10.1.7 Stereo Systems: Multiple Resolutions, Hierarchical

Chapter Contents (Back)
Stereo, Multiple Resolution. Multiple Resolutions. Hierarchical. Similar to:
See also Multi-Scale Matching for Stereo. Hierarchical Stereo.
See also Terrain Extraction, DEM, DTM, DSM.

Moravec, H.,
Rover Visual Obstacle Avoidance,
IJCAI81(785-790). BibRef 8100
Earlier:
Visual Mapping by Robot Rover,
IJCAI79(598-600). BibRef
And:
Towards Automatic Visual Obstacle Avoidance,
IJCAI77(584). Interest Operator, Moravec. There is no real published reference. These papers are important for two ideas, first using multiple resolution images to improve the speed in matching, and second using an interest operator to locate points to be used in the matching. The correlation based matcher is used to find the best match for each of the "interesting" points in one image. First the image is reduced and the resulting images are used. This gives an approximate location for the corresponding point in the second image. The next higher resolution images then are used to refine the match locations, but the search space for the exact match has been reduced to the area around the location at the lower resolution. Correlation based matching.
See also Stanford Cart and the CME Rover, The. BibRef

Moravec, H.,
Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover,
Ph.D.Thesis (CS), 1980. BibRef 8000 Stanford AIMemo 340 and BibRef STAN-CS-80-813. BibRef
And: CMU-RI-TR-3, 1980. The complete thesis. BibRef

Moravec, H.P.[Hans P.],
Robot Rover Visual Navigation,
UMI Research PressAnn Arbor, MI, 1981. The printed book from the thesis. BibRef 8100

Barnard, S.T.,
Stochastic Stereo Matching over Scale,
IJCV(3), No. 1. May 1989, pp. 17-32.
Springer DOI BibRef 8905 IJCV(3), No. 1. May 1989, pp. 17-32.
Springer DOI BibRef
Earlier: DARPA88(769-778), BibRef
Stereo Matching by Hierarchial, Microcanonical Annealing,
IJCAI87(832-835), BibRef DARPA87(792-797). BibRef
And:
A Stochastic Approach to Stereo Vision,
AAAI-86(676-680). BibRef
And: RCV87(21-25). Use the simulated annealing approach to fit a warped surface over different scales. BibRef

Barnard, S.T.,
Recent Progress in CYCLOPS: A System for Stereo Cartography,
DARPA90(449-455). Extensions of his earlier stereo work. BibRef 9000

Quam, L.H.,
Hierarchical Warp Stereo,
DARPA84(149-155) BibRef 8400
And: RCV87(80-86).
PDF File. Generating the global matches based on a warping function to fill in the gaps between what can really be matched. BibRef

de Vleeschauwer, D.,
An Intensity-Based, Coarse-to-Fine Approach to Reliably Measure Binocular Disparity,
CVGIP(57), No. 2, March 1993, pp. 204-218.
DOI Link Estimate the disparities, then eliminate the obvious bad points. BibRef 9303

Yang, Y.B.[Yi-Bing], Yuille, A.L.,
Multilevel Enhancement and Detection of Stereo Disparity Surfaces,
AI(78), No. 1-2, October 1995, pp. 121-145.
Elsevier DOI spatio-disparity space. Find a good surface. BibRef 9510

Yang, Y.B.[Yi-Bing], Yuille, A.L., Lu, J.,
Local, Global, and Multilevel Stereo Matching,
CVPR93(274-279).
IEEE DOI A distinction is made between multi-level and multi-resolution matching. BibRef 9300

Marapane, S.B., Trivedi, M.M.[Mohan M.],
Multi-Primitive Hierarchical (MPH) Stereo System,
PAMI(16), No. 3, March 1994, pp. 227-240.
IEEE DOI BibRef 9403
Earlier: CVPR92(499-505).
IEEE DOI BibRef
And:
An Active Vision System for Multi-Primitive Hierarchical Stereo Analysis and Multi-Cue Depth Extraction,
SPIE(1956), Sensor Fusion Conference, Orlando, FL, April 1993. Does use some regions in a match and line segments then individual edgels for details. Generates disparity maps, not surfaces. BibRef

Marapane, S.B., Trivedi, M.M.[Mohan M.],
Region-Based Stereo Analysis for Robotic Applications,
SMC(19), No. 6, November/December 1989, pp. 1447-1464. Stereo using regions to generate coarse disparity maps. Graph matching using region features only.
See also Vision System for Robotic Inspection and Manipulation, A. BibRef 8911

