Zhao, J.Q.[Jun-Qiao],
Zhu, Q.[Qing],
Du, Z.Q.[Zhi-Qiang],
Feng, T.T.[Tian-Tian],
Zhang, Y.T.[Ye-Ting],
Mathematical morphology-based generalization of complex 3D building
models incorporating semantic relationships,
PandRS(68), No. 1, March 2012, pp. 95-111.
Elsevier DOI
1204
Generalization; Complex 3D building; Mathematical morphology; Levels of
Detail; Semantic relationships
BibRef
Zhu, Q.[Qing],
Zhao, J.Q.[Jun-Qiao],
Du, Z.Q.[Zhi-Qiang],
Zhang, Y.T.[Ye-Ting],
Xu, W.P.[Wei-Ping],
Xie, X.[Xiao],
Ding, Y.L.[Yu-Lin],
Wang, F.[Fei],
Wang, T.S.[Ting-Song],
Towards Semantic 3D City Modeling and Visual Explorations,
GeoInfo10(xx-yy).
PDF File.
1011
BibRef
Zhang, L.Q.[Li-Qiang],
Zhang, L.[Liang],
Deep Learning-Based Classification and Reconstruction of Residential
Scenes From Large-Scale Point Clouds,
GeoRS(56), No. 4, April 2018, pp. 1887-1897.
IEEE DOI
1804
Buildings, Feature extraction, Image reconstruction, Semantics,
Shape, Solid modeling, Classification,
reconstruction
BibRef
Zhang, L.Q.[Li-Qiang],
Li, Z.Q.[Zhu-Qiang],
Li, A.J.[An-Jian],
Liu, F.Y.[Fang-Yu],
Large-scale urban point cloud labeling and reconstruction,
PandRS(138), 2018, pp. 86-100.
Elsevier DOI
1804
ReLu-NN, Point cloud parsing, Building reconstruction
BibRef
Huang, R.[Rong],
Xu, Y.S.[Yu-Sheng],
Hong, D.F.[Dan-Feng],
Yao, W.[Wei],
Ghamisi, P.[Pedram],
Stilla, U.[Uwe],
Deep point embedding for urban classification using ALS point clouds:
A new perspective from local to global,
PandRS(163), 2020, pp. 62-81.
Elsevier DOI
2005
Semantic labeling, ALS point cloud, Deep learning,
Feature embedding, Manifold learning, Graph optimization
BibRef
Zhu, J.W.[Jing-Wei],
Gehrung, J.[Joachim],
Huang, R.[Rong],
Borgmann, B.[Björn],
Sun, Z.H.[Zheng-Hao],
Hoegner, L.[Ludwig],
Hebel, M.[Marcus],
Xu, Y.S.[Yu-Sheng],
Stilla, U.[Uwe],
TUM-MLS-2016: An Annotated Mobile LiDAR Dataset of the TUM City
Campus for Semantic Point Cloud Interpretation in Urban Areas,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Zheng, X.W.[Xian-Wei],
Huan, L.X.[Lin-Xi],
Xia, G.S.[Gui-Song],
Gong, J.Y.[Jian-Ya],
Parsing very high resolution urban scene images by learning deep
ConvNets with edge-aware loss,
PandRS(170), 2020, pp. 15-28.
Elsevier DOI
2011
Semantic segmentation, Convolutional neural network (ConvNet), Edge-aware loss
BibRef
Neupane, B.[Bipul],
Horanont, T.[Teerayut],
Aryal, J.[Jagannath],
Deep Learning-Based Semantic Segmentation of Urban Features in
Satellite Images: A Review and Meta-Analysis,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Cai, Y.Z.[Yuan-Zhi],
Huang, H.[Hong],
Wang, K.Y.[Kai-Yang],
Zhang, C.[Cheng],
Fan, L.[Lei],
Guo, F.Y.[Fang-Yu],
Selecting Optimal Combination of Data Channels for Semantic
Segmentation in City Information Modelling (CIM),
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Wang, L.[Libo],
Li, R.[Rui],
Wang, D.Z.[Dong-Zhi],
Duan, C.X.[Chen-Xi],
Wang, T.[Teng],
Meng, X.L.[Xiao-Liang],
Transformer Meets Convolution: A Bilateral Awareness Network for
Semantic Segmentation of Very Fine Resolution Urban Scene Images,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Du, J.[Jing],
Cai, G.R.[Guo-Rong],
Wang, Z.Y.[Zong-Yue],
Huang, S.F.[Shang-Feng],
Su, J.H.[Jin-He],
Marcato Junior, J.[José],
Smit, J.[Julian],
Li, J.[Jonathan],
ResDLPS-Net: Joint residual-dense optimization for large-scale point
cloud semantic segmentation,
PandRS(182), 2021, pp. 37-51.
