Zhang, N.[Ning],
Yang, G.J.[Gui-Jun],
Pan, Y.C.[Yu-Chun],
Yang, X.D.[Xiao-Dong],
Chen, L.P.[Li-Ping],
Zhao, C.J.[Chun-Jiang],
A Review of Advanced Technologies and Development for
Hyperspectral-Based Plant Disease Detection in the Past Three Decades,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
Survey, Plant Disease.
BibRef
Shin, J.Y.[Ju-Young],
Kim, B.Y.[Bu-Yo],
Park, J.[Junsang],
Kim, K.R.[Kyu Rang],
Cha, J.W.[Joo Wan],
Prediction of Leaf Wetness Duration Using Geostationary Satellite
Observations and Machine Learning Algorithms,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link
2009
Leaf wetness duration (LWD) and plant diseases are strongly associated
BibRef
Sinha, A.[Aditya],
Shekhawat, R.S.[Rajveer Singh],
Review of image processing approaches for detecting plant diseases,
IET-IPR(14), No. 8, 19 June 2020, pp. 1427-1439.
DOI Link
2005
BibRef
Poblete, T.,
Camino, C.,
Beck, P.S.A.,
Hornero, A.,
Kattenborn, T.,
Saponari, M.,
Boscia, D.,
Navas-Cortes, J.A.,
Zarco-Tejada, P.J.,
Detection of Xylella fastidiosa infection symptoms with airborne
multispectral and thermal imagery: Assessing bandset reduction
performance from hyperspectral analysis,
PandRS(162), 2020, pp. 27-40.
Elsevier DOI
2004
Hyperspectral, Multispectral, Thermal, Radiative transfer,
Airborne, Machine learning
BibRef
Liu, X.,
Min, W.,
Mei, S.,
Wang, L.,
Jiang, S.,
Plant Disease Recognition: A Large-Scale Benchmark Dataset and a
Visual Region and Loss Reweighting Approach,
IP(30), 2021, pp. 2003-2015.
IEEE DOI
2101
Diseases, Agriculture, Plants (biology), Visualization,
Image recognition, Feature extraction, Medical diagnosis, feature aggregation
BibRef
Gunasekaran, S.[Suresh],
Gunavathi, K.[Kandasamy],
Delta tributary network: An efficient alternate approach for
bottleneck layers in CNN for plant disease classification,
IET-IPR(15), No. 3, 2021, pp. 818-832.
DOI Link
2106
BibRef
Chen, J.[Junde],
Zhang, D.[Defu],
Suzauddola, M.[Md],
Nanehkaran, Y.A.[Yaser Ahangari],
Sun, Y.D.[Yuan-Dong],
Identification of plant disease images via a squeeze-and-excitation
MobileNet model and twice transfer learning,
IET-IPR(15), No. 5, 2021, pp. 1115-1127.
DOI Link
2106
BibRef
Ouhami, M.[Maryam],
Hafiane, A.[Adel],
Es-Saady, Y.[Youssef],
El Hajji, M.[Mohamed],
Canals, R.[Raphael],
Computer Vision, IoT and Data Fusion for Crop Disease Detection Using
Machine Learning: A Survey and Ongoing Research,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Oh, S.C.[Sung-Chan],
Lee, D.Y.[Da-Young],
Gongora-Canul, C.[Carlos],
Ashapure, A.[Akash],
Carpenter, J.[Joshua],
Cruz, A.P.,
Fernandez-Campos, M.[Mariela],
Lane, B.Z.[Brenden Z.],
Telenko, D.E.P.[Darcy E. P.],
Jung, J.H.[Jin-Ha],
Cruz, C.D.,
Tar Spot Disease Quantification Using Unmanned Aircraft Systems (UAS)
Data,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Wei, X.[Xing],
Johnson, M.A.[Marcela A.],
Langston, D.B.[David B.],
Mehl, H.L.[Hillary L.],
Li, S.[Song],
Identifying Optimal Wavelengths as Disease Signatures Using
Hyperspectral Sensor and Machine Learning,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Neupane, K.[Krishna],
Baysal-Gurel, F.[Fulya],
Automatic Identification and Monitoring of Plant Diseases Using
Unmanned Aerial Vehicles: A Review,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Liang, G.C.[Gui-Chou],