Marapane, S.B., Trivedi, M.M.[Mohan M.],
Region and Edge Segment Based Stereo Analysis,
SPIE(1571), International Symposium on Intelligent Robotics, Bangalore, India, January 1991, pp. 71-82. BibRef 9101
Earlier:
Edge Segment Based Stereo Analysis,
SPIE(1293), Applications of AI VIII, Orlando, FL, April 1990, pp. 140-151. BibRef

Marapane, S.B., Trivedi, M.M.[Mohan M.],
Extracting Depth by Binocular Stereo in a Robot Vision System,
SPIE(1012), Applications of Digital Image Processing XI, San Diego, CA, August 1988. BibRef 8808

Kim, D.H., Koo, K.B., Choi, W.Y., Park, R.H.,
Stereo Matching Using Hierarchical Features for Robotic Applications,
AdvRob(10), No. 1, 1996, pp. 1-14. BibRef 9600

Lacey, A.J., Thacker, N.A., Crossley, S., Yates, R.B.,
A Multistage Approach to the Dense Estimation of Disparity from Stereo SEM Images,
IVC(16), No. 5, April 27 1998, pp. 373-383.
Elsevier DOI 9805
BibRef
Earlier: A1, A2, A4, Only:
Surface Approximation from Industrial SEM Images,
BMVC96(Applications). 9608
scanning electron microscope images. University of Sheffield BibRef

Crossley, S., Lacey, A.J., Thacker, N.A., Seed, N.L.,
Robust Stereo via Temporal Consistency,
BMVC97(xx-yy).
HTML Version. 0209
BibRef

Crossley, S., Thacker, N.A., Seed, N.L.,
Benchmarking of Bootstrap Temporal Stereo using Statistical and Physical Scene Modelling,
BMVC98(xx-yy). BibRef 9800

Crossley, S., Seed, N.L., Thacker, N.A., Ivey, P.A.,
Improving accuracy, robustness and computational efficiency in 3D computer vision,
IVC(22), No. 5, 1 May 2004, pp. 399-412.
Elsevier DOI 0403
Extend stereo analysis with robust techniques. BibRef

Wang, Y., and Bhattacharya, P.,
Hierarchical Stereo Correspondence Using Features of Gray Connected Components,
MGV(8), No. 1, 1999, pp. 19-54. BibRef 9900
Earlier: ICIP97(III: 264-267).
IEEE DOI
See also On Parameter-Dependent Connected Components of Gray Images. BibRef

Melen, R.D.[Roger D.],
Disparity measurement with variably sized interrogation regions,
US_Patent6,141,440, Oct 31, 2000
WWW Link. BibRef 0010
And:
Compensating pixel records of related images for detecting images disparity, apparatus and method,
US_Patent6,222,938, Apr 24, 2001
WWW Link. BibRef

Neumann, J.[Jan], Aloimonos, Y.[Yiannis],
Spatio-Temporal Stereo Using Multi-Resolution Subdivision Surfaces,
IJCV(47), No. 1-3, April-June 2002, pp. 181-193.
DOI Link 0203
BibRef

Neumann, J.[Jan], Aloimonos, Y.[Yiannis],
Multi-Modality Stereo with Varying Spatial, Temporal, and Spectral Resolution,
SMBV01(xx-yy). 0110
BibRef

Alvarez, L.[Luis], Deriche, R.[Rachid], Sánchez, J.[Javier], Weickert, J.[Joachim],
Dense Disparity Map Estimation Respecting Image Discontinuities: A PDE and Scale-Space Based Approach,
JVCIR(13), No. 1/2, March/June 2002, pp. 3-21.
DOI Link 0204
BibRef
Earlier: INRIARR-3874, January 2000.
HTML Version. 0105

See also Reliable Estimation of Dense Optical Flow Fields with Large Displacements. BibRef

Alvarez, L.[Luis], Deriche, R.[Rachid], Santana, F.[Francisco],
Recursivity and PDE's in Image Processing,
ICPR00(Vol I: 242-248).
IEEE DOI 0009
BibRef

Yokoyama, A.[Atsushi], Miwa, Y.[Yoko],
Parallax calculating apparatus, distance calculating apparatus, methods of the same, and information providing media,
US_Patent6,519,358, Feb 11, 2003
WWW Link. BibRef 0302

