Haritaoglu, I.[Ismail],
Harwood, D.[David],
Davis, L.S.[Larry S.],
W4: Real-Time Surveillance of People and Their Activities,
PAMI(22), No. 8, August 2000, pp. 809-830.
IEEE DOI
0010
Human Motion.
Real-Time System. Recognizes typical events between people. Creates models of people so that
tracking can proceed with occlusions and interactions. Locate the parts
to create the models.
BibRef
Davis, L.S.[Larry S.],
Harwood, D.[David],
Haritaoglu, I.[Ismail],
Ghost: A Human Body Part Labeling System Using Silhouettes,
ICPR98(Vol I: 77-82).
IEEE DOI
BibRef
9800
And:
DARPA98(229-235).
See also Appearance-based Body Model for Multiple People Tracking, An.
BibRef
Haritaoglu, I.[Ismail],
Harwood, D.[David],
Davis, L.S.[Larry S.],
Active outdoor surveillance,
CIAP99(1096-1099).
IEEE DOI
9909
BibRef
Earlier:
W4: Who? When? Where? What? A Real Time System for Detecting and
Tracking People,
AFGR98(222-227).
IEEE DOI
BibRef
And:
W4S: A real-time system for detecting and tracking people in 2 1/2-D,
ECCV98(I: 877).
Springer DOI
BibRef
And:
W4: A Real Time System for Detecting and Tracking People,
CVPR98(962-962).
IEEE DOI
BibRef
Park, S.H.[Sang-Ho],
Aggarwal, J.K.,
Simultaneous tracking of multiple body parts of interacting persons,
CVIU(102), No. 1, April 2006, pp. 1-21.
Elsevier DOI
0604
BibRef
Earlier:
Semantic-level Understanding of Human Actions and Interactions using
Event Hierarchy,
Non-Rigid04(12).
IEEE DOI
0502
BibRef
And:
Event semantics in two-person interactions,
ICPR04(IV: 227-230).
IEEE DOI
0409
BibRef
Earlier:
Segmentation and tracking of interacting human body parts under
occlusion and shadowing,
Motion02(105-111).
IEEE DOI
0303
BibRef
Earlier:
Recognition of Human Interaction Using Multiple Features in Grayscale
Images,
ICPR00(Vol I: 51-54).
IEEE DOI Or:
PDF File.
0009
Tracking; Body part; Human interaction; Occlusion; ARG; MMT
BibRef
Aggarwal, J.K.,
Park, S.H.[Sang-Ho],
Human motion: modeling and recognition of actions and interactions,
3DPVT04(640-647).
IEEE DOI
0412
BibRef
Madabhushi, A.,
Aggarwal, J.K.,
A Bayesian Approach to Human Activity Recognition,
VS99(xx-yy).
BibRef
9900
Wang, Y.[Yang],
Mori, G.[Greg],
Hidden Part Models for Human Action Recognition:
Probabilistic versus Max Margin,
PAMI(33), No. 7, July 2011, pp. 1310-1323.
IEEE DOI
1106
BibRef
Earlier:
Max-margin Latent Dirichlet Allocation for Image Classification and
Annotation,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Earlier:
Max-margin hidden conditional random fields for human action
recognition,
CVPR09(872-879).
IEEE DOI
0906
BibRef
Wang, Y.[Yang],
Mori, G.[Greg],
Human Action Recognition by Semilatent Topic Models,
PAMI(31), No. 10, October 2009, pp. 1762-1774.
IEEE DOI
0909
BibRef
And:
A Discriminative Latent Model of Object Classes and Attributes,
ECCV10(V: 155-168).
Springer DOI
1009
See also Discriminative Latent Models for Recognizing Contextual Group Activities.
BibRef
Wang, Y.[Yang],
Sabzmeydani, P.[Payam],
Mori, G.[Greg],
Semi-Latent Dirichlet Allocation:
A Hierarchical Model for Human Action Recognition,
HUMO07(240-254).
Springer DOI
0710
BibRef
Huang, Z.F.[Zhi Feng],
Yang, W.L.[Wei-Long],
Wang, Y.[Yang],
Mori, G.[Greg],
Latent Boosting for Action Recognition,
BMVC11(xx-yy).
HTML Version.
1110
BibRef
Singh, V.K.[Vivek Kumar],
Nevatia, R.[Ram],
Simultaneous tracking and action recognition for single actor human
actions,
VC(27), No. 12, December 2011, pp. 1115-1123.
WWW Link.
1112
BibRef
And:
Action recognition in cluttered dynamic scenes using Pose-Specific Part
Models,
ICCV11(113-120).
