Wu, Q.X.,
A Correlation-Relaxation-Labeling Framework for Computing Optical Flow:
Template Matching from a New Perspective,
PAMI(17), No. 9, September 1995, pp. 843-853.
IEEE DOI
Template Matching.
Clouds. Low contrast, large displacements, and non-rigid motions.
BibRef
9509
Gong, M.L.[Ming-Lun],
Yang, Y.H.[Yee-Hong],
Estimate Large Motions Using the Reliability-Based Motion Estimation
Algorithm,
IJCV(68), No. 3, July 2006, pp. 319-330.
Springer DOI
0606
BibRef
Earlier:
Estimate Large Motions Using Reliability-Based Dynamic Programming,
ICIP04(IV: 2559-2562).
IEEE DOI
0505
See also Real-Time Stereo Matching Using Orthogonal Reliability-Based Dynamic Programming.
BibRef
Gong, M.L.[Ming-Lun],
Motion estimation using dynamic programming with selective path search,
ICPR04(IV: 203-206).
IEEE DOI
0409
BibRef
Wills, J.[Josh],
Agarwal, S.[Sameer],
Belongie, S.J.[Serge J.],
A Feature-based Approach for Dense Segmentation and Estimation of Large
Disparity Motion,
IJCV(68), No. 2, June 2006, pp. 125-143.
Springer DOI
0606
BibRef
Wills, J.[Josh],
Belongie, S.J.[Serge J.],
A Feature-Based Approach for Determining Dense Long Range
Correspondences,
ECCV04(Vol III: 170-182).
Springer DOI
0405
two stage process in which a planar model is used to get an
approximation for the segmentation and the gross motion, and then a
spline is used to refine the fit.
BibRef
Alvarez, L.[Luis],
Weickert, J.[Joachim],
Sánchez, J.[Javier],
Reliable Estimation of Dense Optical Flow Fields with Large
Displacements,
IJCV(39), No. 1, August 2000, pp. 41-56.
DOI Link
0008
BibRef
Earlier:
A Scale-Space Approach to Nonlocal Optical Flow Calculations,
ScaleSpace99(235-246).
See also Dense Disparity Map Estimation Respecting Image Discontinuities: A PDE and Scale-Space Based Approach. Code:
See also Robust Optical Flow Estimation.
BibRef
Alvarez, L.[Luis],
Deriche, R.[Rachid],
Papadopoulo, T.[Théo],
Sánchez, J.[Javier],
Symmetrical Dense Optical Flow Estimation with Occlusions Detection,
IJCV(75), No. 3, December 2007, pp. 371-385.
Springer DOI
0710
BibRef
Earlier:
ECCV02(I: 721 ff.).
Springer DOI
0205
BibRef
Fransens, R.[Rik],
Strecha, C.[Christoph],
Van Gool, L.J.[Luc J.],
Optical flow based super-resolution: A probabilistic approach,
CVIU(106), No. 1, April 2007, pp. 106-115.
Elsevier DOI
0704
BibRef
Earlier:
Robust Estimation in the Presence of Spatially Coherent Outliers,
RANSAC06(102).
IEEE DOI
0609
BibRef
And:
A Mean Field EM-algorithm for Coherent Occlusion Handling in
MAP-Estimation Prob,
CVPR06(I: 300-307).
IEEE DOI
0606
BibRef
Earlier:
A Probabilistic Approach to Optical Flow based Super-Resolution,
GenModel04(191).
IEEE DOI
0406
BibRef
Earlier: A2, A1, A3:
A Probabilistic Approach to Large Displacement Optical Flow and
Occlusion Detection,
SMVP04(71-82).
Springer DOI
0505
Super-resolution; Optical flow; Visibility computation; EM
See also Combined Depth and Outlier Estimation in Multi-View Stereo.
BibRef
Brox, T.[Thomas],
Malik, J.[Jitendra],
Large Displacement Optical Flow:
Descriptor Matching in Variational Motion Estimation,
PAMI(33), No. 3, March 2011, pp. 500-513.
IEEE DOI
1102
Integrate correspondences from descriptor matching into
a variational approach to gain the benefits of both.
BibRef
Brox, T.[Thomas],
Bregler, C.[Christoph],
Malik, J.[Jitendra],
Large displacement optical flow,
CVPR09(41-48).
IEEE DOI
0906
BibRef
Bao, L.C.[Lin-Chao],
Yang, Q.X.[Qing-Xiong],
Jin, H.L.[Hai-Lin],
Fast Edge-Preserving PatchMatch for Large Displacement Optical Flow,
IP(23), No. 12, December 2014, pp. 4996-5006.
IEEE DOI
1402
BibRef
Earlier:
CVPR14(3534-3541)
IEEE DOI
1409
edge detection.
Bilateral Filter
BibRef
Revaud, J.[Jérôme],
Weinzaepfel, P.[Philippe],
Harchaoui, Z.[Zaid],
Schmid, C.[Cordelia],
DeepMatching: Hierarchical Deformable Dense Matching,
IJCV(120), No. 3, December 2016, pp. 300-323.