Chan, W.L.[Wai Lam], Choi, H.H.[Hyeok-Ho], Baraniuk, R.G.,
Coherent Multiscale Image Processing Using Dual-Tree Quaternion Wavelets,
IP(17), No. 7, July 2008, pp. 1069-1082.
IEEE DOI 0806
BibRef
Earlier:
Multiscale Image Disparity Estimation using the Quaternion Wavelet Transform,
ICIP06(1229-1232).
IEEE DOI 0610
BibRef

Min, D.B.[Dong-Bo], Sohn, K.H.[Kwang-Hoon],
Cost Aggregation and Occlusion Handling With WLS in Stereo Matching,
IP(17), No. 8, August 2008, pp. 1431-1442.
IEEE DOI 0808
BibRef

Min, D.B.[Dong-Bo], Lu, J.B.[Jiang-Bo], Do, M.N.[Minh N.],
Joint Histogram-Based Cost Aggregation for Stereo Matching,
PAMI(35), No. 10, 2013, pp. 2539-2545.
IEEE DOI 1309
BibRef
Earlier:
A revisit to cost aggregation in stereo matching: How far can we reduce its computational redundancy?,
ICCV11(1567-1574).
IEEE DOI 1201
Accuracy. BibRef

Ham, B.[Bumsub], Min, D.B.[Dong-Bo], Sohn, K.H.[Kwang-Hoon],
A Generalized Random Walk With Restart and its Application in Depth Up-Sampling and Interactive Segmentation,
IP(22), No. 7, 2013, pp. 2574-2588.
IEEE DOI 1307
BibRef
Earlier:
Cost aggregation with anisotropic diffusion in feature space for hybrid stereo matching,
ICIP11(3365-3368).
IEEE DOI 1201

See also Virtual view rendering using super-resolution with multiview images. anisotropic diffusion model; interactive image segmentation; depth up-sampling BibRef

Ham, B.[Bumsub], Min, D.B.[Dong-Bo], Sohn, K.H.[Kwang-Hoon],
Depth Superresolution by Transduction,
IP(24), No. 5, May 2015, pp. 1524-1535.
IEEE DOI 1504
directed graphs BibRef

Yun, S.U.[Sang-Un], Min, D.B.[Dong-Bo], Sohn, K.H.[Kwang-Hoon],
3D Scene Reconstruction System with Hand-Held Stereo Cameras,
3DTV07(1-4).
IEEE DOI 0705
BibRef

Oh, C.[Changjae], Ham, B.[Bumsub], Sohn, K.H.[Kwang-Hoon],
Probabilistic Correspondence Matching using Random Walk with Restart,
BMVC12(37).
DOI Link 1301
BibRef

Yoon, S.U.[Sang-Un], Min, D.B.[Dong-Bo], Sohn, K.H.[Kwang-Hoon],
Fast Dense Stereo Matching Using Adaptive Window in Hierarchical Framework,
ISVC06(II: 316-325).
Springer DOI 0611
Given initial disparity, find edges. Improve using these edges. BibRef

Poli, D.[Daniela], Soille, P.[Pierre],
Digital Surface Model Extraction and Re nement through Image Segmentation - Application to the ISPRS Benchmark Stereo Dataset,
PFG(2012), No. 4, 2012, pp. 317-329.
WWW Link. 1211
BibRef
Earlier:
Refinement of Digital Surface Models through Constrained Connectivity Partitioning of Optical Imagery,
HighRes11(xx-yy).
PDF File. 1106
BibRef

Brunton, A.[Alan], Lang, J.[Jochen], Dubois, E.[Eric],
Efficient Multi-scale Stereo of High-Resolution Planar and Spherical Images,
3DIMPVT12(120-127).
IEEE DOI 1212
BibRef

Sandoz, P.[Patrick], Elhechmi, I.[Imen], Gharbi, T.[Tijani],
Toward stereovisual monitoring of three-dimensional translations with submicrometer resolution,
JOSA-A(29), No. 11, November 2012, pp. 2451-2458.
WWW Link. 1211
BibRef