IEEE DOI
1201
BibRef
Earlier:
Human Action Recognition Using a Dynamic Bayesian Action Network with
2D Part Models,
ICCVGIP10(17-24).
DOI Link
1111
See also Efficient Inference with Multiple Heterogeneous Part Detectors for Human Pose Estimation.
BibRef
Khan, F.M.[Furqan M.],
Singh, V.K.[Vivek Kumar],
Nevatia, R.[Ram],
Simultaneous inference of activity, pose and object,
WACV12(281-288).
IEEE DOI
1203
See also Multiple pose context trees for estimating human pose in object context.
BibRef
Zhang, Z.[Zhang],
Tao, D.C.[Da-Cheng],
Slow Feature Analysis for Human Action Recognition,
PAMI(34), No. 3, March 2012, pp. 436-450.
IEEE DOI
1201
Slowly varying features from quickly varying input signal.
Model receptive fields of cortical neurons.
Apply to action with realtionship of body parts.
BibRef
Natarajan, P.[Pradeep],
Nevatia, R.[Ramakant],
Hierarchical Multi-Channel Hidden Semi Markov Graphical Models for
Activity Recognition,
CVIU(117), No. 10, October 2013, pp. 1329-1344.
Elsevier DOI
PDF File.
1309
BibRef
Earlier:
Online, Real-time Tracking and Recognition of Human Actions,
Motion08(1-8).
IEEE DOI
PDF File.
0801
BibRef
And:
View and scale invariant action recognition using multiview shape-flow
models,
CVPR08(1-8).
IEEE DOI
PDF File.
0806
BibRef
Earlier:
Coupled Hidden Semi Markov Models for Activity Recognition,
Motion07(10-10).
IEEE DOI
PDF File.
0702
BibRef
And:
Hierarchical Multi-channel Hidden Semi Markov Models,
IJCAI07(xx-yy).
PDF File. Hierarchical graphical models
BibRef
Natarajan, P.[Pradeep],
Singh, V.K.[Vivek Kumar],
Nevatia, R.[Ram],
Learning 3D action models from a few 2D videos for view invariant
action recognition,
CVPR10(20006-2013).
IEEE DOI
1006
See also Accurate person tracking through changing poses for multi-view action recognition.
BibRef
Banerjee, P.[Prithviraj],
Nevatia, R.[Ramakant],
Pose based activity recognition using Multiple Kernel learning,
ICPR12(445-448).
WWW Link.
1302
BibRef
Natarajan, P.[Pradeep],
Banerjee, P.[Prithviraj],
Nevatia, R.[Ram],
Accurate person tracking through changing poses for multi-view action
recognition,
ICCVGIP10(155-161).
DOI Link
1111
See also Learning 3D action models from a few 2D videos for view invariant action recognition.
BibRef
Khan, F.M.[Furqan M.],
Lee, S.C.[Sung Chun],
Nevatia, R.[Ram],
Conditional Bayesian networks for action detection,
AVSS13(256-262)
IEEE DOI
1311
Bayes methods
BibRef
Natarajan, P.[Pradeep],
Banerjee, P.[Prithviraj],
Khan, F.M.[Furqan M.],
Nevatia, R.[Ramakant],
Graphical framework for action recognition using temporally dense STIPs,
WMVC09(1-8).
IEEE DOI
0912
BibRef
Wang, L.M.[Li-Min],
Qiao, Y.[Yu],
Tang, X.[Xiaoou],
MoFAP: A Multi-level Representation for Action Recognition,
IJCV(119), No. 3, September 2016, pp. 254-271.
Springer DOI
1608
BibRef
Earlier:
Mining Motion Atoms and Phrases for Complex Action Recognition,
ICCV13(2680-2687)
IEEE DOI
1403
BibRef
And:
Motionlets: Mid-level 3D Parts for Human Motion Recognition,
CVPR13(2674-2681)
IEEE DOI
1309
action recognition; mid-level representation
BibRef
Zhao, Z.C.[Zhi-Chen],
Ma, H.M.[Hui-Min],
Chen, X.Z.[Xiao-Zhi],
Semantic parts based top-down pyramid for action recognition,
PRL(84), No. 1, 2016, pp. 134-141.
Elsevier DOI
1612
BibRef
Earlier:
Multi-scale region candidate combination for action recognition,
ICIP16(3071-3075)
IEEE DOI
1610
Semantic part learning.
Detectors
BibRef
Shi, F.[Feng],
Laganière, R.[Robert],
Petriu, E.[Emil],
Local part model for action recognition,
IVC(46), No. 1, 2016, pp. 18-28.