Springer DOI
1609
BibRef
Earlier: A1, A2, A3, A4:
EpicFlow:
Edge-preserving interpolation of correspondences for optical flow,
CVPR15(1164-1172)
IEEE DOI
1510
BibRef
Earlier: A2, A1, A3, A4:
DeepFlow: Large Displacement Optical Flow with Deep Matching,
ICCV13(1385-1392)
IEEE DOI
1403
deep convolutional networks
BibRef
Palomares, R.P.[Roberto P.],
Meinhardt-Llopis, E.[Enric],
Ballester, C.[Coloma],
Haro, G.[Gloria],
FALDOI: A New Minimization Strategy for Large Displacement Variational
Optical Flow,
JMIV(58), No. 1, May 2017, pp. 27-46.
Springer DOI
1704
BibRef
Earlier: A1, A4, A3, Only:
A Rotation-Invariant Regularization Term for Optical Flow Related
Problems,
ACCV14(V: 304-319).
Springer DOI
1504
Code:
See also Analysis and Speedup of the FALDOI Method for Optical Flow Estimation, An.
BibRef
Garamendi, J.F.[Juan Francisco],
Lazcano, V.[Vanel],
Ballester, C.[Coloma],
Joint TV-L1 Optical Flow and Occlusion Estimation,
IPOL(9), 2019, pp. 432-452.
DOI Link
2001
Code, Optical Flow.
BibRef
Ballester, C.[Coloma],
Garrido, L.[Lluis],
Lazcano, V.[Vanel],
Caselles, V.[Vicent],
A TV-L1 Optical Flow Method with Occlusion Detection,
DAGM12(31-40).
Springer DOI
1209
BibRef
Gamonal, F.P.[Ferran P.],
Ballester, C.[Coloma],
Haro, G.[Gloria],
Meinhardt-Llopis, E.[Enric],
Palomares, R.P.[Roberto P.],
An Analysis and Speedup of the FALDOI Method for Optical Flow
Estimation,
IPOL(9), 2019, pp. 94-123.
DOI Link
1904
Code, Optical Flow.
See also FALDOI: A New Minimization Strategy for Large Displacement Variational Optical Flow.
BibRef
Fan, J.Z.[Jing-Zhe],
Wang, Y.[Yan],
Guo, L.[Lei],
Hierarchical coherency sensitive hashing and interpolation with
RANSAC for large displacement optical flow,
CVIU(175), 2018, pp. 1-10.
Elsevier DOI
1812
BibRef
Earlier:
A modified variational method for large displacement optical flow,
ICIVC17(128-132)
IEEE DOI
1708
Nearest neighbor field, Sparse to dense interpolation, Optical flow.
Estimation, Image color analysis,
Image motion analysis, Interpolation, Optical imaging, Robustness,
descriptor matching, large displacement optical flow,
variational method.
BibRef
Bailer, C.[Christian],
Taetz, B.[Bertram],
Stricker, D.[Didier],
Flow Fields: Dense Correspondence Fields for Highly Accurate Large
Displacement Optical Flow Estimation,
PAMI(41), No. 8, August 2019, pp. 1879-1892.
IEEE DOI
1907
BibRef
Earlier:
ICCV15(4015-4023)
IEEE DOI
1602
Optical imaging, Adaptive optics, Estimation, Data structures,
Boolean functions, Optical propagation, Runtime, Optical flow,
correspondence fields.
BibRef
Chen, J.[Jun],
Cai, Z.[Zemin],
Lai, J.H.[Jian-Huang],
Xie, X.H.[Xiao-Hua],
Efficient Segmentation-Based PatchMatch for Large Displacement
Optical Flow Estimation,
CirSysVideo(29), No. 12, December 2019, pp. 3595-3607.
IEEE DOI
1912
Optical imaging, Estimation, Image edge detection, Optical filters,
Biomedical optical imaging, Motion segmentation, Data structures,
adaptive random search
BibRef
Liao, X.X.[Xiao-Xin],
Cai, Z.[Zemin],
Chen, J.[Jun],
Liu, T.S.[Tian-Shu],
Lai, J.H.[Jian-Huang],
Physics-based optical flow estimation under varying illumination
conditions,
SP:IC(117), 2023, pp. 117007.
Elsevier DOI
2308
Physics-based optical flow, Varying illumination,
L0 gradient regularization, Flow structure extraction
BibRef
Zhang, C.X.[Cong-Xuan],
Chen, Z.[Zhen],
Xiong, F.[Fan],
Liu, W.[Wen],
Li, M.[Ming],
Ge, L.[Liyue],
STDC-Flow: large displacement flow field estimation using similarity
transformation-based dense correspondence,
IET-CV(14), No. 5, August 2020, pp. 248-258.