Ouyang, Y.C.[Yen-Chieh],
Dai, S.M.[Shu-Mei],
Detection and Classification of Rice Infestation with Rice Leaf
Folder (Cnaphalocrocis medinalis) Using Hyperspectral Imaging
Techniques,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Luo, L.[Lili],
Chang, Q.R.[Qing-Rui],
Wang, Q.[Qi],
Huang, Y.[Yong],
Identification and Severity Monitoring of Maize Dwarf Mosaic Virus
Infection Based on Hyperspectral Measurements,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhang, Y.[Yan],
Wa, S.Y.[Shi-Yun],
Liu, Y.T.[Yu-Tong],
Zhou, X.Y.[Xiao-Ya],
Sun, P.[Pengshuo],
Ma, Q.[Qin],
High-Accuracy Detection of Maize Leaf Diseases CNN Based on
Multi-Pathway Activation Function Module,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Lei, S.H.[Shu-Han],
Luo, J.B.[Jian-Biao],
Tao, X.J.[Xiao-Jun],
Qiu, Z.X.[Zi-Xuan],
Remote Sensing Detecting of Yellow Leaf Disease of Arecanut Based on
UAV Multisource Sensors,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Pane, C.[Catello],
Manganiello, G.[Gelsomina],
Nicastro, N.[Nicola],
Carotenuto, F.[Francesco],
Early Detection of Wild Rocket Tracheofusariosis Using Hyperspectral
Image-Based Machine Learning,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
McDonald, M.R.[Mary Ruth],
Tayviah, C.S.[Cyril Selasi],
Gossen, B.D.[Bruce D.],
Human vs. Machine, the Eyes Have It. Assessment of Stemphylium Leaf
Blight on Onion Using Aerial Photographs from an NIR Camera,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Chen, Y.P.[Yi-Peng],
Xu, K.[Ke],
Zhou, P.[Peng],
Ban, X.J.[Xiao-Juan],
He, D.[Di],
Improved cross entropy loss for noisy labels in vision leaf disease
classification,
IET-IPR(16), No. 6, 2022, pp. 1511-1519.
DOI Link
2204
BibRef
Wang, Y.M.[Yeniu Mickey],
Ostendorf, B.[Bertram],
Gautam, D.[Deepak],
Habili, N.[Nuredin],
Pagay, V.[Vinay],
Plant Viral Disease Detection: From Molecular Diagnosis to Optical
Sensing Technology: A Multidisciplinary Review,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Guan, Q.[Qiang],
Song, K.[Kai],
Feng, S.[Shuai],
Yu, F.H.[Feng-Hua],
Xu, T.Y.[Tong-Yu],
Detection of Peanut Leaf Spot Disease Based on Leaf-, Plant-, and
Field-Scale Hyperspectral Reflectance,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Prasad, A.[Aaditya],
Mehta, N.[Nikhil],
Horak, M.[Matthew],
Bae, W.D.[Wan D.],
A Two-Step Machine Learning Approach for Crop Disease Detection Using
GAN and UAV Technology,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Kuswidiyanto, L.W.[Lukas Wiku],
Noh, H.H.[Hyun-Ho],
Han, X.Z.[Xiong-Zhe],
Plant Disease Diagnosis Using Deep Learning Based on Aerial
Hyperspectral Images: A Review,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Shahi, T.B.[Tej Bahadur],
Xu, C.Y.[Cheng-Yuan],
Neupane, A.[Arjun],
Guo, W.[William],
Recent Advances in Crop Disease Detection Using UAV and Deep Learning
Techniques,
RS(15), No. 9, 2023, pp. xx-yy.
DOI Link
2305
BibRef
Pumhirunroj, B.[Benjamabhorn],
Littidej, P.[Patiwat],
Boonmars, T.[Thidarut],
Bootyothee, K.[Kanokwan],
Artchayasawat, A.[Atchara],
Khamphilung, P.[Phusit],
Slack, D.[Donald],
Machine-Learning-Based Forest Classification and Regression (FCR) for
Spatial Prediction of Liver Fluke Opisthorchis viverrini (OV)
Infection in Small Sub-Watersheds,
IJGI(12), No. 12, 2023, pp. 503.
DOI Link
2312
food-borne trematode parasite.