Yang, Q.Q.[Qing-Qing], Li, D.X.[Dong-Xiao], Wang, L.H.[Liang-Hao], Zhang, M.[Ming],
Full-Image Guided Filtering for Fast Stereo Matching,
SPLetters(20), No. 3, March 2013, pp. 237-240.
IEEE DOI 1303
BibRef
Earlier: A1, A3, A2, A4:
Hierarchical Joint Bilateral Filtering for Depth Post-Processing,
ICIG11(129-134).
IEEE DOI 1109
To get accurate and smooth depth map. Use depth confidence measures. BibRef

Yang, Q.Q.[Qing-Qing], Ji, P.[Pan], Li, D.X.[Dong-Xiao], Yao, S.J.[Shao-Jun], Zhang, M.[Ming],
Fast stereo matching using adaptive guided filtering,
IVC(32), No. 3, 2014, pp. 202-211.
Elsevier DOI 1403
Stereo vision BibRef

Huq, S.[Shafik], Koschan, A.F.[Andreas F.], Abidi, M.A.[Mongi A.],
Occlusion filling in stereo: Theory and experiments,
CVIU(117), No. 6, June 2013, pp. 688-704.
Elsevier DOI 1304
Stereo matching; Occlusion; Probability; Image noise; Clustering BibRef

Huq, S.[Shafik], Koschan, A.F.[Andreas F.], Abidi, B.R.[Besma R.], Abidi, M.A.[Mongi A.],
Efficient BP stereo with automatic paramemeter estimation,
ICIP08(301-304).
IEEE DOI 0810
Belief propogation stereo. BibRef

Wang, Y.C., Tung, C.P., Chung, P.C.,
Efficient Disparity Estimation Using Hierarchical Bilateral Disparity Structure Based Graph Cut Algorithm With a Foreground Boundary Refinement Mechanism,
CirSysVideo(23), No. 5, May 2013, pp. 784-801.
IEEE DOI 1305
BibRef

Morales, S.[Sandino], Klette, R.[Reinhard],
Kalman-filter based spatio-temporal disparity integration,
PRL(34), No. 8, June 2013, pp. 873-883.
Elsevier DOI 1305
BibRef
Earlier:
Spatio-Temporal Stereo Disparity Integration,
CAIP11(II: 540-547).
Springer DOI 1109
BibRef
And:
A Third Eye for Performance Evaluation in Stereo Sequence Analysis,
CAIP09(1078-1086).
Springer DOI 0909
Stereo algorithms; Kalman filter; Disparity propagation; Spatial domain; Temporal domain; Vision-based driver assistance BibRef

Morales, S.[Sandino], Penc, J.[Joachim], Vaudrey, T.[Tobi], Klette, R.[Reinhard],
Graph-Cut versus Belief-Propagation Stereo on Real-World Images,
CIARP09(732-740).
Springer DOI 0911
BibRef

Tao, R.S.[Rong-Shu], Xiang, Y.M.[Yu-Ming], You, H.J.[Hong-Jian],
An Edge-Sense Bidirectional Pyramid Network for Stereo Matching of VHR Remote Sensing Images,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Xia, Y.X.[Yuan-Xin], d'Angelo, P.[Pablo], Fraundorfer, F.[Friedrich], Tian, J.J.[Jiao-Jiao], Reyes, M.F.[Mario Fuentes], Reinartz, P.[Peter],
GA-Net-Pyramid: An Efficient End-to-End Network for Dense Matching,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link 2205
BibRef

He, S.[Sheng], Li, S.H.[Shen-Hong], Jiang, S.[San], Jiang, W.S.[Wan-Shou],
HMSM-Net: Hierarchical multi-scale matching network for disparity estimation of high-resolution satellite stereo images,
PandRS(188), 2022, pp. 314-330.
Elsevier DOI 2205
Satellite stereo images, Disparity estimation, Convolutional neural network, GaoFen-7 dataset BibRef

Yang, X.W.[Xiao-Wei], Zhao, Y.[Yong], Feng, Z.G.[Zhi-Guo], Sang, H.W.[Hai-Wei], Zhang, Z.B.[Zhen-Bo], Zhang, G.Y.[Gui-Ying], He, L.[Lin],
A light-weight stereo matching network based on multi-scale features fusion and robust disparity refinement,
IET-IPR(17), No. 6, 2023, pp. 1797-1811.
DOI Link 2305
image processing, stereo image processing BibRef

Zhu, Z.Y.[Zi-Yu], Guo, W.[Wei], Chen, W.[Wei], Li, Q.P.[Qiu-Ping], Zhao, Y.[Yong],
MPANET: Multi-Scale Pyramid Aggregation Network for Stereo Matching,
ICIP21(2773-2777)
IEEE DOI 2201
Image processing, Aggregates, Estimation, stereo matching, foreground areas, multi-scale pyramid aggregation, pseudo-label BibRef

