Xu, G.,
Wu, H.Z.,
Shi, Y.Q.,
Structural Design of Convolutional Neural Networks for Steganalysis,
SPLetters(23), No. 5, May 2016, pp. 708-712.
IEEE DOI
1604
Computer architecture
BibRef
Tang, W.,
Tan, S.,
Li, B.,
Huang, J.,
Automatic Steganographic Distortion Learning Using a Generative
Adversarial Network,
SPLetters(24), No. 10, October 2017, pp. 1547-1551.
IEEE DOI
1710
steganography, automatic steganographic distortion learning,
BibRef
Li, B.,
Wei, W.,
Ferreira, A.,
Tan, S.,
ReST-Net: Diverse Activation Modules and Parallel Subnets-Based CNN
for Spatial Image Steganalysis,
SPLetters(25), No. 5, May 2018, pp. 650-654.
IEEE DOI
1805
feedforward neural nets, image coding, image filtering,
learning (artificial intelligence), steganography, CNN, ReST-Net,
wide structure
BibRef
Zou, Y.[Ying],
Zhang, G.[Ge],
Liu, L.[Leian],
Research on image steganography analysis based on deep learning,
JVCIR(60), 2019, pp. 266-275.
Elsevier DOI
1903
Steganalysis, Steganography, Feature learning, Deep learning,
Convolutional neural network, Transfer learning, Multitask learning
BibRef
Su, A.,
Zhao, X.,
Boosting Image Steganalysis Under Universal Deep Learning
Architecture Incorporating Ensemble Classification Strategy,
SPLetters(26), No. 12, December 2019, pp. 1852-1856.
IEEE DOI
2001
convolutional neural nets, data compression,
image classification, image coding, image fusion,
ensemble
BibRef
Luo, T.[Ting],
Jiang, G.Y.[Gang-Yi],
Yu, M.[Mei],
Zhong, C.M.[Cai-Ming],
Xu, H.Y.[Hai-Yong],
Pan, Z.Y.[Zhi-Yong],
Convolutional neural networks-based stereo image reversible data
hiding method,
JVCIR(61), 2019, pp. 61-73.
Elsevier DOI
1906
Convolutional neural network (CNN), Predictor,
Prediction error expansion (PEE),
Stereo image
BibRef
Luo, T.[Ting],
Jiang, G.Y.[Gang-Yi],
Yu, M.[Mei],
Shao, F.[Feng],
Peng, Z.J.[Zong-Ju],
Disparity based stereo image reversible data hiding,
ICIP14(5492-5496)
IEEE DOI
1502
Art
BibRef
Ye, D.P.[Deng-Pan],
Jiang, S.Z.[Shun-Zhi],
Li, S.Y.[Shi-Yu],
Liu, C.R.[Chang-Rui],
Faster and transferable deep learning steganalysis on GPU,
RealTimeIP(16), No. 3, June 2019, pp. 623-633.
WWW Link.
1906
BibRef
Sun, Y.[Yu],
Zhang, H.[Hao],
Zhang, T.[Tao],
Wang, R.[Ran],
Deep neural networks for efficient steganographic payload location,
RealTimeIP(16), No. 3, June 2019, pp. 635-647.
WWW Link.
1906
BibRef
Ni, D.,
Feng, G.,
Shen, L.,
Zhang, X.,
Selective Ensemble Classification of Image Steganalysis Via Deep Q
Network,
SPLetters(26), No. 7, July 2019, pp. 1065-1069.
IEEE DOI
1906
Feature extraction, Training, Signal processing algorithms,
Reinforcement learning, Optimization,
Deep Q Network
BibRef
Liu, J.R.[Jia-Rui],
Lu, W.[Wei],
Zhan, Y.L.[Yi-Lin],
Chen, J.J.[Jun-Jia],
Xu, Z.P.[Zhao-Peng],
Li, R.P.[Rui-Peng],
Efficient binary image steganalysis based on ensemble neural network of
multi-module,
RealTimeIP(17), No. 1, February 2020, pp. 137-147.
Springer DOI
2002
BibRef
Baluja, S.[Shumeet],
Hiding Images within Images,
PAMI(42), No. 7, July 2020, pp. 1685-1697.