Elsevier DOI
2112
Large-scale point clouds, Semantic segmentation,
Joint residual-dense optimization, Deep learning
BibRef
Gao, Q.[Qian],
Shen, X.[Xukun],
ThickSeg: Efficient semantic segmentation of large-scale 3D point
clouds using multi-layer projection,
IVC(108), 2021, pp. 104161.
Elsevier DOI
2104
3D point cloud, Semantic segmentation,
Convolutional neural network, Large scale
BibRef
Xiao, A.[Aoran],
Yang, X.F.[Xiao-Fei],
Lu, S.J.[Shi-Jian],
Guan, D.[Dayan],
Huang, J.X.[Jia-Xing],
FPS-Net: A convolutional fusion network for large-scale LiDAR point
cloud segmentation,
PandRS(176), 2021, pp. 237-249.
Elsevier DOI
2106
LiDAR, Point cloud, Semantic segmentation, Spherical projection,
Autonomous driving, Scene understanding
BibRef
Hu, Q.Y.[Qing-Yong],
Yang, B.[Bo],
Xie, L.H.[Lin-Hai],
Rosa, S.[Stefano],
Guo, Y.L.[Yu-Lan],
Wang, Z.H.[Zhi-Hua],
Trigoni, N.[Niki],
Markham, A.[Andrew],
Learning Semantic Segmentation of Large-Scale Point Clouds With
Random Sampling,
PAMI(44), No. 11, November 2022, pp. 8338-8354.
IEEE DOI
2210
BibRef
Earlier:
RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point
Clouds,
CVPR20(11105-11114)
IEEE DOI
2008
Semantics, Memory management, Task analysis, Sampling methods,
Space exploration, Feature extraction, Large-scale point clouds,
local feature aggregation.
Semantics, Feature extraction, Encoding, Benchmark testing
BibRef
Liu, H.[Hao],
Guo, Y.L.[Yu-Lan],
Ma, Y.N.[Yan-Ni],
Lei, Y.J.[Yin-Jie],
Wen, G.J.[Gong-Jian],
Semantic Context Encoding for Accurate 3D Point Cloud Segmentation,
MultMed(23), 2021, pp. 2045-2055.
IEEE DOI
2107
Semantics, Image segmentation,
Encoding, Convolution,
semantic context
BibRef
Ma, Y.N.[Yan-Ni],
Guo, Y.L.[Yu-Lan],
Liu, H.[Hao],
Lei, Y.J.[Yin-Jie],
Wen, G.J.[Gong-Jian],
Global Context Reasoning for Semantic Segmentation of 3D Point Clouds,
WACV20(2920-2929)
IEEE DOI
2006
Semantics, Cognition, Convolution,
Feature extraction, Task analysis
BibRef
Ma, Y.X.[Yan-Xin],
Guo, Y.L.[Yu-Lan],
Lei, Y.J.[Yin-Jie],
Lu, M.[Min],
Zhang, J.[Jun],
3DMAX-Net: A Multi-Scale Spatial Contextual Network for 3D Point
Cloud Semantic Segmentation,
ICPR18(1560-1566)
IEEE DOI
1812
Feature extraction,
Semantics, Labeling, Neural networks, Task analysis
BibRef
Hu, Q.Y.[Qing-Yong],
Yang, B.[Bo],
Fang, G.C.[Guang-Chi],
Guo, Y.L.[Yu-Lan],
Leonardis, A.[Aleš],
Trigoni, N.[Niki],
Markham, A.[Andrew],
SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point
Clouds,
ECCV22(XXVII:600-619).
