Tseng, D.C.[Din-Chang],
Shieh, W.S.[Wern-Sheng],
Plume extraction using entropic thresholding and region growing,
PR(26), No. 5, May 1993, pp. 805-817.
Elsevier DOI
0401
BibRef
Earlier:
Plume segmentation using local entropic thresholding,
ICPR92(III:156-159).
IEEE DOI
9208
Smoke plumes.
BibRef
Yuan, F.N.[Fei-Niu],
A fast accumulative motion orientation model based on integral image
for video smoke detection,
PRL(29), No. 7, 1 May 2008, pp. 925-932.
Elsevier DOI
0804
Video smoke detection; Fire detection;
Motion estimation; Orientation accumulation
BibRef
Calderara, S.[Simone],
Piccinini, P.[Paolo],
Cucchiara, R.[Rita],
Vision based smoke detection system using image energy and color
information,
MVA(22), No. 4, July 2011, pp. 705-719.
WWW Link.
1107
BibRef
Earlier:
Smoke Detection in Video Surveillance:
A MoG Model in the Wavelet Domain,
CVS08(xx-yy).
Springer DOI
0805
BibRef
Earlier: A2, A1, A3:
Reliable smoke detection in the domains of image energy and color,
ICIP08(1376-1379).
IEEE DOI
0810
BibRef
Vezzani, R.[Roberto],
Calderara, S.[Simone],
Piccinini, P.[Paolo],
Cucchiara, R.[Rita],
Smoke detection in video surveillance:
The use of ViSOR (video surveillance on-line repository),
CIVR08(289-298).
0807
BibRef
Zhao, T.,
Ackerman, S.,
Guo, W.,
Dust and Smoke Detection for Multi-Channel Imagers,
RS(2), No. 10, October 2010, pp. 2347-2368.
DOI Link
1203
BibRef
Verstockt, S.[Steven],
Poppe, C.[Chris],
van Hoecke, S.[Sofie],
Hollemeersch, C.[Charles],
Merci, B.[Bart],
Sette, B.[Bart],
Lambert, P.[Peter],
van de Walle, R.[Rik],
Silhouette-based multi-sensor smoke detection: Coverage analysis of
moving object silhouettes in thermal and visual registered images,
MVA(23), No. 6, November 2012, pp. 1243-1262.
WWW Link.
1210
BibRef
Dimitropoulos, K.,
Barmpoutis, P.,
Grammalidis, N.,
Higher Order Linear Dynamical Systems for Smoke Detection in Video
Surveillance Applications,
CirSysVideo(27), No. 5, May 2017, pp. 1143-1154.
IEEE DOI
1705
Analytical models, Classification algorithms, Dynamics, Fires,
Focusing, Spatiotemporal phenomena, Wavelet analysis,
Bag of systems, dynamic texture analysis,
higher order decomposition, linear dynamical systems, smoke, detection
BibRef
Yuan, F.N.[Fei-Niu],
Shi, J.T.[Jin-Ting],
Xia, X.[Xue],
Zhang, L.[Lin],
Li, S.Y.[Shu-Ying],
Encoding pairwise Hamming distances of Local Binary Patterns for
visual smoke recognition,
CVIU(178), 2019, pp. 43-53.
Elsevier DOI
1812
Scale invariance, Rotation invariance, Local binary pattern,
Pairwise comparing LBP, Smoke recognition
BibRef
Yuan, F.N.[Fei-Niu],
Shi, J.T.[Jin-Ting],
Xia, X.[Xue],
Huang, Q.H.[Qing-Hua],
Li, X.L.[Xue-Long],
Co-occurrence matching of local binary patterns for improving visual
adaption and its application to smoke recognition,
IET-CV(13), No. 2, March 2019, pp. 178-187.
DOI Link
1902
BibRef
Yuan, F.N.[Fei-Niu],
Zhang, L.[Lin],
Wan, B.Y.[Bo-Yang],
Xia, X.[Xue],
Shi, J.T.[Jin-Ting],
Convolutional Neural Networks Based on Multi-Scale Additive Merging
Layers for Visual Smoke Recognition,
MVA(30), No. 2, March 2019, pp. 345-358.
WWW Link.
1904
BibRef
Tao, H.J.[Huan-Jie],
Lu, X.B.[Xiao-Bo],
Smoke vehicle detection based on robust codebook model and robust
volume local binary count patterns,
IVC(86), 2019, pp. 17-27.
Elsevier DOI
1906
Smoke from vehicles. Polution detection.
