Su, W.[Wen],
Wang, Z.F.[Zeng-Fu],
Widening residual skipped network for semantic segmentation,
IET-IPR(11), No. 10, October 2017, pp. 880-887.
DOI Link
1710
BibRef
Earlier:
Regularized fully convolutional networks for RGB-D semantic
segmentation,
VCIP16(1-4)
IEEE DOI
1701
Brightness
BibRef
Pagnutti, G.[Giampaolo],
Minto, L.[Ludovico],
Zanuttigh, P.[Pietro],
Segmentation and semantic labelling of RGBD data with convolutional
neural networks and surface fitting,
IET-CV(11), No. 8, December 2017, pp. 633-642.
DOI Link
1712
BibRef
Guo, Y.R.[Yan-Rong],
Chen, T.[Tao],
Semantic segmentation of RGBD images based on deep depth regression,
PRL(109), 2018, pp. 55-64.
Elsevier DOI
1806
Deep depth regression, RGBD semantic segmentation,
Convolutional neural network, Fully convolutional network
BibRef
Lin, D.[Di],
Huang, H.[Hui],
Zig-Zag Network for Semantic Segmentation of RGB-D Images,
PAMI(42), No. 10, October 2020, pp. 2642-2655.
IEEE DOI
2009
Image segmentation, Semantics, Decoding,
Image resolution, Feature extraction, Correlation, RGB-D images,
convolutional neural networks
BibRef
Lin, D.[Di],
Chen, G.Y.[Guang-Yong],
Cohen-Or, D.[Daniel],
Heng, P.A.[Pheng-Ann],
Huang, H.[Hui],
Cascaded Feature Network for Semantic Segmentation of RGB-D Images,
ICCV17(1320-1328)
IEEE DOI
1802
feature extraction, feedforward neural nets,
image colour analysis, image representation, image segmentation,
Visualization
BibRef
Gu, Z.X.[Zhang-Xuan],
Niu, L.[Li],
Zhao, H.[Haohua],
Zhang, L.Q.[Li-Qing],
Hard Pixel Mining for Depth Privileged Semantic Segmentation,
MultMed(23), 2021, pp. 3738-3751.
IEEE DOI
2110
Semantics, Image segmentation, Training, Task analysis, Fuses,
Measurement uncertainty, Testing, Semantic segmentation,
RGBD semantic segmentation
BibRef
Jiang, B.[Bo],
Zhou, Z.[Zitai],
Wang, X.[Xiao],
Tang, J.[Jin],
Luo, B.[Bin],
cmSalGAN: RGB-D Salient Object Detection With Cross-View Generative
Adversarial Networks,
MultMed(23), 2021, pp. 1343-1353.
IEEE DOI
2105
Saliency detection, Feature extraction,
Object detection, Generative adversarial networks, Fuses,
Multi-view Learning
BibRef
Chen, L.Z.,
Lin, Z.,
Wang, Z.,
Yang, Y.L.,
Cheng, M.M.,
Spatial Information Guided Convolution for Real-Time RGBD Semantic
Segmentation,
IP(30), 2021, pp. 2313-2324.
IEEE DOI
2102
convolutional neural nets, geometry, image colour analysis,
image segmentation, stereo image processing,
RGBD semantic segmentation
BibRef
Zhang, G.D.[Guo-Dong],
Xue, J.H.[Jing-Hao],
Xie, P.W.[Peng-Wei],
Yang, S.[Sifan],
Wang, G.J.[Gui-Jin],
Non-Local Aggregation for RGB-D Semantic Segmentation,
SPLetters(28), 2021, pp. 658-662.
IEEE DOI
2104
Semantics, Feature extraction, Interpolation,
Image segmentation, Benchmark testing, Training,
RGB-D semantic segmentation
BibRef
Yue, Y.C.[Yu-Chun],
Zhou, W.J.[Wu-Jie],
Lei, J.S.[Jing-Sheng],
Yu, L.[Lu],
Two-Stage Cascaded Decoder for Semantic Segmentation of RGB-D Images,
SPLetters(28), 2021, pp. 1115-1119.