Li, P.F.[Peng-Fei], Ye, S.Q.[Shui-Qiang], Zhang, J.Q.[Jia-Quan], Xinan, W.[Wang], Dai, Q.F.[Qi-Fei], Yu, Z.Z.[Zheng-Zhong], Li, F.[Fuchi], Zhao, Y.[Yong],
Self-adaptive Multi-scale Aggregation Network for Stereo Matching,
ICPR22(3794-3800)
IEEE DOI 2212
Costs, Correlation, Fuses, Volume measurement, Convolutional neural networks BibRef

Li, Z.Z.[Zi-Zhuo], Su, C.B.[Chun-Bao], Fan, F.[Fan], Huang, J.[Jun], Ma, J.Y.[Jia-Yi],
MC-Net: Integrating Multi-Level Geometric Context for Two-View Correspondence Learning,
CirSysVideo(34), No. 8, August 2024, pp. 7550-7565.
IEEE DOI 2408
Vectors, Feature extraction, Circuits and systems, Fans, Estimation, Visualization, Transforms, Correspondence learning, outlier rejection BibRef

Tosi, F.[Fabio], Aleotti, F.[Filippo], Ramirez, P.Z.[Pierluigi Zama], Poggi, M.[Matteo], Salti, S.[Samuele], Mattoccia, S.[Stefano], di Stefano, L.[Luigi],
Neural Disparity Refinement,
PAMI(46), No. 12, December 2024, pp. 8900-8917.
IEEE DOI 2411
Feature extraction, Noise measurement, Estimation, Training, Task analysis, Pipelines, Stereo matching, deep learning, domain generalization BibRef


Wang, A.[Anjie], Fang, Z.J.[Zhi-Jun], Jiang, X.Y.[Xiao-Yan], Gao, Y.B.[Yong-Bin], Cao, G.F.[Gao-Feng], Ma, S.W.[Si-Wei],
Depth Estimation of Multi-Modal Scene Based on Multi-Scale Modulation,
ICIP23(2795-2799)
IEEE DOI 2312
BibRef

Shen, Z.L.[Zhe-Lun], Dai, Y.C.[Yu-Chao], Song, X.B.[Xi-Bin], Rao, Z.B.[Zhi-Bo], Zhou, D.F.[Ding-Fu], Zhang, L.J.[Liang-Jun],
PCW-Net: Pyramid Combination and Warping Cost Volume for Stereo Matching,
ECCV22(XXXII:280-297).
Springer DOI 2211
BibRef

Yang, M., Wu, F., Li, W.,
WaveletStereo: Learning Wavelet Coefficients of Disparity Map in Stereo Matching,
CVPR20(12882-12891)
IEEE DOI 2008
Wavelet transforms, Image reconstruction, Estimation, Image resolution, Signal resolution BibRef

Saikia, T., Marrakchi, Y., Zela, A., Hutter, F., Brox, T.,
AutoDispNet: Improving Disparity Estimation With AutoML,
ICCV19(1812-1823)
IEEE DOI 2004
Bayes methods, encoding, gradient methods, image classification, learning (artificial intelligence), Bayes methods BibRef

Ye, Z., Xu, Y., Hoegner, L., Tong, X., Stilla, U.,
Precise Disparity Estimation for Narrow Baseline Stereo Based On Multiscale Superpixels and Phase Correlation,
Semantics3D19(147-153).
DOI Link 1912
BibRef

Chang, J., Chen, Y.,
Pyramid Stereo Matching Network,
CVPR18(5410-5418)
IEEE DOI 1812
Estimation, Convolution, Biomedical optical imaging, Optical imaging, Semantics, Solid modeling BibRef

Batsos, K., Mordohai, P.,
RecResNet: A Recurrent Residual CNN Architecture for Disparity Map Enhancement,
3DV18(238-247)
IEEE DOI 1812
convolution, feedforward neural nets, image enhancement, image matching, image sampling, recurrent neural nets, stereo matching BibRef

Weng, J., Zhang, W., Zhang, W., Gao, J.,
Pyramid stereo matching for spherical panoramas,
VCIP16(1-4)
IEEE DOI 1701
Buildings BibRef