Smoke vehicle detection, Codebook model,
Volume local binary count (VLBC), Non-redundant VLBC, Completed VLBC
BibRef
Li, S.[Sen],
Wang, S.Y.[Shu-Yan],
Zhang, D.[Dan],
Feng, C.Y.[Chun-Yong],
Shi, L.[Long],
Real-time smoke removal for the surveillance images under fire scenario,
SIViP(13), No. 5, July 2019, pp. 1037-1043.
Springer DOI
1906
BibRef
Yuan, F.N.[Fei-Niu],
Li, G.[Gang],
Xia, X.[Xue],
Lei, B.J.[Bang-Jun],
Shi, J.T.[Jin-Ting],
Fusing texture, edge and line features for smoke recognition,
IET-IPR(13), No. 14, 12 December 2019, pp. 2805-2812.
DOI Link
1912
BibRef
Yuan, F.,
Zhang, L.,
Xia, X.,
Huang, Q.,
Li, X.,
A Wave-Shaped Deep Neural Network for Smoke Density Estimation,
IP(29), 2020, pp. 2301-2313.
IEEE DOI
2001
Estimation, Image segmentation, Feature extraction, Semantics,
Image color analysis, Decoding, Visualization, Deep neural network,
smoke simulation
BibRef
Gu, K.,
Xia, Z.,
Qiao, J.,
Lin, W.,
Deep Dual-Channel Neural Network for Image-Based Smoke Detection,
MultMed(22), No. 2, February 2020, pp. 311-323.
IEEE DOI
2001
Feature extraction, Neural networks, Training, Deep learning,
Convolutional codes, Convolution, Safety, Smoke detection,
classification
BibRef
Park, K.M.[Kyung-Min],
Bae, C.O.[Cherl-O],
Smoke detection in ship engine rooms based on
video images,
IET-IPR(14), No. 6, 11 May 2020, pp. 1141-1149.
DOI Link
2005
BibRef
Tao, H.J.[Huan-Jie],
Lu, X.B.[Xiao-Bo],
Smoke vehicle detection based on multi-feature fusion and hidden Markov
model,
RealTimeIP(17), No. 3, June 2020, pp. 745-758.
Springer DOI
2006
BibRef
Li, Q.R.[Qing-Rong],
Liu, H.[Hui],
Zhang, J.P.[Jun-Peng],
Zeng, P.F.[Peng-Fei],
Target segmentation of industrial smoke image based on LBP Silhouettes
coefficient variant (LBPSCV) algorithm,
IET-IPR(14), No. 12, October 2020, pp. 2879-2889.
DOI Link
2010
BibRef
Tao, H.J.[Huan-Jie],
Lu, X.B.[Xiao-Bo],
Smoke Vehicle Detection Based on Spatiotemporal Bag-Of-Features and
Professional Convolutional Neural Network,
CirSysVideo(30), No. 10, October 2020, pp. 3301-3316.
IEEE DOI
2010
Feature extraction, Image color analysis, Vehicle detection,
convolutional neural networks (CNN)
BibRef
Chaturvedi, S.[Shubhangi],
Khanna, P.[Pritee],
Ojha, A.[Aparajita],
A survey on vision-based outdoor smoke detection techniques for
environmental safety,
PandRS(185), 2022, pp. 158-187.
Elsevier DOI
2202
Outdoor smoke, Smoke detection, Smoke classification,
Smoke segmentation, Smoke bounding box detection
BibRef
Zhang, J.D.[Jie-Dong],
Xie, W.H.[Wen-Hui],
Liu, H.Y.[Hong-Yan],
Dang, W.Y.[Wen-Yi],
Yu, A.F.[An-Feng],
Liu, D.[Di],
Compressed dual-channel neural network with application to
image-based smoke detection,
IET-IPR(16), No. 4, 2022, pp. 1036-1043.
DOI Link
2203
BibRef
Cao, Y.C.[Yi-Chao],
Tang, Q.[Qingfei],
Wu, X.[Xuehui],
Lu, X.B.[Xiao-Bo],
EFFNet: Enhanced Feature Foreground Network for Video Smoke Source
Prediction and Detection,
CirSysVideo(32), No. 4, April 2022, pp. 1820-1833.
IEEE DOI
2204
Feature extraction, Task analysis, Monitoring, Dynamics, Shape,
Convolutional neural networks, Feature foreground, source prediction
BibRef
Yuan, F.N.[Fei-Niu],
Dong, Z.[Zeshu],
Zhang, L.[Lin],
Xia, X.[Xue],
Shi, J.[Jinting],
Cubic-cross convolutional attention and count prior embedding for
smoke segmentation,
PR(131), 2022, pp. 108902.