IEEE DOI
2006
Containers, Neural networks, Image coding, Image reconstruction,
Image color analysis, Training, Receivers, Information hiding,
image trust
BibRef
Wu, S.,
Zhong, S.,
Liu, Y.,
A Novel Convolutional Neural Network for Image Steganalysis With
Shared Normalization,
MultMed(22), No. 1, January 2020, pp. 256-270.
IEEE DOI
2001
Training, Feature extraction, Standards,
Convolutional neural networks, Task analysis, Data models,
shared normalization
BibRef
Luo, Y.J.[Yuan-Jing],
Qin, J.H.[Jiao-Hua],
Xi-Ang, X.[Xuyu],
Tan, Y.[Yun],
Liu, Q.A.[Qi-Ang],
Xiang, L.Y.[Ling-Yun],
Coverless real-time image information hiding based on image block
matching and dense convolutional network,
RealTimeIP(17), No. 1, February 2020, pp. 125-135.
Springer DOI
2002
BibRef
Zhou, L.,
Feng, G.,
Shen, L.,
Zhang, X.,
On Security Enhancement of Steganography via Generative Adversarial
Image,
SPLetters(27), 2020, pp. 166-170.
IEEE DOI
2002
Steganography, adversarial attacks, GAN, security
BibRef
Zhao, D.Y.[Dan-Yang],
Wang, K.X.[Kai-Xi],
BNS-CNN: A Blind Network Steganalysis Model Based on Convolutional
Neural Network in IPV6 Network,
IWDW19(365-373).
Springer DOI
2003
BibRef
Hung, S.C.[Shi-Chei],
Wu, D.C.[Da-Chun],
Tsai, W.H.[Wen-Hsiang],
Data Hiding in Computer-Generated Stained Glass Images and Its
Applications to Information Protection,
IEICE(E103-D), No. 4, April 2020, pp. 850-865.
WWW Link.
2004
BibRef
Yousfi, Y.,
Fridrich, J.,
An Intriguing Struggle of CNNs in JPEG Steganalysis and the OneHot
Solution,
SPLetters(27), 2020, pp. 830-834.
IEEE DOI
2006
Transform coding, Discrete cosine transforms, Training, Schedules,
Detectors, Computer architecture, Convolution, Steganography,
deep learning
BibRef
Ud Din, S.[Salah],
Akhtar, N.[Naveed],
Younis, S.[Shahzad],
Shafait, F.[Faisal],
Mansoor, A.[Atif],
Shafique, M.[Muhammad],
Steganographic universal adversarial perturbations,
PRL(135), 2020, pp. 146-152.
Elsevier DOI
2006
Adversarial attack, Steganography, Deep neural networks, Wavelet transform
BibRef
Li, L.,
Zhang, W.,
Chen, K.,
Yu, N.,
Steganographic Security Analysis From Side Channel Steganalysis and
Its Complementary Attacks,
MultMed(22), No. 10, October 2020, pp. 2526-2536.
IEEE DOI
2009
Social networking (online), Security, Correlation, Image sequences,
Distortion, Feature extraction, Digital images,
secure region
BibRef
Shi, X.Y.[Xiao-Yu],
Tondi, B.[Benedetta],
Li, B.[Bin],
Barni, M.[Mauro],
CNN-based steganalysis and parametric adversarial embedding:A
game-theoretic framework,
SP:IC(89), 2020, pp. 115992.
Elsevier DOI
2010
adversarial embedding, Deep learning, Steganography,
Steganalysis, Game theory
BibRef
Yedroudj, M.[Mehdi],
Comby, F.[Frédéric],
Chaumont, M.[Marc],
Steganography using a 3-player game,
JVCIR(72), 2020, pp. 102910.
Elsevier DOI
1806
Steganalysis, Deep learning, CNN, GAN
BibRef
Ruiz, H.[Hugo],
Chaumont, M.[Marc],
Yedroudj, M.[Mehdi],
Amara, A.O.[Ahmed Oulad],
Comby, F.[Frédéric],
Subsol, G.[Gérard],
Analysis of the Scalability of a Deep-learning Network for
Steganography 'into the Wild',
MMForWild20(439-452).
Springer DOI
2103
BibRef
Kang, S.H.[Sang-Hoon],
Park, H.H.[Han-Hoon],
Park, J.I.[Jong-Il],
Identification of Multiple Image Steganographic Methods Using
Hierarchical ResNets,
IEICE(E104-D), No. 2, February 2021, pp. 350-353.