IEEE DOI
2106
Semantics, Image segmentation, Feature extraction, Decoding, Sun,
Training, Deep learning, RGB-d image,
multilevel feature fusion
BibRef
Zhou, W.[Wujie],
Yuan, J.Z.[Jian-Zhong],
Lei, J.S.[Jing-Sheng],
Luo, T.[Ting],
TSNet: Three-Stream Self-Attention Network for RGB-D Indoor Semantic
Segmentation,
IEEE_Int_Sys(36), No. 4, July 2021, pp. 73-78.
IEEE DOI
2109
Semantics, Convolution, Feature extraction, Image segmentation,
Streaming media, Spatial resolution, Data mining, RGB-D,
indoor semantic segmentation
BibRef
Zhao, Y.F.[Yi-Fan],
Zhao, J.W.[Jia-Wei],
Li, J.[Jia],
Chen, X.W.[Xiao-Wu],
RGB-D Salient Object Detection With Ubiquitous Target Awareness,
IP(30), 2021, pp. 7717-7731.
IEEE DOI
2109
Object detection, Feature extraction, Fuses, Task analysis,
Logic gates, Estimation, Image edge detection,
ubiquitous target awareness
BibRef
Shi, W.J.[Wen-Jun],
Xu, J.W.[Jing-Wei],
Zhu, D.C.[Dong-Chen],
Zhang, G.H.[Guang-Hui],
Wang, X.S.[Xian-Shun],
Li, J.[Jiamao],
Zhang, X.L.[Xiao-Lin],
RGB-D Semantic Segmentation and Label-Oriented Voxelgrid Fusion for
Accurate 3D Semantic Mapping,
CirSysVideo(32), No. 1, January 2022, pp. 183-197.
IEEE DOI
2201
Semantics,
Streaming media, Feature extraction, Image segmentation, Labeling,
discriminatory mask
BibRef
Qian, Y.Q.[Ye-Qiang],
Deng, L.[Liuyuan],
Li, T.Y.[Tian-Yi],
Wang, C.X.[Chun-Xiang],
Yang, M.[Ming],
Gated-Residual Block for Semantic Segmentation Using RGB-D Data,
ITS(23), No. 8, August 2022, pp. 11836-11844.
IEEE DOI
2208
Logic gates, Semantics, Fuses, Feature extraction, Aggregates,
Intelligent transportation systems, Image segmentation,
gated mechanism
BibRef
Yang, E.[Enquan],
Zhou, W.[Wujie],
Qian, X.H.[Xiong-Hong],
Yu, L.[Lu],
MGCNet: Multilevel Gated Collaborative Network for RGB-D Semantic
Segmentation of Indoor Scene,
SPLetters(29), 2022, pp. 2567-2571.
IEEE DOI
2301
Feature extraction, Convolution, Data mining, Logic gates, Decoding,
Kernel, Semantic segmentation, RGB-D semantic segmentation,
serial-parallel alternation strategy
BibRef
Zhou, W.[Wujie],
Yang, E.[Enquan],
Lei, J.S.[Jing-Sheng],
Wan, J.[Jian],
Yu, L.[Lu],
PGDENet: Progressive Guided Fusion and Depth Enhancement Network for
RGB-D Indoor Scene Parsing,
MultMed(25), 2023, pp. 3483-3494.
IEEE DOI
2309
BibRef
Ru, Q.J.[Qing-Jun],
Chen, G.Z.[Guang-Zhu],
Zuo, T.Y.[Ting-Yu],
Liao, X.J.[Xiao-Juan],
Cross-Modal Transformer for RGB-D semantic segmentation of production
workshop objects,
PR(144), 2023, pp. 109862.
Elsevier DOI
2310
Cross-Modal, Production workshop object, RGB-D,
Semantic segmentation, Transformer
BibRef
Zhou, W.[Wujie],
Yue, Y.C.[Yu-Chun],
Fang, M.[Meixin],
Mao, S.S.[Shan-Shan],
Yang, R.W.[Rong-Wang],
Yu, L.[Lu],
AMCFNet: Asymmetric multiscale and crossmodal fusion network for
RGB-D semantic segmentation in indoor service robots,
JVCIR(97), 2023, pp. 103951.