Springer DOI
2211
BibRef
Rim, B.[Beanbonyka],
Lee, A.[Ahyoung],
Hong, M.[Min],
Semantic Segmentation of Large-Scale Outdoor Point Clouds by
Encoder-Decoder Shared MLPs with Multiple Losses,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zhang, M.[Min],
Kadam, P.[Pranav],
Liu, S.[Shan],
Kuo, C.C.J.[C.C. Jay],
GSIP: Green Semantic Segmentation of Large-Scale Indoor Point Clouds,
PRL(164), 2022, pp. 9-15.
Elsevier DOI
2212
Point cloud, Semantic segmentation, Indoor scene understanding,
Green learning, unsupervised learning
BibRef
Hu, Q.Y.[Qing-Yong],
Yang, B.[Bo],
Khalid, S.[Sheikh],
Xiao, W.[Wen],
Trigoni, N.[Niki],
Markham, A.[Andrew],
SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point
Clouds,
IJCV(130), No. 2, February 2022, pp. 316-343.
Springer DOI
2202
WWW Link.
Dataset, Urban. Urban scale point cloud
BibRef
Yin, F.[Fukun],
Huang, Z.L.[Zi-Long],
Chen, T.[Tao],
Luo, G.Z.[Guo-Zhong],
Yu, G.[Gang],
Fu, B.[Bin],
DCNet: Large-Scale Point Cloud Semantic Segmentation With
Discriminative and Efficient Feature Aggregation,
CirSysVideo(33), No. 8, August 2023, pp. 4083-4095.
IEEE DOI
2308
Point cloud compression, Semantics, Semantic segmentation,
Decoding, Aggregates, Feature extraction, Semantic segmentation, attention
BibRef
Gao, F.J.[Feng-Jiao],
Yan, Y.M.[Yi-Ming],
Lin, H.[Hemin],
Shi, R.Y.[Rui-Yao],
PIIE-DSA-Net for 3D Semantic Segmentation of Urban Indoor and Outdoor
Datasets,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Yu, M.[Mulin],
Lafarge, F.[Florent],
Oesau, S.[Sven],
Hilaire, B.[Bruno],
Repairing geometric errors in 3D urban models with kinetic data
structures,
PandRS(192), 2022, pp. 315-326.
Elsevier DOI
2209
Mesh repairing, Semantic reconstruction,
Kinetic data structure, BIM, CityGML, IFC
BibRef
Sambaturu, B.[Bhavani],
Gupta, A.[Ashutosh],
Jawahar, C.V.,
Arora, C.[Chetan],
ScribbleNet: Efficient interactive annotation of urban city scenes
for semantic segmentation,
PR(133), 2023, pp. 109011.
Elsevier DOI
2210
BibRef
Tang, Q.[Quan],
Liu, F.G.[Fa-Gui],
Zhang, T.[Tong],
Jiang, J.[Jun],
Zhang, Y.[Yu],
Zhu, B.[Boyuan],
Tang, X.[Xuhao],
Compensating for Local Ambiguity With Encoder-Decoder in Urban Scene
Segmentation,
ITS(23), No. 10, October 2022, pp. 19224-19235.
IEEE DOI
2210
Image segmentation, Semantics, Logic gates, Transformers,
Computational modeling, Convolutional neural networks, autonomous driving
BibRef
Wu, L.[Letian],
Zhang, X.[Xian],
Zhu, D.J.[De-Jun],
Yang, W.K.[Wan-Kou],
BFANet: Effective segmentation network for low altitude
high-resolution urban scene image,
JVCIR(94), 2023, pp. 103847.
Elsevier DOI
2306
Urban scene segmentation, Real-time semantic segmentation,
Bi-lateral network, Convolutional neural network
BibRef
Zhang, G.Y.[Guang-Yun],
Zhang, R.T.[Rong-Ting],
MeshNet-SP:
A Semantic Urban 3D Mesh Segmentation Network with Sparse Prior,
RS(15), No. 22, 2023, pp. 5324.
DOI Link
2311
BibRef
Wang, J.X.[Jing-Xue],
Li, H.[Huan],
Xu, Z.H.[Zheng-Hui],
Xie, X.[Xiao],
Semantic Segmentation of Urban Airborne LiDAR Point Clouds Based on
Fusion Attention Mechanism and Multi-Scale Features,
RS(15), No. 21, 2023, pp. 5248.
