Quan, L.,
Invariants of 6 Points and Projective Reconstruction from 3
Uncalibrated Images,
PAMI(17), No. 1, January 1995, pp. 34-46.
IEEE DOI
BibRef
9501
And:
Invariants of 6 Points from 3 Uncalibrated Images,
ECCV94(B:459-470).
Springer DOI
See also Conic Reconstruction and Correspondence from Two Views.
See also Invariants of a Pair of Conics Revisited.
See also Two-Way Ambiguity in 2D Projective Reconstruction from Three Uncalibrated 1D Images.
BibRef
Quan, L.[Long],
Mohr, R.[Roger],
Affine Shape Representation from Motion Through Reference Points,
JMIV(1), 1992, pp. 145-151.
BibRef
9200
Quan, L.[Long],
Mohr, R.[Roger],
Towards Structure from Motion for Linear Features
Through Reference Points,
Motion91(249-255).
BibRef
9100
Haag, N.N.,
Brill, M.H.,
Barrett, E.B.,
Invariant Relationships in Side-Looking Synthetic Aperture Imagery,
PhEngRS(57), No.7, July 1991, pp. 927-931.
Two SAR images of 5 points. A Volume ratio oftetrahedra spanned
by two subsets of four of the five points.
BibRef
9107
Wolfe, W.J.,
Mathis, D.,
Sklair, C.W., and
Magee, M.,
The Perspective View of Three Points,
PAMI(13), No. 1, January 1991, pp. 66-73.
IEEE DOI Different arrangements that give 1, 2, 3, or 4 3-D
triangles for 3 points in perspective views.
BibRef
9101
Lenz, R.,
Meer, P.,
Point Configuration Invariants Under Simultaneous Projective
and Permutation Transformations,
PR(27), No. 11, November 1994, pp. 1523-1532.
BibRef
9411
And:
Elsevier DOI
Experimental Investigation of Projection and Permutation Invariants,
PRL(15), No. 8, August 1994, pp. 751-760.
BibRef
Meer, P.,
Lenz, R.,
Ramakrishna, S.,
Efficient Invariant Representations,
IJCV(26), No. 2, February 1998, pp. 137-152.
DOI Link
HTML Version.
9804
BibRef
Meer, P.,
Ramakrishna, S.,
Lenz, R.,
Correspondence of Coplanar Features Through P2-Invariant
Representations,
ICPR94(A:196-200).
IEEE DOI If you know it is a plane, more assumptions are possible.
BibRef
9400
Ramakrishna, S.,
Invariance Based Robust Matching,
RutgersCE-105, October 1994.
BibRef
9410
Zhu, Y.,
Seneviratne, L.D.,
Earles, S.W.E.,
New Algorithm for Calculating an Invariant of 3D Point Sets
from a Single View,
IVC(14), No. 3, April 1996, pp. 179-188.
Elsevier DOI
9607
BibRef
Kumar, R.,
Rockett, P.I.,
Triplet Geometric Representation:
A Novel Scale, Translation and Rotation-Invariant Feature Representation Based
on Geometric Constraints for Recognition of 2D Object Features,
IVC(15), No. 3, March 1997, pp. 235-249.
Elsevier DOI
9704
BibRef
Torr, P.H.S.,
Murray, D.W.,
The Development and Comparison of Robust Methods for
Estimating the Fundamental Matrix,
IJCV(24), No. 3, October 1997, pp. 271-300.
DOI Link
HTML Version.
9710
BibRef
Torr, P.H.S.,
Zisserman, A.,
Performance Characterization of Fundamental Matrix Estimation
under Image Degradation,
MVA(9), No. 5-6, 1997, pp. 321-333.
Springer DOI
9705
BibRef
Torr, P.H.S.,
Zisserman, A.,
Robust Parameterization and Computation of the Trifocal Tensor,
IVC(15), No. 8, August 1997, pp. 591-605.
Elsevier DOI
9708
BibRef
Earlier:
BMVC96(Motion and Active Vision).
9608
BibRef
And:
Concerning Bayesian Motion Segmentation, Model Averaging,
Matching and the Trifocal Tensor,
ECCV98(I: 511).
Springer DOI University of Oxford.
BibRef
Torr, P.H.S., and
Zisserman, A.,
Robust Computation and Parametrization of Multiple View Relations,
ICCV98(727-732).
IEEE DOI
BibRef
9800
Triggs, B.,
Linear Projective Reconstruction from Matching Tensors,
IVC(15), No. 8, August 1997, pp. 617-625.
Elsevier DOI
9708
BibRef
Earlier:
BMVC96(Motion and Active Vision).
9608
INRIA Rhone-Alpes, France
BibRef
Yan, X.,
Peng, J.X.,
Ding, M.Y.,
Xue, D.H.,
The Unique Solution of Projective Invariants of 6 Points from 4
Uncalibrated Images,
PR(30), No. 3, March 1997, pp. 513-517.