Elsevier DOI
1603
BibRef
And:
Gradient Boundary Histograms for Action Recognition,
WACV15(1107-1114)
IEEE DOI
1503
BibRef
Earlier: A1, A3, A2:
Sampling Strategies for Real-Time Action Recognition,
CVPR13(2595-2602)
IEEE DOI
1309
Accuracy
Bag-of-features (BoF)
BibRef
Lamghari, S.[Soufiane],
Bilodeau, G.A.[Guillaume-Alexandre],
Saunier, N.[Nicolas],
A Grid-based Representation for Human Action Recognition,
ICPR21(10500-10507)
IEEE DOI
2105
Deep learning, Visualization, Image recognition, Fuses,
Pose estimation, Benchmark testing
BibRef
Whiten, C.[Chris],
Laganiere, R.[Robert],
Bilodeau, G.A.[Guillaume-Alexandre],
Efficient Action Recognition with MoFREAK,
CRV13(319-325)
IEEE DOI
1308
Accuracy
BibRef
Zhou, Y.[Yu],
Ming, A.[Anlong],
Human action recognition with skeleton induced discriminative
approximate rigid part model,
PRL(83, Part 3), No. 1, 2016, pp. 261-267.
Elsevier DOI
1609
Human Action Recognition
BibRef
Goutsu, Y.[Yusuke],
Takano, W.[Wataru],
Nakamura, Y.[Yoshihiko],
Classification of Multi-class Daily Human Motion using Discriminative
Body Parts and Sentence Descriptions,
IJCV(126), No. 5, May 2018, pp. 495-514.
Springer DOI
1804
BibRef
Earlier:
Motion Recognition Employing Multiple Kernel Learning of Fisher
Vectors Using Local Skeleton Features,
ChaLearnDec15(321-328)
IEEE DOI
1602
Biological system modeling
BibRef
Huang, L.J.[Lin-Jiang],
Huang, Y.[Yan],
Ouyang, W.L.[Wan-Li],
Wang, L.[Liang],
Part-aligned pose-guided recurrent network for action recognition,
PR(92), 2019, pp. 165-176.
Elsevier DOI
1905
Action recognition, Part alignment, Auto-transformer attention
BibRef
Shao, Z.,
Li, Y.,
Guo, Y.,
Zhou, X.,
Chen, S.,
A Hierarchical Model for Human Action Recognition From Body-Parts,
CirSysVideo(29), No. 10, October 2019, pp. 2986-3000.
IEEE DOI
1910
image motion analysis, image recognition, image representation,
object detection, hierarchical model,
structured regression
BibRef
Naveenkumar, M.,
Domnic, S.,
Deep ensemble network using distance maps and body part features for
skeleton based action recognition,
PR(100), 2020, pp. 107125.
Elsevier DOI
2005
Human action recognition, Distance maps, Part features,
Convolutional neural networks, Long short term memory
BibRef
Varol, G.[Gül],
Laptev, I.[Ivan],
Schmid, C.[Cordelia],
Zisserman, A.[Andrew],
Synthetic Humans for Action Recognition from Unseen Viewpoints,
IJCV(129), No. 7, July 2021, pp. 2264-2287.
Springer DOI
2106
BibRef
Halim, A.A.,
Dartigues-Pallez, C.,
Precioso, F.,
Riveill, M.,
Benslimane, A.,
Ghoneim, S.,
Human action recognition based on 3D skeleton part-based pose
estimation and temporal multi-resolution analysis,
ICIP16(3041-3045)
IEEE DOI
1610
Diseases
BibRef
Murthy, O.V.R.[O.V. Ramana],
Radwan, I.[Ibrahim],
Goecke, R.[Roland],
Dense body part trajectories for human action recognition,
ICIP14(1465-1469)
IEEE DOI
1502
Detectors
BibRef
Hoai, M.[Minh],
Ladicky, L.[Lubor],
Zisserman, A.[Andrew],
Action Recognition From Weak Alignment of Body Parts,
BMVC14(xx-yy).
HTML Version.
1410
BibRef
Murthy, O.V.R.,
Radwan, I.,
Dhall, A.,
Goecke, R.,
On the Effect of Human Body Parts in Large Scale Human Behaviour
Recognition,
DICTA13(1-8)
IEEE DOI
1402
behavioural sciences computing
BibRef
Tian, Y.C.[Yi-Cong],
Sukthankar, R.[Rahul],
Shah, M.[Mubarak],
Spatiotemporal Deformable Part Models for Action Detection,
CVPR13(2642-2649)
IEEE DOI
1309
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Human Action Recognition, Skeletal Representations .