WWW Link.
2102
BibRef
Ravikumar, K.P.,
Reddy, H.S.M.[H. S. Manjunatha],
Pixel Prediction-Based Image Steganography Using Crow Search
Algorithm-Based Deep Belief Network Approach,
IJIG(21), No. 1 2021, pp. 2150002.
DOI Link
2102
BibRef
Ma, S.[Sai],
Zhao, X.F.[Xian-Feng],
Steganalytic feature based adversarial embedding for adaptive JPEG
steganography,
JVCIR(76), 2021, pp. 103066.
Elsevier DOI
2104
Steganography, Adversarial embedding, Non-data-driven
BibRef
Luo, Y.J.[Yuan-Jing],
Qin, J.H.[Jiao-Hua],
Xiang, X.[Xuyu],
Tan, Y.[Yun],
Coverless Image Steganography Based on Multi-Object Recognition,
CirSysVideo(31), No. 7, July 2021, pp. 2779-2791.
IEEE DOI
2107
Use features of whole image for hiding, easy to attack.
Robustness, Feature extraction, Dictionaries, Proposals, Resists,
Tools, Indexes, Coverless steganography, object detection,
ResNet
BibRef
Zhong, N.,
Qian, Z.,
Wang, Z.,
Zhang, X.,
Li, X.,
Batch Steganography via Generative Network,
CirSysVideo(31), No. 1, January 2021, pp. 88-97.
IEEE DOI
2101
Payloads, Matrix converters, Distortion, Resource management,
Convolution, Training, Linear programming, Batch steganography,
information hiding
BibRef
Li, Y.F.[Ya-Feng],
Liu, J.[Ju],
Liu, X.X.[Xiao-Xi],
Wang, X.J.[Xue-Jing],
Gao, X.S.[Xue-Song],
Zhang, Y.Y.[Yu-Yi],
HCISNet: Higher-capacity invisible image steganographic network,
IET-IPR(15), No. 13, 2021, pp. 3332-3346.
DOI Link
2110
image watermarking, learning (artificial intelligence), steganography
BibRef
Qin, C.[Chuan],
Zhang, W.M.[Wei-Ming],
Dong, X.Y.[Xiao-Yi],
Zha, H.Y.[Hong-Yue],
Yu, N.H.[Neng-Hai],
Adversarial steganography based on sparse cover enhancement,
JVCIR(80), 2021, pp. 103325.
Elsevier DOI
2110
Steganography, Adversarial example, Deep neural network
BibRef
Peng, F.[Fei],
Chen, G.[Guanfu],
Long, M.[Min],
A Robust Coverless Steganography Based on Generative Adversarial
Networks and Gradient Descent Approximation,
CirSysVideo(32), No. 9, September 2022, pp. 5817-5829.
IEEE DOI
2209
Steganography, Generative adversarial networks, Generators,
Data mining, Neural networks, Image segmentation, Distortion,
gradient descent
BibRef
Weng, S.W.[Shao-Wei],
Chen, M.[Mengfei],
Yu, L.F.[Li-Fang],
Sun, S.Y.[Shi-Yao],
Lightweight and Effective Deep Image Steganalysis Network,
SPLetters(29), 2022, pp. 1888-1892.
IEEE DOI
2209
Convolution, Feature extraction, Signal to noise ratio,
Correlation, Standards, Steganography, Training, Deep learning,
MGP
BibRef
Fu, T.[Tong],
Chen, L.Q.[Li-Quan],
Fu, Z.J.[Zhang-Jie],
Yu, K.[Kunliang],
Wang, Y.[Yu],
CCNet: CNN model with channel attention and convolutional pooling
mechanism for spatial image steganalysis,
JVCIR(88), 2022, pp. 103633.
Elsevier DOI
2210
Steganalysis, Convolutional neural network, Channel attention,
Convolutional pooling
BibRef
Liu, J.H.[Jia-Hao],
Jiao, G.[Ge],
Sun, X.Y.[Xi-Yu],
Feature Passing Learning for Image Steganalysis,
SPLetters(29), 2022, pp. 2233-2237.