Elsevier DOI
9705
BibRef
Lasenby, J.,
Bayro-Corrochano, E.,
Analysis and Computation of Projective Invariants from Multiple Views
in the Geometric Algebra Framework,
PRAI(13), No. 8, December 1999, pp. 1105.
0005
BibRef
Earlier:
Computing 3D projective invariants from points and lines,
CAIP97(82-89).
Springer DOI
9709
BibRef
Bayro-Corrochano, E.,
Lasenby, J.,
Sommer, G.,
Geometric Algebra: A Framework for Computing Point and
Line Correspondences and Projective Structure Using N-Uncalibrated Cameras,
ICPR96(I: 334-338).
IEEE DOI
9608
(Christian Albrechts Univ., D)
BibRef
Lasenby, J.[Joan],
Bayro-Corrochano, E.,
Lasenby, A.N.,
Sommer, G.,
A new methodology for computing invariants in computer vision,
ICPR96(I: 393-397).
IEEE DOI
9608
BibRef
And:
A New Framework for the Formation of Invariants and
Multiple-View Constraints in Computer Vision,
ICIP96(II: 313-316).
IEEE DOI Geometric Algebra.
(Dept. of Engineering, UK)
BibRef
Bayro-Corrochano, E.[Eduardo],
Reyes-Lozano, L.[Leo],
Zamora-Esquivel, J.[Julio],
Conformal Geometric Algebra for Robotic Vision,
JMIV(24), No. 1, January 2006, pp. 55-81.
Springer DOI
0605
BibRef
Suk, T.[Tomás],
Flusser, J.[Jan],
Point-based projective invariants,
PR(33), No. 2, February 2000, pp. 251-261.
Elsevier DOI
0001
BibRef
Earlier:
Point projective and permutation invariants,
CAIP97(74-81).
Springer DOI
9709
See also Pattern Recognition by Affine Moment Invariants.
BibRef
Bruckstein, A.M.[Alfred M.],
Holt, R.J.[Robert J.],
Huang, T.S.[Thomas S.],
Netravali, A.N.[Arun N.],
Trifocal tensors for weak perspective and paraperspective projections,
PR(34), No. 2, February 2001, pp. 395-404.
Elsevier DOI
0011
BibRef
Liu, J.S.,
Chuang, J.H.,
A geometry-based error estimation for cross-ratios,
PR(35), No. 1, January 2002, pp. 155-167.
Elsevier DOI
0111
BibRef
Kuang, Y.B.[Yu-Bin],
Oskarsson, M.[Magnus],
Astrom, K.[Kalle],
Revisiting Trifocal Tensor Estimation Using Lines,
ICPR14(2419-2423)
IEEE DOI
1412
Cameras
BibRef
Werman, M.[Michael],
Shashua, A.[Amnon],
Elimination: An Approach to the Study of 3D-from-2D,
ICCV95(473-479).
IEEE DOI Geometric invariants from points.
BibRef
9500
Mayer, H.[Helmut],
Estimation of and View Synthesis with the Trifocal Tensor,
PCV02(A: 211).
0305
BibRef
Brown, M.[Matthew],
Lowe, D.G.[David G.],
Invariant Features from Interest Point Groups,
BMVC02(Poster Session).
0208
BibRef
Matei, B.[Bogdan],
Georgescu, B.[Bogdan],
Meer, P.[Peter],
A Versatile Method for Trifocal Tensor Estimation,
ICCV01(II: 578-585).
IEEE DOI
0106
BibRef
Thorhallsson, T.[Torfi],
Murray, D.W.[David W.],
The Tensors of Three Affine Views,
CVPR99(I: 450-456).
IEEE DOI
HTML Version.
BibRef
9900
Papadopoulo, T.,
Faugeras, O.D.,
A new characterization of the trifocal tensor,
ECCV98(I: 109).
Springer DOI
PS File.
BibRef
9800
Mendonça, P.R.S.,
Cipolla, R.,
Analysis and Computation of an Affine Trifocal Tensor,
BMVC98(xx-yy).
BibRef
9800
Gurdjos, P.,
Castan, S.,
Dalle, P.,
Tracking 3D Coplanar Points in the Invariant Perspective
Coordinates Plane,
ICPR96(I: 493-497).
IEEE DOI
9608
(Univ. P. Sabatier, F)
BibRef
Faugeras, O.D.[Olivier D.],
Mourrain, B.[Bernard],
On the Geometry and Algebra of the Point and Line Correspondences
between N Images,
ICCV95(951-956).
IEEE DOI
PS File.
BibRef
9500
And:
INRIA2665, 1995.
BibRef
And:
About the Correspondence of Points Between N Images,
RVS95(xx).
PS File.
BibRef
Costa, M.S.,
Haralick, R.M., and
Shapiro, L.G.,
Optimal Affine-Invariant Point Matching,
ICPR90(I: 233-236).
IEEE DOI
BibRef
9000
Quan, L.,
Mohr, R.,
Matching Perspective Images Using Geometric Constraints and
Perceptual Grouping,
ICCV88(679-684).
IEEE DOI
BibRef
8800
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Invariants, Lines, Curves .