Freundlich, C.[Charles], Zavlanos, M.[Michael], Mordohai, P.[Philippos],
Exact bias correction and covariance estimation for stereo vision,
CVPR15(3296-3304)
IEEE DOI 1510
BibRef

Cheng, Y.[Yang], Matthies, L.H.[Larry H.],
Stereovision Bias Removal by Autocorrelation,
WACV15(1153-1160)
IEEE DOI 1503
Benchmark testing. subpixel interpolation. BibRef

Murarka, A.[Aniket], Einecke, N.[Nils],
A Meta-Technique for Increasing Density of Local Stereo Methods through Iterative Interpolation and Warping,
CRV14(254-261)
IEEE DOI 1406
Benchmark testing BibRef

Kim, J.[Jaechul], Liu, C.[Ce], Sha, F.[Fei], Grauman, K.[Kristen],
Deformable Spatial Pyramid Matching for Fast Dense Correspondences,
CVPR13(2307-2314)
IEEE DOI 1309
BibRef

Zhang, K.[Kang], Li, J.Y.[Ji-Yang], Li, Y.J.[Yi-Jing], Hu, W.D.[Wei-Dong], Sun, L.F.[Li-Feng], Yang, S.Q.[Shi-Qiang],
Binary stereo matching,
ICPR12(356-359).
WWW Link. 1302
BibRef
Earlier: A4, A1, A5, A2, A3, A6:
Virtual support window for adaptive-weight stereo matching,
VCIP11(1-4).
IEEE DOI 1201
BibRef

Wang, K., Stutts, C., Dunn, E.[Enrique], Frahm, J.M.[Jan-Michael],
Efficient joint stereo estimation and land usage classification for multiview satellite data,
WACV16(1-9)
IEEE DOI 1606
Cameras BibRef

Wang, Y.L.[Yi-Lin], Wang, K.[Ke], Dunn, E.[Enrique], Frahm, J.M.[Jan-Michael],
Stereo under Sequential Optimal Sampling: A Statistical Analysis Framework for Search Space Reduction,
CVPR14(485-492)
IEEE DOI 1409
BibRef

Wang, Y.L.[Yi-Lin], Dunn, E.[Enrique], Frahm, J.M.[Jan-Michael],
Increasing the Efficiency of Local Stereo by Leveraging Smoothness Constraints,
3DIMPVT12(246-253).
IEEE DOI 1212
BibRef

Jen, Y.H.[Yi-Hung], Dunn, E.[Enrique], Fite-Georgel, P.[Pierre], Frahm, J.M.[Jan-Michael],
Adaptive Scale Selection for Hierarchical Stereo,
BMVC11(xx-yy).
HTML Version. 1110

See also Efficient Generation of Multi-perspective Panoramas.
See also Building Rome on a Cloudless Day. BibRef

Won, K.H.[Kwang Hee], Jung, S.K.[Soon Ki],
hSGM: Hierarchical Pyramid Based Stereo Matching Algorithm,
ACIVS11(693-701).
Springer DOI 1108
BibRef

Yang, Q.X.[Qing-Xiong],
A non-local cost aggregation method for stereo matching,
CVPR12(1402-1409).
IEEE DOI 1208
BibRef

Yang, Q.X.[Qing-Xiong], Wang, L.[Liang], Ahuja, N.[Narendra],
A constant-space belief propagation algorithm for stereo matching,
CVPR10(1458-1465).
IEEE DOI 1006
BibRef

Sorgi, L.[Lorenzo], Schlosser, M.[Markus],
Integrating Color Sampling into Depth Based Bilayer Segmentation,
CIAP13(I:31-40).
Springer DOI 1311
BibRef

Jachalsky, J.[Jorn], Schlosser, M.[Markus], Gandolph, D.[Dirk],
Reliability-aware cross multilateral filtering for robust disparity map refinement,
3DTV10(1-4).
IEEE DOI 1006
BibRef

Liu, T.L.[Tian-Liang], Zhang, P.Z.[Pin-Zheng], Luo, L.M.[Li-Min],
Dense Stereo Correspondence with Contrast Context Histogram, Segmentation-Based Two-Pass Aggregation and Occlusion Handling,
PSIVT09(449-461).
Springer DOI 0901
BibRef

Laureano, G.T.[Gustavo Teodoro], de Paiva, M.S.V.[Maria Stela Veludo],
Disparities Maps Generation Employing Multi-resolution Analysis and Perceptual Grouping,
IPTA08(1-6).
IEEE DOI 0811
BibRef

