.Z.[Xiong-Zhe],
Wang, P.[Pingan],
Shin, J.Y.[Jae-Yeong],
Ju, M.W.[Min-Woong],
Unmanned Aerial Vehicle-Based RGB Imaging and Lightweight Deep
Learning for Downy Mildew Detection in Kimchi Cabbage,
RS(17), No. 14, 2025, pp. 2388.
DOI Link
2508
BibRef
Jannat, N.[Nahrin],
Hasan, S.M.M.[S.M. Mahedy],
Zibran, M.F.[Minhaz F.],
A novel ensemble approach for crop disease detection by leveraging
customized EfficientNets and interpretability,
PRL(197), 2025, pp. 370-377.
Elsevier DOI
2510
EfficientNet, Misclassification, Hamming loss,
Ensemble learning, Interpretability, Crop disease detection,
Pattern recognition
BibRef
Li, J.J.[Jun-Ji],
Zhao, Y.X.[Yu-Xin],
Zhang, T.[Tianteng],
Du, J.H.[Jia-Hui],
Li, Y.[Yucai],
Wu, L.[Ling],
Liu, X.N.[Xiang-Nan],
Early Warning of Anthracnose on Illicium verum Through the
Synergistic Integration of Environmental and Remote Sensing Time
Series Data,
RS(17), No. 19, 2025, pp. 3294.
DOI Link
2510
BibRef
Maski, P.[Prajwal],
Thondiyath, A.[Asokan],
Plant Disease Detection Using Advanced Deep Learning Algorithms: A
Case Study of Papaya Ring Spot Disease,
ICIVC21(49-54)
IEEE DOI
2112
Training, Deep learning, Productivity, Agricultural robots,
Plants (biology), Robot sensing systems,
model training
BibRef
Dadsetan, S.[Saba],
Pichler, D.[David],
Wilson, D.[David],
Hovakimyan, N.[Naira],
Hobbs, J.[Jennifer],
Superpixels and Graph Convolutional Neural Networks for Efficient
Detection of Nutrient Deficiency Stress from Aerial Imagery,
AgriVision21(2944-2953)
IEEE DOI
2109
Image segmentation, Semantics, Agriculture, Real-time systems,
Computational efficiency, Convolutional neural networks
BibRef
Garg, K.[Kanish],
Bhugra, S.[Swati],
Lall, B.[Brejesh],
Automatic Quantification of Plant Disease from Field Image Data Using
Deep Learning,
WACV21(1964-1971)
IEEE DOI
2106
Deep learning, Training, Location awareness, Image segmentation,
Visualization, Pipelines, Manuals
BibRef
Lee, S.H.[Sue Han],
Goëau, H.[Hervé],
Bonnet, P.[Pierre],
Joly, A.[Alexis],
Conditional Multi-Task learning for Plant Disease Identification,
ICPR21(3320-3327)
IEEE DOI
2105
Training, Learning systems, Deep learning, Scalability,
Benchmark testing, Diseases,
multi-task learning
BibRef
Fuentes, A.[Alvaro],
Yoon, S.[Sook],
Park, D.S.[Dong Sun],
Deep Learning-based Techniques for Plant Diseases Recognition in
Real-field Scenarios,
ACIVS20(3-14).
Springer DOI
2003
BibRef
Costa, J.[Joana],
Silva, C.[Catarina],
Ribeiro, B.[Bernardete],
Hierarchical Deep Learning Approach for Plant Disease Detection,
IbPRIA19(II:383-393).
Springer DOI
1910
BibRef
Moghadam, P.,
Ward, D.,
Goan, E.,
Jayawardena, S.,
Sikka, P.,
Hernandez, E.,
Plant Disease Detection Using Hyperspectral Imaging,
DICTA17(1-8)
IEEE DOI
1804
agriculture, crops, feature extraction, hyperspectral imaging,
image classification, learning (artificial intelligence),
Vegetation mapping
BibRef
Nebiker, S.,
Lack, N.,
Abächerli, M.,
Läderach, S.,
Light-weight Multispectral UAV Sensors And Their Capabilities For
Predicting Grain Yield And Detecting Plant Diseases,
ISPRS16(B1: 963-970).
DOI Link
1610
BibRef
Siricharoen, P.,
Scotney, B.,
Morrow, P.,
Parr, G.,
Texture and shape attribute selection for plant disease monitoring in
a mobile cloud-based environment,
ICIP16(489-493)
IEEE DOI
1610
Diseases
BibRef
Ennadifi, E.,
Laraba, S.,
Vincke, D.,
Mercatoris, B.,
Gosselin, B.,
Wheat Diseases Classification and Localization Using Convolutional
Neural Networks and GradCAM Visualization,
ISCV20(1-5)
IEEE DOI
2011
agriculture, convolutional neural nets, crops, feature extraction,
image classification, image segmentation,
plant diseases detection
BibRef
Kawasaki, Y.[Yusuke],
Uga, H.[Hiroyuki],
Kagiwada, S.[Satoshi],
Iyatomi, H.[Hitoshi],
Basic Study of Automated Diagnosis of Viral Plant Diseases Using
Convolutional Neural Networks,
ISVC15(II: 638-645).
Springer DOI
1601
BibRef
Neumann, M.[Marion],
Hallau, L.[Lisa],
Klatt, B.[Benjamin],
Kersting, K.[Kristian],
Bauckhage, C.[Christian],
Erosion Band Features for Cell Phone Image Based Plant Disease
Classification,
ICPR14(3315-3320)
IEEE DOI
1412
Cameras
BibRef
Pang, J.[Jun],
Bai, Z.Y.[Zhong-Ying],
Lai, J.C.[Jun-Chen],
Li, S.K.[Shao-Kun],
Automatic segmentation of crop leaf spot disease images by integrating
local threshold and seeded region growing,
IASP11(590-594).
IEEE DOI
1112
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
LiDAR for Land Cover, Laser Scanners for Land Cover, Remote Sensing .