13.1.2.2 Invariants, Points

Chapter Contents (Back)
Matching, Points. Invariants, Points.

Quan, L.,
Invariants of 6 Points and Projective Reconstruction from 3 Uncalibrated Images,
PAMI(17), No. 1, January 1995, pp. 34-46.
IEEE DOI BibRef 9501
And:
Invariants of 6 Points from 3 Uncalibrated Images,
ECCV94(B:459-470).
Springer DOI
See also Conic Reconstruction and Correspondence from Two Views.
See also Invariants of a Pair of Conics Revisited.
See also Two-Way Ambiguity in 2D Projective Reconstruction from Three Uncalibrated 1D Images. BibRef

Quan, L.[Long], Mohr, R.[Roger],
Affine Shape Representation from Motion Through Reference Points,
JMIV(1), 1992, pp. 145-151. BibRef 9200

Quan, L.[Long], Mohr, R.[Roger],
Towards Structure from Motion for Linear Features Through Reference Points,
Motion91(249-255). BibRef 9100

Haag, N.N., Brill, M.H., Barrett, E.B.,
Invariant Relationships in Side-Looking Synthetic Aperture Imagery,
PhEngRS(57), No.7, July 1991, pp. 927-931. Two SAR images of 5 points. A Volume ratio oftetrahedra spanned by two subsets of four of the five points. BibRef 9107

Wolfe, W.J., Mathis, D., Sklair, C.W., and Magee, M.,
The Perspective View of Three Points,
PAMI(13), No. 1, January 1991, pp. 66-73.
IEEE DOI Different arrangements that give 1, 2, 3, or 4 3-D triangles for 3 points in perspective views. BibRef 9101

Lenz, R., Meer, P.,
Point Configuration Invariants Under Simultaneous Projective and Permutation Transformations,
PR(27), No. 11, November 1994, pp. 1523-1532. BibRef 9411
And:
Elsevier DOI
Experimental Investigation of Projection and Permutation Invariants,
PRL(15), No. 8, August 1994, pp. 751-760. BibRef

Meer, P., Lenz, R., Ramakrishna, S.,
Efficient Invariant Representations,
IJCV(26), No. 2, February 1998, pp. 137-152.
DOI Link
HTML Version. 9804
BibRef

Meer, P., Ramakrishna, S., Lenz, R.,
Correspondence of Coplanar Features Through P2-Invariant Representations,
ICPR94(A:196-200).
IEEE DOI If you know it is a plane, more assumptions are possible. BibRef 9400

Ramakrishna, S.,
Invariance Based Robust Matching,
RutgersCE-105, October 1994. BibRef 9410

Zhu, Y., Seneviratne, L.D., Earles, S.W.E.,
New Algorithm for Calculating an Invariant of 3D Point Sets from a Single View,
IVC(14), No. 3, April 1996, pp. 179-188.
Elsevier DOI 9607
BibRef

Kumar, R., Rockett, P.I.,
Triplet Geometric Representation: A Novel Scale, Translation and Rotation-Invariant Feature Representation Based on Geometric Constraints for Recognition of 2D Object Features,
IVC(15), No. 3, March 1997, pp. 235-249.
Elsevier DOI 9704
BibRef

Torr, P.H.S., Murray, D.W.,
The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix,
IJCV(24), No. 3, October 1997, pp. 271-300.
DOI Link
HTML Version. 9710
BibRef

Torr, P.H.S., Zisserman, A.,
Performance Characterization of Fundamental Matrix Estimation under Image Degradation,
MVA(9), No. 5-6, 1997, pp. 321-333.
Springer DOI 9705
BibRef

Torr, P.H.S., Zisserman, A.,
Robust Parameterization and Computation of the Trifocal Tensor,
IVC(15), No. 8, August 1997, pp. 591-605.
Elsevier DOI 9708
BibRef
Earlier: BMVC96(Motion and Active Vision). 9608
BibRef
And:
Concerning Bayesian Motion Segmentation, Model Averaging, Matching and the Trifocal Tensor,
ECCV98(I: 511).
Springer DOI University of Oxford. BibRef

Torr, P.H.S., and Zisserman, A.,
Robust Computation and Parametrization of Multiple View Relations,
ICCV98(727-732).
IEEE DOI BibRef 9800

Triggs, B.,
Linear Projective Reconstruction from Matching Tensors,
IVC(15), No. 8, August 1997, pp. 617-625.
Elsevier DOI 9708
BibRef
Earlier: BMVC96(Motion and Active Vision). 9608
INRIA Rhone-Alpes, France BibRef

Yan, X., Peng, J.X., Ding, M.Y., Xue, D.H.,
The Unique Solution of Projective Invariants of 6 Points from 4 Uncalibrated Images,
PR(30), No. 3, March 1997, pp. 513-517.
Elsevier DOI 9705
BibRef

Lasenby, J., Bayro-Corrochano, E.,
Analysis and Computation of Projective Invariants from Multiple Views in the Geometric Algebra Framework,
PRAI(13), No. 8, December 1999, pp. 1105. 0005
BibRef
Earlier:
Computing 3D projective invariants from points and lines,
CAIP97(82-89).
Springer DOI 9709
BibRef