IEEE DOI
2212
Feature extraction, Convolution, Steganography, Shape, Deep learning,
Training, Task analysis, Image steganalysis, Feature passing,
Lightweight
BibRef
Jia, J.[Jun],
Gao, Z.P.[Zhong-Pai],
Chen, K.[Kang],
Hu, M.H.[Meng-Han],
Min, X.K.[Xiong-Kuo],
Zhai, G.T.[Guang-Tao],
Yang, X.K.[Xiao-Kang],
RIHOOP: Robust Invisible Hyperlinks in Offline and Online Photographs,
Cyber(52), No. 7, July 2022, pp. 7094-7106.
IEEE DOI
2207
Cameras, Hypertext systems, Decoding, Watermarking, Visualization,
Robustness, Training, 3-D rendering, adversarial training,
quick response (QR) code
BibRef
Qin, X.H.[Xing-Hong],
Li, B.[Bin],
Tan, S.Q.[Shun-Quan],
Tang, W.X.[Wei-Xuan],
Huang, J.W.[Ji-Wu],
Gradually Enhanced Adversarial Perturbations on Color Pixel Vectors
for Image Steganography,
CirSysVideo(32), No. 8, August 2022, pp. 5110-5123.
IEEE DOI
2208
Costs, Color, Image color analysis, Perturbation methods,
Convolutional neural networks, Steganography, Payloads
BibRef
Pan, W.W.[Wen-Wen],
Yin, Y.L.[Yan-Ling],
Wang, X.C.[Xin-Chao],
Jing, Y.C.[Yong-Cheng],
Song, M.L.[Ming-Li],
Seek-and-Hide: Adversarial Steganography via Deep Reinforcement
Learning,
PAMI(44), No. 11, November 2022, pp. 7871-7884.
IEEE DOI
2210
Steganography, Containers, Reinforcement learning, Receivers,
Convolutional neural networks, Task analysis, Location awareness,
reinforcement learning
BibRef
Yang, J.[Junxue],
Liao, X.[Xin],
ACGIS: Adversarial Cover Generator for Image Steganography with Noise
Residuals Features-Preserving,
SP:IC(113), 2023, pp. 116927.
Elsevier DOI
2303
Steganography, Adversarial cover, Siamese generative network,
Sub-regions noise residuals features
BibRef
Hu, M.Z.[Ming-Zhi],
Wang, H.X.[Hong-Xia],
Image Steganalysis Against Adversarial Steganography by Combining
Confidence and Pixel Artifacts,
SPLetters(30), 2023, pp. 987-991.
IEEE DOI
2309
BibRef
Li, W.X.[Wei-Xiang],
Wu, S.[Shihang],
Li, B.[Bin],
Tang, W.X.[Wei-Xuan],
Zhang, X.P.[Xin-Peng],
Payload-Independent Direct Cost Learning for Image Steganography,
CirSysVideo(34), No. 3, March 2024, pp. 1970-1975.
IEEE DOI
2403
Costs, Payloads, Training, Security, Probability, Encoding,
Image steganography, steganalysis, automatic cost learning,
reinforcement learning
BibRef
Luo, P.[Peng],
Liu, J.[Jia],
Xu, J.[Jingting],
Dang, Q.[Qian],
Mu, D.J.[De-Jun],
Remote Sensing Images Secure Distribution Scheme Based on Deep
Information Hiding,
RS(16), No. 8, 2024, pp. 1331.
DOI Link
2405
BibRef
Hu, X.J.[Xin-Jue],
Fu, Z.J.[Zhang-Jie],
Zhang, X.[Xiang],
Chen, Y.[Yanyu],
Invisible and Steganalysis-Resistant Deep Image Hiding Based on
One-Way Adversarial Invertible Networks,
CirSysVideo(34), No. 7, July 2024, pp. 6128-6143.
IEEE DOI
2407
Visualization, Steganography, Computational modeling, Couplings,
Feature extraction, Task analysis, Distortion, steganalysis
BibRef
Zhu, Y.L.[Yu-Ling],
Dong, Y.Y.[Yun-Yun],
Song, B.B.[Bing-Bing],
Yao, S.[Shaowen],
Hiding image into image with hybrid attention mechanism based on GANs,
IET-IPR(18), No. 10, 2024, pp. 2679-2689.