Gu, Q.Q.[Quan-Quan], Zhou, J.[Jie],
A similarity measure under Log-Euclidean metric for stereo matching,
ICPR08(1-4).
IEEE DOI 0812
BibRef
And:
Belief propagation on Riemannian manifold for stereo matching,
ICIP08(1788-1791).
IEEE DOI 0810
BibRef

Boughorbel, F.[Faysal],
A New Multiple-Windows Depth from Stereo Algorithm for 3D Displays,
3DTV07(1-4).
IEEE DOI 0705
BibRef

Shukla, N.K.[Narendra Kumar], Rathi, V.[Vivek], Chakka, V.[Vijaykumar],
An Efficient Adaptive Window Based Disparity Map Computation Algorithm by Dense Two Frame Stereo Correspondence,
ICCVGIP06(894-905).
Springer DOI 0612
BibRef

Kai, Z.[Zhang], Wang, Y.Z.[Yu-Zhou], Wang, G.P.[Guo-Ping],
Hierarchical Stereo Matching: From Foreground to Background,
ACIVS06(632-643).
Springer DOI 0609
BibRef

Nehab, D.[Diego], Rusinkiewicz, S.[Szymon], Davis, J.E.[James E.],
Improved Sub-pixel Stereo Correspondences through Symmetric Refinement,
ICCV05(I: 557-563).
IEEE DOI 0510
Not just refinement from coarse match. BibRef

Tornow, M., Michaelis, B., Kuhn, R.W., Calow, R., Mecke, R.,
Hierarchical Method for Stereophotogrammetric Multi-object-position Measurement,
DAGM03(164-171).
Springer DOI 0310
BibRef

Caspary, G., Zeevi, Y.Y.,
Multiresolution approach to three-dimensional stereo vision,
3DPVT02(784-787).
IEEE DOI 0206
BibRef
And:
Wavelet-based multiresolution stereo vision,
ICPR02(III: 680-683).
IEEE DOI 0211
BibRef

Gherardi, R., Castellani, U., Fusiello, A., Murino, V.,
Optimal Parameter Estimation for MRF Stereo Matching,
CIAP05(818-825).
Springer DOI 0509
BibRef

Fusiello, A.[Andrea], Castellani, U.[Umberto], Murino, V.[Vittorio],
Relaxing Symmetric Multiple Windows Stereo Using Markov Random Fields,
EMMCVPR01(91-105).
Springer DOI 0205
BibRef
Earlier: A3, A2, A1:
Disparity Map Restoration by Integration of Confidence in Markov Random Fields Models,
ICIP01(II: 29-32).
IEEE DOI 0108
BibRef

Castellani, U., Livatino, S., Fisher, R.B.,
Improving environment modelling by edge occlusion surface completion,
3DPVT02(672-675).
IEEE DOI 0206
BibRef

Park, S.Y.[Sang Yoon], Lee, S.H.[Sang Hwa], Cho, N.I.[Nam Ik],
Segmentation based disparity estimation using color and depth information,
ICIP04(V: 3275-3278).
IEEE DOI 0505
BibRef

Lee, S.H.[Sang Hwa], Cho, N.I.[Nam Ik], Park, J.I.[Jong-Il],
Disparity estimation using color coherence and stochastic diffusion,
ICIP04(II: 1373-1376).
IEEE DOI 0505
BibRef
And:
Stochastic Diffusion for Correspondence Estimation and Objects Segmentation,
GenModel04(183).
IEEE DOI 0406
BibRef

Lee, S.H.[Sang Hwa], Cho, N.I.[Nam Ik], Kanatsugu, Y., Park, J.I.[Jong-Il],
Simultaneous object extraction and disparity estimation using stochastic diffusion,
ICIP03(III: 457-460).
IEEE DOI 0312
BibRef

Lee, S.H.[Sang Hwa], Park, S.Y.[Sang Yoon], Cho, N.I.[Nom Ik], Kanatsugu, Y., Park, J.I.[Jong-Il],
Occlusion detection and stereo matching in a stochastic method,
ICIP03(I: 377-380).
IEEE DOI 0312
BibRef

Lee, S.H.[Sang Hwa], Kanatsugu, Y., Park, J.I.[Jong-Il],
A hierarchical method of map-based stochastic diffusion and disparity estimation,
ICIP02(II: 541-544).
IEEE DOI 0210
BibRef