Bayro-Corrochano, E., Lasenby, J., Sommer, G.,
Geometric Algebra: A Framework for Computing Point and Line Correspondences and Projective Structure Using N-Uncalibrated Cameras,
ICPR96(I: 334-338).
IEEE DOI 9608
(Christian Albrechts Univ., D) BibRef

Lasenby, J.[Joan], Bayro-Corrochano, E., Lasenby, A.N., Sommer, G.,
A new methodology for computing invariants in computer vision,
ICPR96(I: 393-397).
IEEE DOI 9608
BibRef
And:
A New Framework for the Formation of Invariants and Multiple-View Constraints in Computer Vision,
ICIP96(II: 313-316).
IEEE DOI Geometric Algebra. (Dept. of Engineering, UK) BibRef

Bayro-Corrochano, E.[Eduardo], Reyes-Lozano, L.[Leo], Zamora-Esquivel, J.[Julio],
Conformal Geometric Algebra for Robotic Vision,
JMIV(24), No. 1, January 2006, pp. 55-81.
Springer DOI 0605
BibRef

Suk, T.[Tomás], Flusser, J.[Jan],
Point-based projective invariants,
PR(33), No. 2, February 2000, pp. 251-261.
Elsevier DOI 0001
BibRef
Earlier:
Point projective and permutation invariants,
CAIP97(74-81).
Springer DOI 9709

See also Pattern Recognition by Affine Moment Invariants. BibRef

Bruckstein, A.M.[Alfred M.], Holt, R.J.[Robert J.], Huang, T.S.[Thomas S.], Netravali, A.N.[Arun N.],
Trifocal tensors for weak perspective and paraperspective projections,
PR(34), No. 2, February 2001, pp. 395-404.
Elsevier DOI 0011
BibRef

Liu, J.S., Chuang, J.H.,
A geometry-based error estimation for cross-ratios,
PR(35), No. 1, January 2002, pp. 155-167.
Elsevier DOI 0111
BibRef


Oskarsson, M.[Magnus],
Characterizing the structure tensor using gamma distributions,
ICPR16(763-768)
IEEE DOI 1705
Adaptation models, Histograms, Mathematical model, Probability distribution, Shape, Smoothing methods, Tensile, stress BibRef

Kuang, Y.B.[Yu-Bin], Oskarsson, M.[Magnus], Astrom, K.[Kalle],
Revisiting Trifocal Tensor Estimation Using Lines,
ICPR14(2419-2423)
IEEE DOI 1412
Cameras BibRef

Werman, M.[Michael], Shashua, A.[Amnon],
Elimination: An Approach to the Study of 3D-from-2D,
ICCV95(473-479).
IEEE DOI Geometric invariants from points. BibRef 9500

Mayer, H.[Helmut],
Estimation of and View Synthesis with the Trifocal Tensor,
PCV02(A: 211). 0305
BibRef

Brown, M.[Matthew], Lowe, D.G.[David G.],
Invariant Features from Interest Point Groups,
BMVC02(Poster Session). 0208
BibRef

Matei, B.[Bogdan], Georgescu, B.[Bogdan], Meer, P.[Peter],
A Versatile Method for Trifocal Tensor Estimation,
ICCV01(II: 578-585).
IEEE DOI 0106
BibRef

Thorhallsson, T.[Torfi], Murray, D.W.[David W.],
The Tensors of Three Affine Views,
CVPR99(I: 450-456).
IEEE DOI
HTML Version. BibRef 9900

Papadopoulo, T., Faugeras, O.D.,
A new characterization of the trifocal tensor,
ECCV98(I: 109).
Springer DOI
PS File. BibRef 9800

Mendonça, P.R.S., Cipolla, R.,
Analysis and Computation of an Affine Trifocal Tensor,
BMVC98(xx-yy). BibRef 9800

Gurdjos, P., Castan, S., Dalle, P.,
Tracking 3D Coplanar Points in the Invariant Perspective Coordinates Plane,
ICPR96(I: 493-497).
IEEE DOI 9608
(Univ. P. Sabatier, F) BibRef

Faugeras, O.D.[Olivier D.], Mourrain, B.[Bernard],
On the Geometry and Algebra of the Point and Line Correspondences between N Images,
ICCV95(951-956).
IEEE DOI
PS File. BibRef 9500
And: INRIA2665, 1995. BibRef
And:
About the Correspondence of Points Between N Images,
RVS95(xx).
PS File. BibRef

Costa, M.S., Haralick, R.M., and Shapiro, L.G.,
Optimal Affine-Invariant Point Matching,
ICPR90(I: 233-236).
IEEE DOI BibRef 9000

Quan, L., Mohr, R.,
Matching Perspective Images Using Geometric Constraints and Perceptual Grouping,
ICCV88(679-684).
IEEE DOI BibRef 8800

Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Invariants, Lines, Curves .


Last update:Sep 15, 2024 at 16:30:49