DOI Link
2311
BibRef
Ji, H.[Hao],
Yang, S.[Sansheng],
Jiang, Z.P.[Zhi-Peng],
Zhang, J.J.[Jian-Jun],
Guo, S.[Shuhao],
Li, G.[Gaorui],
Zhong, S.[Saishang],
Liu, Z.[Zheng],
Xie, Z.[Zhong],
BEMF-Net: Semantic Segmentation of Large-Scale Point Clouds via
Bilateral Neighbor Enhancement and Multi-Scale Fusion,
RS(15), No. 22, 2023, pp. 5342.
DOI Link
2311
BibRef
Han, J.W.[Jia-Wei],
Liu, K.Q.[Kai-Qi],
Li, W.[Wei],
Chen, G.Z.[Guang-Zhi],
Wang, W.G.[Wen-Guang],
Zhang, F.[Feng],
A Large-Scale Network Construction and Lightweighting Method for
Point Cloud Semantic Segmentation,
IP(33), 2024, pp. 2004-2017.
IEEE DOI
2403
Point cloud compression, Semantic segmentation, Task analysis,
Knowledge engineering, Transformers, Image coding,
information combination
BibRef
Wang, J.Y.[Jing-Yi],
Liu, Y.[Yu],
Tan, H.L.[Han-Lin],
Zhang, M.J.[Mao-Jun],
A Survey on Weakly Supervised 3D Point Cloud Semantic Segmentation,
IET-CV(18), No. 3, 2024, pp. 329-342.
DOI Link
2404
learning (artificial intelligence), unsupervised learning
BibRef
Wang, J.Y.[Jing-Yi],
He, J.Y.[Jing-Yang],
Liu, Y.[Yu],
Chen, C.[Chen],
Zhang, M.J.[Mao-Jun],
Tan, H.L.[Han-Lin],
Multi-Scale Classification and Contrastive Regularization: Weakly
Supervised Large-Scale 3D Point Cloud Semantic Segmentation,
RS(16), No. 17, 2024, pp. 3319.
DOI Link
2409
BibRef
Yuan, T.B.[Tie-Biao],
Yu, Y.Y.[Yang-Yang],
Wang, X.L.[Xiao-Long],
Semantic segmentation of large-scale point clouds by integrating
attention mechanisms and transformer models,
IVC(146), 2024, pp. 105019.
Elsevier DOI
2405
Point cloud semantic segmentation, Large-scale point cloud,
Transformer, Slot attention, Loss function
BibRef
Zhang, J.J.[Jian-Jun],
Jiang, Z.P.[Zhi-Peng],
Qiu, Q.J.[Qin-Jun],
Liu, Z.[Zheng],
TCFAP-Net: Transformer-based Cross-feature Fusion and Adaptive
Perception Network for large-scale point cloud semantic segmentation,
PR(154), 2024, pp. 110630.
Elsevier DOI Code:
WWW Link.
2406
Transformer, Attention, Semantic segmentation, Point cloud scenarios
BibRef
Li, M.T.[Meng-Tian],
Lin, S.H.[Shao-Hui],
Wang, Z.H.[Zi-Han],
Shen, Y.H.[Yun-Hang],
Zhang, B.C.[Bao-Chang],
Ma, L.Z.[Li-Zhuang],
Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization,
PR(156), 2024, pp. 110701.
Elsevier DOI
2408
3D point cloud, Class-imbalanced learning,
Semi-supervised learning, Semantic segmentation
BibRef
Zhou, C.[Ce],
Shu, Z.[Zhaokun],
Shi, L.[Li],
Ling, Q.[Qiang],
Semantic segmentation for large-scale point clouds based on hybrid
attention and dynamic fusion,
PR(156), 2024, pp. 110798.
Elsevier DOI
2408
Hybrid attention, Dynamic fusion, Point cloud, Semantic segmentation
BibRef
Zhao, H.Y.[Hao-Ying],
Zhou, A.[Aimin],
DPANet: Position-aware feature encoding and decoding for accurate
large-scale point cloud semantic segmentation,
IET-CV(18), No. 8, 2024, pp. 1376-1389.