DOI Link
2007
BibRef
Wu, G.Y.[Guang-Yang],
Liu, X.H.[Xiao-Hong],
Luo, K.M.[Kun-Ming],
Liu, X.[Xi],
Zheng, Q.Q.[Qing-Qing],
Liu, S.C.[Shuai-Cheng],
Jiang, X.Y.[Xin-Yang],
Zhai, G.T.[Guang-Tao],
Wang, W.[Wenyi],
AccFlow: Backward Accumulation for Long-Range Optical Flow,
ICCV23(12085-12094)
IEEE DOI Code:
WWW Link.
2401
BibRef
Zu, Y.,
Gao, K.,
Bao, X.,
Tang, W.,
Saliency guided fast interpolation for large displacement optical
flow,
ICPR18(1145-1150)
IEEE DOI
1812
Interpolation, Optical imaging, Computational modeling,
Mathematical model, Estimation, Cameras, Integrated optics
BibRef
Munda, G.[Gottfried],
Shekhovtsov, A.[Alexander],
Knöbelreiter, P.[Patrick],
Pock, T.[Thomas],
Scalable Full Flow with Learned Binary Descriptors,
GCPR17(321-332).
Springer DOI
1711
Award, GCPR, HM. Large displacement optical flow.
BibRef
Hu, Y.,
Li, Y.,
Song, R.,
Robust Interpolation of Correspondences for Large Displacement
Optical Flow,
CVPR17(4791-4799)
IEEE DOI
1711
BibRef
Earlier: A1, A3, A2:
Efficient Coarse-to-Fine Patch Match for Large Displacement Optical
Flow,
CVPR16(5704-5712)
IEEE DOI
1612
Adaptation models, Adaptive optics, Computational modeling,
Estimation, Impedance matching, Interpolation, Robustness
BibRef
Verma, N.K.,
Gunesh, D.E.,
Rao, G.S.S.S.,
Mishra, A.,
High Accuracy Optical Flow Based Future Image Frame Predictor Model,
AIPR15(1-6)
IEEE DOI
1605
edge detection
BibRef
Verma, N.K.,
Mishra, A.,
Large displacement optical flow based image predictor model,
AIPR14(1-7)
IEEE DOI
1504
edge detection
BibRef
Timofte, R.[Radu],
Van Gool, L.J.[Luc J.],
Sparse Flow:
Sparse Matching for Small to Large Displacement Optical Flow,
WACV15(1100-1106)
IEEE DOI
1503
Computer vision
BibRef
Le Coat, F.[Francois],
Pissaloux, E.E.[Edwige E.],
Modelling the optical-flow with projective-transform approximation
for large camera movements,
ICIP14(199-203)
IEEE DOI
1502
Biomedical optical imaging
BibRef
Nie, Q.[Qiong],
Bouchafa, S.[Samia],
Merigot, A.[Alain],
Model-based optical flow for large displacements and homogeneous
regions,
ICIP13(3865-3869)
IEEE DOI
1402
3D motion; block matching; c-velocity; egomotion; optical flow
BibRef
Chang, H.S.[Haw-Shiuan],
Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Superpixel-based large displacement optical flow,
ICIP13(3835-3839)
IEEE DOI
1402
large displacement optical flow; mean shift; superpixel
BibRef
Chen, Z.Y.[Zhuo-Yuan],
Jin, H.L.[Hai-Lin],
Lin, Z.[Zhe],
Cohen, S.[Scott],
Wu, Y.[Ying],
Large Displacement Optical Flow from Nearest Neighbor Fields,
CVPR13(2443-2450)
IEEE DOI
1309
Motion Segmentation; Optical Flow; PatchMatch; Randomized Algorithm
BibRef
Ummenhofer, B.[Benjamin],
Large Displacement Optical Flow for Volumetric Image Sequences,
DAGM11(432-437).
Springer DOI
1109
BibRef
Willert, V.[Volker],
Eggert, J.[Julian],
A stochastic dynamical system for optical flow estimation,
WDV09(711-718).
IEEE DOI
0910
BibRef
Willert, V.,
Schmuedderich, J.,
Eggert, J.,
Goerick, C.,
Koerner, E.,
Probabilistic Optical Flow Estimation for Large Pixel Displacements
Utilizing Egomotion Flow Compensation,
BMVC08(xx-yy).
PDF File.
0809
BibRef
Willert, V.[Volker],
Eggert, J.[Julian],
Clever, S.[Sebastian],
Körner, E.[Edgar],
Probabilistic Color Optical Flow,
DAGM05(9).
Springer DOI
0509
BibRef
Agarwal, R.,
Sklansky, J.,
Estimating optical flow for large interframe displacements,
CAIP93(403-411).
Springer DOI
9309
BibRef
Agarwal, R.,
Sklansky, J.,
Estimating Optical Flow from Clustered Trajectories in Velocity-Time,
ICPR92(I:215-219).
IEEE DOI
BibRef
9200
Chapter on Optical Flow Field Computations and Use continues in
Optical Flow for Simple Motions .