DOI Link
2408
data privacy, data protection, image processing
BibRef
Yang, S.C.[Shi-Chen],
Jia, X.X.[Xing-Xing],
Zou, F.[Fuhua],
Zhang, Y.S.J.[Yang-Shi-Jie],
Yuan, C.S.[Cheng-Sheng],
A novel hybrid network model for image steganalysis,
JVCIR(103), 2024, pp. 104251.
Elsevier DOI
2409
Image steganalysis, Convolutional neural networks,
Bidirectional long short-term memory, Attention mechanism
BibRef
Gubri, M.[Martin],
Cordy, M.[Maxime],
Papadakis, M.[Mike],
Le Traon, Y.[Yves],
Sen, K.[Koushik],
LGV: Boosting Adversarial Example Transferability from Large Geometric
Vicinity,
ECCV22(IV:603-618).
Springer DOI
2211
BibRef
Ghamizi, S.[Salah],
Cordy, M.[Maxime],
Papadakis, M.[Mike],
Le Traon, Y.[Yves],
Evasion Attack STeganography: Turning Vulnerability Of Machine
Learning To Adversarial Attacks Into A Real-world Application,
AROW21(31-40)
IEEE DOI
2112
Steganography, Machine learning algorithms, Image coding,
Watermarking, Detectors, Media, Turning
BibRef
Lu, S.P.[Shao-Ping],
Wang, R.[Rong],
Zhong, T.[Tao],
Rosin, P.L.[Paul L.],
Large-capacity Image Steganography Based on Invertible Neural
Networks,
CVPR21(10811-10820)
IEEE DOI
2111
Backpropagation, Steganography, Visualization,
Inverse problems, Neural networks, Computer architecture
BibRef
Hu, Y.T.[Yu-Ting],
Cao, H.[Han],
Yang, Z.L.[Zhong-Liang],
Huang, Y.F.[Yong-Feng],
Improving Text-image Matching with Adversarial Learning and Circle Loss
for Multi-modal Steganography,
IWDW20(41-52).
Springer DOI
2103
BibRef
Xiao, Y.,
Wang, C.,
Gao, X.,
Evade Deep Image Retrieval by Stashing Private Images in the Hash
Space,
CVPR20(9648-9657)
IEEE DOI
2008
Privacy, Hamming distance, Image retrieval, Visualization,
Perturbation methods, Machine learning
BibRef
Wengrowski, E.[Eric],
Dana, K.[Kristin],
Light Field Messaging With Deep Photographic Steganography,
CVPR19(1515-1524).
IEEE DOI
2002
BibRef
Zhang, X.P.[Xun-Peng],
Kong, X.W.[Xiang-Wei],
Wang, P.[Pengda],
Wang, B.[Bo],
Cover-source Mismatch in Deep Spatial Steganalysis,
IWDW19(71-83).
Springer DOI
2003
BibRef
Wu, H.B.[Hai-Bin],
Li, F.Y.[Feng-Yong],
Zhang, X.P.[Xin-Peng],
Wu, K.[Kui],
GAN-based Steganography with the Concatenation of Multiple Feature Maps,
IWDW19(3-17).
Springer DOI
2003
BibRef
Xue, Y.M.[Yi-Ming],
Peng, W.L.[Wan-Li],
Wang, Y.Z.[Yu-Zhu],
Wen, J.[Juan],
Zhong, P.[Ping],
Optimized CNN with Point-wise Parametric Rectified Linear Unit for
Spatial Image Steganalysis,
IWDW19(32-42).
Springer DOI
2003
BibRef
Zhang, J.H.[Jing-Hong],
Yi, X.W.[Xiao-Wei],
Zhao, X.F.[Xian-Feng],
Cao, Y.[Yun],
Light Multiscale Conventional Neural Network for MP3 Steganalysis,
IWDW19(43-56).
Springer DOI
2003
BibRef
Li, Q.J.[Qiang-Jie],
Feng, G.R.[Guo-Rui],
Wu, H.Z.[Han-Zhou],
Zhang, X.P.[Xin-Peng],
Ensemble Steganalysis Based on Deep Residual Network,
IWDW19(84-95).
Springer DOI
2003
BibRef
Zhang, S.Y.[Shi-Yang],
Zhang, H.[Hong],
Zhao, X.F.[Xian-Feng],
Yu, H.B.[Hai-Bo],
A Deep Residual Multi-scale Convolutional Network for Spatial
Steganalysis,
IWDW18(40-52).