Lee, S.H.[Sang Hwa], Kanatsugu, Y.[Yasuaki], Park, J.I.[Jong-Il],
Hierarchical stochastic diffusion for disparity estimation,
SMBV01(xx-yy). 0110
BibRef

Wu, Q., Xu, G., Ai, H.,
MCGE: Multi-candidate Based Group Evolution in Stereo Matching,
ICIP01(III: 927-930).
IEEE DOI 0108
BibRef

Luo, L., Clewer, D., Canagarajah, N., Bull, D.R.,
Genetic Stereo Matching Using Complex Conjugate Wavelet Pyramids,
ICIP01(II: 153-156).
IEEE DOI 0108

See also Image Fusion Using Complex Wavelets. BibRef

Hansen, M., Daniilidis, K., Sommer, G.,
Optimization of stereo disparity estimation using the instantaneous frequency,
CAIP97(321-328).
Springer DOI 9709
BibRef

Vaidya, N.M., and Boyer, K.L.,
Stereopsis and Image Registration from Extended Edge Features in the Absence of Camera Pose Information,
CVPR91(76-82).
IEEE DOI Hypothesize the match using relational constraints. BibRef 9100

Venkateswar, V., and Chellappa, R.,
Hierarchical Stereo and Motion Correspondence Using Feature Groupings,
IJCV(15), No. 3, July 1995, pp. 245-269.
Springer DOI BibRef 9507
Earlier:
Hierarchical Stereo Matching Using Feature Grouping,
DARPA92(427-436). BibRef
Earlier:
Hierarchical Feature Based Matching for Motion Correspondence,
Motion91(280-285). Stereo using different features, and extensions to general matching for motion. For his thesis:
See also Hierarchical Representation, Matching and Search for Some Computer Vision Problems.
See also Stereo Error Detection, Correction, and Evaluation. BibRef

Nishimoto, Y., and Shirai, Y.,
A Parallel Matching Algorithm for Stereo Vision,
IJCAI85(977-980). Use Zero crossing from several channels (resolutions). BibRef 8500

Chang, C.C.[Chien-Chung], Chatterjee, S., Kube, P.R.,
A quantization error analysis for convergent stereo,
ICIP94(II: 735-739).
IEEE DOI 9411
BibRef
Earlier:
On an Analysis of Static Occlusion in Stereo Vision,
CVPR91(722-723).
IEEE DOI Match left to right, then right to left and integrate. BibRef

Chang, C.C.[Chien-Chung], Chatterjee, S.,
Multiresolution Stereo: A Bayesian Approach,
ICPR90(I: 908-912).
IEEE DOI BibRef 9000

Chang, C.C.[Chien-Chung], Chatterjee, S.,
A Deterministic Approach for Stereo Disparity Calculation,
ECCV92(420-424).
Springer DOI BibRef 9200

Kumar, K.S., Desai, U.B.,
Integrated Stereo Vision - A Multiresolution Approach,
ICPR94(A:714-716).
IEEE DOI BibRef 9400

Ma, R.H.[Rui-Hua], Thonnat, M.[Monique], Berthod, M.[Marc],
An Adjustment-Free Stereo Matching Algorithm,
BMVC93(xx-yy).
PDF File. 9309
BibRef

Meygret, A., Thonnat, M., and Berthod, M.,
A Pyramidal Stereovision Algorithm Based on Contour Chain Points,
ECCV90(83-88).
Springer DOI Pyramid Structure. Reduce time and match main structure first using pyramid. BibRef 9000

Yokoya, N.,
Surface Reconstruction Directly From Binocular Stereo Images By Multiscale-Multistage Regularization,
ICPR92(I:642-646).
IEEE DOI BibRef 9200

Gu, C.[Chuang], Wu, L.D.[Le-De],
Structural matching of multiresolution for stereo vision,
ICPR90(I: 243-245).
IEEE DOI 9006
BibRef

Cantoni, V., Griffini, A., Lombardi, L.,
Stereo Vision In Multi-Resolution,
CIAP89(706-713). BibRef 8900

Chapter on Stereo: Three Dimensional Descriptions from Two or More Views, Binocular, Trinocular continues in
Stereo Analysis: Regions, Combine Area and Edge .


Last update:Nov 26, 2024 at 16:40:19