Elsevier DOI
2208
Smoke segmentation, Information embedding,
Cubic-cross convolutional attention, Count prior attention
BibRef
Tao, H.J.[Huan-Jie],
Duan, Q.Y.[Qian-Yue],
Learning Discriminative Feature Representation for Estimating Smoke
Density of Smoky Vehicle Rear,
ITS(23), No. 12, December 2022, pp. 23136-23147.
IEEE DOI
2212
Feature extraction, Semantics, Image segmentation, Estimation,
Logic gates, Interference, Data mining, Smoke density,
spatial and channel attention
BibRef
Chen, X.[Xin],
Xue, Y.P.[Yi-Peng],
Zhu, Y.L.[Yao-Lin],
Ma, R.Q.[Rui-Qing],
A novel smoke detection algorithm based on improved mixed Gaussian
and YOLOv5 for textile workshop environments,
IET-IPR(17), No. 7, 2023, pp. 1991-2004.
DOI Link
2305
image recognition, object detection, object recognition
BibRef
Jing, T.[Tao],
Zeng, M.[Ming],
Meng, Q.H.[Qing-Hao],
SmokePose: End-to-End Smoke Keypoint Detection,
CirSysVideo(33), No. 10, October 2023, pp. 5778-5789.
IEEE DOI
2310
BibRef
Li, R.G.[Rui-Guo],
Wu, H.N.[Huai-Ning],
Multi-Robot Plume Source Localization by Distributed Quantum-Inspired
Guidance With Formation Behavior,
ITS(24), No. 11, November 2023, pp. 11889-11904.
IEEE DOI
2311
BibRef
Zhang, L.[Lin],
Wu, J.[Jing],
Yuan, F.N.[Fei-Niu],
Fang, Y.M.[Yu-Ming],
Smoke-Aware Global-Interactive Non-Local Network for Smoke Semantic
Segmentation,
IP(33), 2024, pp. 1175-1187.
IEEE DOI
2402
Transformers, Semantics, Task analysis, Convolution,
Feature extraction, Context modeling, Computational modeling,
smoke-aware loss
BibRef
Wen, G.[Gang],
Zhou, F.[Fangrong],
Ma, Y.T.[Yu-Tang],
Pan, H.[Hao],
Geng, H.[Hao],
Cao, J.[Jun],
Li, K.[Kang],
Yuan, F.N.[Fei-Niu],
A dense multi-scale context and asymmetric pooling embedding network
for smoke segmentation,
IET-CV(18), No. 2, 2024, pp. 236-246.
DOI Link
2403
feature extraction, image segmentation, smoke detection
BibRef
Chen, X.[Xin],
Hou, Q.S.[Qing-Shan],
Fu, Y.[Yan],
Zhu, Y.L.[Yao-Lin],
A lightweight multiscale smoke segmentation algorithm based on
improved DeepLabV3+,
IET-IPR(18), No. 10, 2024, pp. 2665-2678.
DOI Link
2408
convolutional neural nets, image processing, image segmentation, smoke
BibRef
Wang, G.Q.[Gui-Qian],
Yuan, F.N.[Fei-Niu],
Li, H.[Hongdi],
Fang, Z.J.[Zhi-Jun],
A pyramid Gaussian pooling based CNN and transformer hybrid network
for smoke segmentation,
IET-IPR(18), No. 12, 2024, pp. 3206-3217.
DOI Link
2411
image processing, image segmentation, object detection
BibRef
Li, K.[Kang],
Yuan, F.N.[Fei-Niu],
Wang, C.M.[Chun-Mei],
An effective multi-scale interactive fusion network with hybrid
Transformer and CNN for smoke image segmentation,
PR(159), 2025, pp. 111177.
Elsevier DOI
2412
Smoke segmentation, Attention coupled module, Hybrid network,
Foreground enhancement
BibRef
Yuan, F.N.[Fei-Niu],
Wang, G.Q.[Gui-Qian],
Huang, Q.H.[Qing-Hua],
Li, X.L.[Xue-Long],
A newton interpolation network for smoke semantic segmentation,
PR(159), 2025, pp. 111119.
Elsevier DOI
2412
Smoke segmentation, Newton interpolation,
Newton interpolation module, Structured information, Deep neural network
BibRef
Besbes, O.[Olfa],
Benazza-Benyahia, A.[Amel],
Extracting Relevant Features from Videos for a Robust Smoke Detection,
ACIVS17(406-417).
Springer DOI
1712
BibRef
Tripathi, A.K.[Abhishek Kumar],
Swarup, S.[Shanti],
Visual Smoke Detection,
NTIRE16(I: 128-142).
Springer DOI
1704
BibRef
Yamaguchi, S.[Shiori],
Hirai, K.[Keita],
Horiuchi, T.[Takahiko],
Video Smoke Removal Based on Smoke Imaging Model and Space-Time Pixel
Compensation,
CCIW17(43-54).