BibRef
Maski, P.[Prajwal],
Thondiyath, A.[Asokan],
Plant Disease Detection Using Advanced Deep Learning Algorithms: A
Case Study of Papaya Ring Spot Disease,
ICIVC21(49-54)
IEEE DOI
2112
Training, Deep learning, Productivity, Agricultural robots,
Plants (biology), Robot sensing systems,
model training
BibRef
Dadsetan, S.[Saba],
Pichler, D.[David],
Wilson, D.[David],
Hovakimyan, N.[Naira],
Hobbs, J.[Jennifer],
Superpixels and Graph Convolutional Neural Networks for Efficient
Detection of Nutrient Deficiency Stress from Aerial Imagery,
AgriVision21(2944-2953)
IEEE DOI
2109
Image segmentation, Semantics, Agriculture, Real-time systems,
Computational efficiency, Convolutional neural networks
BibRef
Garg, K.[Kanish],
Bhugra, S.[Swati],
Lall, B.[Brejesh],
Automatic Quantification of Plant Disease from Field Image Data Using
Deep Learning,
WACV21(1964-1971)
IEEE DOI
2106
Deep learning, Training, Location awareness, Image segmentation,
Visualization, Pipelines, Manuals
BibRef
Lee, S.H.[Sue Han],
Goëau, H.[Hervé],
Bonnet, P.[Pierre],
Joly, A.[Alexis],
Conditional Multi-Task learning for Plant Disease Identification,
ICPR21(3320-3327)
IEEE DOI
2105
Training, Learning systems, Deep learning, Scalability,
Benchmark testing, Diseases,
multi-task learning
BibRef
Fuentes, A.[Alvaro],
Yoon, S.[Sook],
Park, D.S.[Dong Sun],
Deep Learning-based Techniques for Plant Diseases Recognition in
Real-field Scenarios,
ACIVS20(3-14).
Springer DOI
2003
BibRef
Costa, J.[Joana],
Silva, C.[Catarina],
Ribeiro, B.[Bernardete],
Hierarchical Deep Learning Approach for Plant Disease Detection,
IbPRIA19(II:383-393).
Springer DOI
1910
BibRef
Moghadam, P.,
Ward, D.,
Goan, E.,
Jayawardena, S.,
Sikka, P.,
Hernandez, E.,
Plant Disease Detection Using Hyperspectral Imaging,
DICTA17(1-8)
IEEE DOI
1804
agriculture, crops, feature extraction, hyperspectral imaging,
image classification, learning (artificial intelligence),
Vegetation mapping
BibRef
Nebiker, S.,
Lack, N.,
Abächerli, M.,
Läderach, S.,
Light-weight Multispectral UAV Sensors And Their Capabilities For
Predicting Grain Yield And Detecting Plant Diseases,
ISPRS16(B1: 963-970).
DOI Link
1610
BibRef
Siricharoen, P.,
Scotney, B.,
Morrow, P.,
Parr, G.,
Texture and shape attribute selection for plant disease monitoring in
a mobile cloud-based environment,
ICIP16(489-493)
IEEE DOI
1610
Diseases
BibRef
Ennadifi, E.,
Laraba, S.,
Vincke, D.,
Mercatoris, B.,
Gosselin, B.,
Wheat Diseases Classification and Localization Using Convolutional
Neural Networks and GradCAM Visualization,
ISCV20(1-5)
IEEE DOI
2011
agriculture, convolutional neural nets, crops, feature extraction,
image classification, image segmentation,
plant diseases detection
BibRef
Kawasaki, Y.[Yusuke],
Uga, H.[Hiroyuki],
Kagiwada, S.[Satoshi],
Iyatomi, H.[Hitoshi],
Basic Study of Automated Diagnosis of Viral Plant Diseases Using
Convolutional Neural Networks,
ISVC15(II: 638-645).
Springer DOI
1601
BibRef
Neumann, M.[Marion],
Hallau, L.[Lisa],
Klatt, B.[Benjamin],
Kersting, K.[Kristian],
Bauckhage, C.[Christian],
Erosion Band Features for Cell Phone Image Based Plant Disease
Classification,
ICPR14(3315-3320)
IEEE DOI
1412
Cameras
BibRef
Pang, J.[Jun],
Bai, Z.Y.[Zhong-Ying],
Lai, J.C.[Jun-Chen],
Li, S.K.[Shao-Kun],
Automatic segmentation of crop leaf spot disease images by integrating
local threshold and seeded region growing,
IASP11(590-594).
IEEE DOI
1112
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
LiDAR for Land Cover, Laser Scanners for Land Cover, Remote Sensing .