DOI Link
2501
image segmentation, pattern recognition
BibRef
Gao, L.[Lin],
Liu, Y.[Yu],
Chen, X.[Xi],
Liu, Y.X.[Yu-Xiang],
Yan, S.[Shen],
Zhang, M.[Maojun],
CUS3D: A New Comprehensive Urban-Scale Semantic-Segmentation 3D
Benchmark Dataset,
RS(16), No. 6, 2024, pp. 1079.
DOI Link
2403
BibRef
Wang, Y.F.[Yue-Feng],
Jiao, W.[Wei],
Fan, H.C.[Hong-Chao],
Zhou, G.Q.[Guo-Qing],
A framework for fully automated reconstruction of semantic building
model at urban-scale using textured LoD2 data,
PandRS(216), 2024, pp. 90-108.
Elsevier DOI Code:
WWW Link.
2408
Semantic building model, CityGML LoD3, Facade layout graph,
Parameter representation, EM-MAP optimization
BibRef
Liu, P.[Peng],
Ge, Y.Q.[Yan-Qi],
Duan, L.X.[Li-Xin],
Li, W.[Wen],
Luo, H.[Haonan],
Lv, F.[Fengmao],
Transferring Multi-Modal Domain Knowledge to Uni-Modal Domain for
Urban Scene Segmentation,
ITS(25), No. 9, September 2024, pp. 11576-11589.
IEEE DOI
2409
Training, Semantic segmentation, Transformers, Task analysis,
Adaptation models, Visualization, Synthetic data,
multi-modal learning
BibRef
Schreiber, Q.[Qendrim],
Wolpert, N.[Nicola],
Schömer, E.[Elmar],
METNet: A mesh exploring approach for segmenting 3D textured urban
scenes,
PandRS(218), 2024, pp. 498-509.
Elsevier DOI Code:
WWW Link.
2412
Texture meshes, Semantic segmentation, Urban scene, Large scene understanding,
Structured representation, Artificial neural networks
BibRef
Jia, X.[Xinqi],
Song, X.Y.[Xiao-Yong],
Rao, L.[Lei],
Fan, G.Y.[Guang-Yu],
Cheng, S.L.[Song-Lin],
Chen, N.S.[Nian-Sheng],
DEUFormer: High-Precision Semantic Segmentation for Urban Remote
Sensing Images,
IET-CV(18), No. 8, 2024, pp. 1209-1222.
DOI Link
2501
convolutional neural nets
BibRef
Sun, T.F.[Tian-Fang],
Zhang, Z.Z.[Zhi-Zhong],
Tan, X.[Xin],
Qu, Y.Y.[Yan-Yun],
Xie, Y.[Yuan],
Image Understands Point Cloud: Weakly Supervised 3D Semantic
Segmentation via Association Learning,
IP(33), 2024, pp. 1838-1852.
IEEE DOI
2403
Point cloud compression, Labeling,
Laser radar, Annotations, Training, Semantic segmentation,
point cloud semantic segmentation
BibRef
Xu, X.F.[Xiang-Feng],
Zhang, P.[Pinyi],
Huang, W.X.[Wen-Xuan],
Shen, Y.H.[Yun-Hang],
Chen, H.S.[Hao-Sheng],
Lin, J.Z.[Jing-Zhong],
Li, W.[Wei],
He, G.Q.[Gao-Qi],
Xie, J.[Jiao],
Lin, S.H.[Shao-Hui],
Weakly Supervised Semantic Segmentation via Progressive Confidence
Region Expansion,
CVPR25(9829-9838)
IEEE DOI Code:
WWW Link.