Springer DOI
1704
BibRef
Chen, D.[Da],
Li, W.B.[Wen-Bin],
Hall, P.[Peter],
Dense Motion Estimation for Smoke,
ACCV16(IV: 225-239).
Springer DOI
1704
BibRef
Wattanachote, K.,
Li, K.,
Wang, Y.,
Shih, T.K.,
Liu, W.,
Preliminary Investigation on Stationarity of Dynamic Smoke Texture
and Dynamic Fire Texture Based on Motion Coherent Metric,
CMVIT17(99-104)
IEEE DOI
1704
computer vision
BibRef
Bombrun, M.[Maxime],
Barra, V.[Vincent],
Harris, A.[Andrew],
Analysis of Thermal Video for Coarse to Fine Particle Tracking in
Volcanic Explosion Plumes,
SCIA15(366-376).
Springer DOI
1506
BibRef
Filonenko, A.,
Hernandez, D.C.,
Jo, K.H.[Kang-Hyun],
Smoke detection for static cameras,
FCV15(1-4)
IEEE DOI
1506
cameras
BibRef
Meng, Z.Y.[Zhao-Yi],
Koniges, A.[Alice],
He, Y.,
Willianms, S.,
Kurth, T.,
Cook, B.,
Deslippe, J.,
Bertozzi, A.L.[Andrea L.],
OpenMP parallelization and optimization of graph-based machine learning
algorithms,
LNCS(9903), Springer, 2016.
In: OpenMP: Memory, Devices, and Tasks.
Springer DOI
See also Hyperspectral Image Classification Using Graph Clustering Methods.
BibRef
0000
Hu, H.[Huiyi],
Sunu, J.[Justin],
Bertozzi, A.L.[Andrea L.],
Multi-class Graph Mumford-Shah Model for Plume Detection Using the MBO
scheme,
EMMCVPR15(209-222).
Springer DOI
1504
See also Hyperspectral Image Classification Using Graph Clustering Methods.
BibRef
Merkurjev, E.[Ekaterina],
Sunu, J.[Justin],
Bertozzi, A.L.[Andrea L.],
Graph MBO method for multiclass segmentation of hyperspectral
stand-off detection video,
ICIP14(689-693)
IEEE DOI
1502
Chemical plumes.
BibRef
He, H.Q.[Hai-Qian],
Peng, L.Q.[Li-Qun],
Yang, D.[Deshun],
Chen, X.[Xiaoou],
Smoke Detection Based on a Semi-supervised Clustering Model,
MMMod14(II: 291-298).
Springer DOI
1405
BibRef
Pahalawatta, K.K.,
Green, R.,
Particle Detection and Classification in Photoelectric Smoke
Detectors Using Image Histogram Features,
DICTA13(1-8)
IEEE DOI
1402
image representation
BibRef
Chen, J.Q.[Jia-Qiu],
Wang, Y.W.[Yao-Wei],
Tian, Y.H.[Yong-Hong],
Huang, T.J.[Tie-Jun],
Wavelet based smoke detection method with RGB Contrast-image and
shape constrain,
VCIP13(1-6)
IEEE DOI
1402
edge detection
BibRef
Wang, Y.[Yue],
Chua, T.W.[Teck Wee],
Chang, R.[Richard],
Pham, N.T.[Nam Trung],
Real-time smoke detection using texture and color features,
ICPR12(1727-1730).
WWW Link.
1302
BibRef
Pahalawatta, K.K.,
Green, R.,
Classifying Airborne Particles,
DICTA11(376-381).
IEEE DOI
1205
BibRef
Earlier:
Nano-scale particle classification using image histogram maximum value
index of Rayleigh scattered images,
IVCNZ10(1-6).
IEEE DOI
1203
e.g. dust and smoke.
BibRef
Maruta, H.[Hidenori],
Nakamura, A.[Akihiro],
Yamamichi, T.[Takeshi],
Kurokawa, F.[Fujio],
Image based smoke detection with local Hurst exponent,
ICIP10(4653-4656).
IEEE DOI
1009
BibRef
Wan, V.[Victoria],
Braun, W.J.,
Dean, C.B.[Charmaine B.],
Henderson, S.,
A comparison of classification algorithms for the identification of
smoke plumes from satellite images,
CGC10(332).
PDF File.
1006
BibRef
Kopilovic, I.,
Vágvölgyi, B.,
Szirányi, T.,
Application of Panoramic Annular Lens for Motion Analysis Tasks:
Surveillance and Smoke Detection,
ICPR00(Vol IV: 714-717).
IEEE DOI
0009
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Hardware, Sensor and Camera Arrangements for Surveillance Systems .