Springer DOI
1905
BibRef
Lu, Y.Y.,
Yang, Z.L.O.,
Zheng, L.,
Zhang, Y.,
Importance of Truncation Activation in Pre-Processing for Spatial and
Jpeg Image Steganalysis,
ICIP19(689-693)
IEEE DOI
1910
image steganalysis, image pre-processing,
convolutional neural network, truncation activation
BibRef
ur Rehman, A.[Atique],
Rahim, R.[Rafia],
Nadeem, S.[Shahroz],
ul Hussain, S.[Sibt],
End-to-End Trained CNN Encoder-Decoder Networks for Image Steganography,
WiCV-E18(IV:723-729).
Springer DOI
1905
BibRef
Zhang, Q.[Qian],
Zhao, X.F.[Xian-Feng],
Liu, C.J.[Chang-Jun],
Convolutional Neural Network for Larger JPEG Images Steganalysis,
IWDW18(14-28).
Springer DOI
1905
BibRef
Zha, H.,
Zhang, W.,
Qin, C.,
Yu, N.,
Direct Adversarial Attack on Stego Sandwiched Between Black Boxes,
ICIP19(2284-2288)
IEEE DOI
1910
adversarial attack, steganography, deep learning, steganalysis
BibRef
Liu, J.Y.[Jia-Yang],
Zhang, W.M.[Wei-Ming],
Zhang, Y.W.[Yi-Wei],
Hou, D.D.[Dong-Dong],
Liu, Y.J.[Yu-Jia],
Zha, H.Y.[Hong-Yue],
Yu, N.H.[Neng-Hai],
Detection Based Defense Against Adversarial Examples From the
Steganalysis Point of View,
CVPR19(4820-4829).
IEEE DOI
2002
BibRef
Zhu, J.[Jiren],
Kaplan, R.[Russell],
Johnson, J.[Justin],
Fei-Fei, L.[Li],
HiDDeN: Hiding Data With Deep Networks,
ECCV18(XV: 682-697).
Springer DOI
1810
BibRef
Yang, J.H.[Jian-Hua],
Liu, K.[Kai],
Kang, X.G.[Xian-Gui],
Wong, E.[Edward],
Shi, Y.Q.[Yun-Qing],
Steganalysis Based on Awareness of Selection-Channel and Deep Learning,
IWDW17(263-272).
Springer DOI
1708
BibRef
Liu, K.[Kai],
Yang, J.H.[Jian-Hua],
Kang, X.G.[Xian-Gui],
Ensemble of CNN and rich model for steganalysis,
WSSIP17(1-5)
IEEE DOI
1707
Complexity theory, Computational modeling, Correlation,
Error analysis, Feature extraction, Training, CNN, Ensemble,
Rich Model, Steganalysis
BibRef
Sharifzadeh, M.,
Agarwal, C.,
Aloraini, M.,
Schonfeld, D.,
Convolutional neural network steganalysis's application to
steganography,
VCIP17(1-4)
IEEE DOI
1804
convolution, feedforward neural nets, image coding,
statistical analysis, steganography, image steganography,
Smoothing methods
BibRef
Raval, N.,
Machanavajjhala, A.,
Cox, L.P.,
Protecting Visual Secrets Using Adversarial Nets,
PRIV17(1329-1332)
IEEE DOI
1709
Cameras, Feeds, Loss measurement, Machine learning, Privacy, Training,
Visualization
BibRef
Qian, Y.,
Dong, J.,
Wang, W.,
Tan, T.,
Learning and transferring representations for image steganalysis
using convolutional neural network,
ICIP16(2752-2756)
IEEE DOI
1610
Convolution
BibRef
Xu, X.Y.[Xiao-Yu],
Sun, Y.F.[Yi-Feng],
Tang, G.M.[Guang-Ming],
Chen, S.Y.[Shi-Yuan],
Zhao, J.[Jian],
Deep Learning on Spatial Rich Model for Steganalysis,
IWDW16(564-577).
Springer DOI
1703
BibRef
Chapter on OCR, Document Analysis and Character Recognition Systems continues in
Data Hiding, Steganography, Pixel Difference .