2508
Weak supervision, Costs, Codes, Annotations, Semantic segmentation,
Prototypes, Benchmark testing, Transformers,
weakly supervised semantic segmentation
BibRef
Li, M.T.[Meng-Tian],
Xie, Y.[Yuan],
Shen, Y.H.[Yun-Hang],
Ke, B.[Bo],
Qiao, R.Z.[Rui-Zhi],
Ren, B.[Bo],
Lin, S.H.[Shao-Hui],
Ma, L.Z.[Li-Zhuang],
HybridCR: Weakly-Supervised 3D Point Cloud Semantic Segmentation via
Hybrid Contrastive Regularization,
CVPR22(14910-14919)
IEEE DOI
2210
Point cloud compression, Training, Costs, Shape,
Computational modeling, Computer vision for social good,
Self- semi- meta- Transfer/low-shot/long-tail learning
BibRef
Zhang, Y.C.[Ya-Chao],
Qu, Y.Y.[Yan-Yun],
Xie, Y.[Yuan],
Li, Z.H.[Zong-Hao],
Zheng, S.S.[Shan-Shan],
Li, C.H.[Cui-Hua],
Perturbed Self-Distillation: Weakly Supervised Large-Scale Point
Cloud Semantic Segmentation,
ICCV21(15500-15508)
IEEE DOI
2203
Point cloud compression, Correlation, Network topology,
Annotations, Semantics, Supervised learning,
Vision for robotics and autonomous vehicles
BibRef
Zi, W.J.[Wen-Jie],
Chen, H.[Hao],
Li, J.[Jun],
Wu, J.J.[Jiang-Jiang],
MambaMeshSeg-Net: A Large-Scale Urban Mesh Semantic Segmentation
Method Using a State Space Model with a Hybrid Scanning Strategy,
RS(17), No. 9, 2025, pp. 1653.
DOI Link
2505
BibRef
Xiao, Y.[Yu],
Wu, H.[Hui],
Chen, Y.S.[Yi-Sheng],
Chen, C.C.[Chong-Cheng],
Dong, R.[Ruihai],
Lin, D.[Ding],
Hybrid Offset Position Encoding for Large-Scale Point Cloud Semantic
Segmentation,
RS(17), No. 2, 2025, pp. 256.
DOI Link
2502
BibRef
Zhou, Y.[Yuan],
Sun, Q.[Qi],
Meng, J.[Jin],
Hu, Q.L.[Qing-Long],
Lyu, J.H.[Jia-Hang],
Wang, Z.W.[Zhi-Wei],
Wang, S.F.[Shi-Feng],
PointCartesian-Net: enhancing 3D coordinates for semantic
segmentation of large-scale point clouds,
JOSA-A(38), No. 8, August 2021, pp. 1194-1200.
DOI Link
2503
Machine learning, Machine vision, Neural networks, Point clouds,
Segmentation, Virtual reality
BibRef
Wang, H.Y.[Hao-Yu],
Wang, F.S.[Fa-Sheng],
Wang, M.Y.[Meng-Yin],
Sun, F.[Fuming],
Li, H.J.[Hao-Jie],
Rethinking How to Capture Long-Range Dependency in 3D Object
Detection,
CirSysVideo(35), No. 7, July 2025, pp. 6671-6683.
IEEE DOI Code:
WWW Link.
2507
Feature extraction, Detectors, Object detection,
Computer architecture, Computational efficiency, Training,
dense feature map
BibRef
Wu, X.Y.[Xiao-Yang],
Tian, Z.[Zhuotao],
Wen, X.[Xin],
Peng, B.[Bohao],
Liu, X.H.[Xi-Hui],
Yu, K.C.[Kai-Cheng],
Zhao, H.S.[Heng-Shuang],
Towards Large-Scale 3D Representation Learning with Multi-Dataset
Point Prompt Training,
CVPR24(19551-19562)
IEEE DOI
2410
Training, Representation learning, Deep learning,
Point cloud compression, Solid modeling, Soft sensors,
3D Semantic Segmentation
BibRef
Yoo, S.[Sunghwan],
Jeong, Y.[Yeonjeong],
Jameela, M.[Maryam],
Sohn, G.[Gunho],
Human Vision Based 3D Point Cloud Semantic Segmentation of
Large-Scale Outdoor Scenes,
PCV23(6577-6586)
IEEE DOI
2309
BibRef
Liu, B.[Bing],
Wu, H.Z.[Hui-Zhu],
Bao, X.L.[Xue-Liang],
Zhong, Z.H.[Zhao-Hao],
LPCUNet: A Lightweight Pure CNN UNet for Efficient Urban Scene Remote
Sensing Semantic Segmentation,
CVIDL23(57-61)
IEEE DOI
2403
Fuses, Semantic segmentation, Biological system modeling,
Transformers, Feature extraction, Decoding, semantic segmentation
BibRef
Das, A.[Anurag],
Xian, Y.Q.[Yong-Qin],
He, Y.[Yang],
Akata, Z.[Zeynep],
Schiele, B.[Bernt],
Urban Scene Semantic Segmentation with Low-Cost Coarse Annotation,
WACV23(5967-5976)
IEEE DOI
2302
Training, Costs, Annotations, Semantic segmentation, Semantics,
Data models, segmentation
BibRef
Ren, T.Q.[Tian-Qi],
Shen, Q.[Qiu],
Fu, Y.[Ying],
You, S.D.[Shao-Di],
Point-Supervised Semantic Segmentation of Natural Scenes via
Hyperspectral Imaging,
PBDL24(1357-1367)
IEEE DOI
2410
Training, Degradation, Costs, Accuracy, Annotations, Semantic segmentation
BibRef
Huang, Y.X.[Yu-Xing],
Shen, Q.[Qiu],
Fu, Y.[Ying],
You, S.D.[Shao-Di],
Weakly-supervised Semantic Segmentation in Cityscape via
Hyperspectral Image,
PBDL21(1117-1126)
IEEE DOI
2112
Image segmentation, Visualization, Costs, Annotations, Semantics,
Urban areas, Manuals
BibRef
Robert, D.[Damien],
Vallet, B.[Bruno],
Landrieu, L.[Loic],
Learning Multi-View Aggregation In the Wild for Large-Scale 3D
Semantic Segmentation,
CVPR22(5565-5574)
IEEE DOI
2210
Point cloud compression, Image sensors, Image segmentation,
Solid modeling, Image analysis, Semantics,
Scene analysis and understanding
BibRef
Zhou, Y.S.[Yun-Song],
Zhu, H.Z.[Hong-Zi],
Li, C.Q.[Chun-Qin],
Cui, T.K.[Tian-Kai],
Chang, S.[Shan],
Guo, M.[Minyi],
TempNet: Online Semantic Segmentation on Large-scale Point Cloud
Series,
ICCV21(7098-7107)
IEEE DOI
2203
Point cloud compression, Computational modeling, Semantics,
Time series analysis, Feature extraction, Propagation losses,
BibRef
Illarionova, S.[Svetlana],
Nesteruk, S.[Sergey],
Shadrin, D.[Dmitrii],
Ignatiev, V.[Vladimir],
Pukalchik, M.[Mariia],
Oseledets, I.[Ivan],
Object-Based Augmentation for Building Semantic Segmentation:
Ventura and Santa Rosa Case Study,
ILDAV21(1659-1668)
IEEE DOI
2112
Training, Image segmentation, Satellites, Semantics,
Buildings, Pipelines
BibRef
Akadas, K.[Kiran],
Gangisetty, S.[Shankar],
3d Semantic Segmentation for Large-scale Scene Understanding,
MLCSA20(87-102).
Springer DOI
2103
BibRef
Robert, D.[Damien],
Raguet, H.[Hugo],
Landrieu, L.[Loic],
Efficient 3D Semantic Segmentation with Superpoint Transformer,
ICCV23(17149-17158)
IEEE DOI
2401
BibRef
Landrieu, L.[Loic],
Simonovsky, M.,
Large-Scale Point Cloud Semantic Segmentation with Superpoint Graphs,
CVPR18(4558-4567)
IEEE DOI
1812
Shape, Semantics, Image segmentation,
Image edge detection, Pipelines
BibRef
Liu, F.,
Li, S.,
Zhang, L.,
Zhou, C.,
Ye, R.,
Wang, Y.,
Lu, J.,
3DCNN-DQN-RNN: A Deep Reinforcement Learning Framework for Semantic
Parsing of Large-Scale 3D Point Clouds,
ICCV17(5679-5688)
IEEE DOI
1802
convolution, feature extraction, grammars,
image classification, image segmentation,
BibRef
Martinovic, A.[Andelo],
Knopp, J.[Jan],
Riemenschneider, H.[Hayko],
Van Gool, L.J.[Luc J.],
3D all the way: Semantic segmentation of urban scenes from start to
end in 3D,
CVPR15(4456-4465)
IEEE DOI
1510
BibRef
Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Instance Segmentation, Point Cloud Segmentation .