Elsevier DOI
2312
Multiscale feature, Crossmodal fusion,
Differential feature integration, RGB-D information, Semantic segmentation
BibRef
Chen, J.Z.[Jia-Zhou],
Zhan, Y.F.[Yang-Fan],
Xu, Y.H.[Yang-Hui],
Pan, X.[Xiang],
FAFNet: Fully aligned fusion network for RGBD semantic segmentation
based on hierarchical semantic flows,
IET-IPR(17), No. 1, 2023, pp. 32-41.
DOI Link
2301
BibRef
Yang, J.[Jun],
Bai, L.Z.[Li-Zhi],
Sun, Y.R.[Yao-Ru],
Tian, C.Q.[Chun-Qi],
Mao, M.[Maoyu],
Wang, G.R.[Guo-Run],
Pixel Difference Convolutional Network for RGB-D Semantic
Segmentation,
CirSysVideo(34), No. 3, March 2024, pp. 1481-1492.
IEEE DOI
2403
Convolution, Semantic segmentation, Semantics, Feature extraction,
Convolutional neural networks, Kernel, Semantic segmentation,
cascade large kernel
BibRef
Xiang, P.C.[Peng-Cheng],
Yao, B.C.[Bao-Chen],
Jiang, Z.F.[Ze-Feng],
Peng, C.B.[Cheng-Bin],
Self-Enhanced Feature Fusion for RGB-D Semantic Segmentation,
SPLetters(31), 2024, pp. 3015-3019.
IEEE DOI
2411
Semantics, Feature extraction, Image edge detection,
Semantic segmentation, Training, Decoding, Convolution, Fuses,
normalizing flow
BibRef
Lyu, J.H.[Jia-Hang],
Qi, Y.Z.[Yong-Ze],
You, S.[Suilian],
Meng, J.[Jin],
Meng, X.[Xin],
Kodagoda, S.[Sarath],
Wang, S.F.[Shi-Feng],
CaLiJD: Camera and LiDAR Joint Contender for 3D Object Detection,
RS(16), No. 23, 2024, pp. 4593.
DOI Link
2501
BibRef
Rao, Z.Y.[Zhong-Yu],
Cai, Y.F.[Ying-Feng],
Wang, H.[Hai],
Chen, L.[Long],
Li, Y.C.[Yi-Cheng],
A multi-stage model for bird's eye view prediction based on
stereo-matching model and RGB-D semantic segmentation,
IET-ITS(18), No. 12, 2024, pp. 2552-2564.
DOI Link
2501
autonomous driving, image recognition, learning (artificial intelligence)
BibRef
Wei, S.[Shuobin],
Zhou, Z.[Zhuang],
Lu, Z.A.[Zheng-An],
Yuan, Z.Z.[Zi-Zhao],
Su, B.H.[Bing-Hua],
HDBFormer: Efficient RGB-D Semantic Segmentation With a Heterogeneous
Dual-Branch Framework,
SPLetters(32), 2025, pp. 91-95.
IEEE DOI
2501
Feature extraction, Transformers, Convolution,
Semantic segmentation, Decoding, Kernel, Fuses, Accuracy, Training,
RGB-D semantic segmentation
BibRef
Xu, J.Y.[Jing-Yi],
Deng, X.[Xin],
Fu, Y.B.[Yi-Bing],
Xu, M.[Mai],
Li, S.X.[Sheng-Xi],
MDSC-Net: Multi-Modal Discriminative Sparse Coding Driven RGB-D
Classification Network,
MultMed(27), 2025, pp. 442-454.
IEEE DOI
2501
Feature extraction, Image coding, Image classification, Dictionaries,
Optimization, Classification algorithms, Discriminative features
BibRef
Vijaywargiya, J.[Jayati],
Ramiya, A.M.[Anandakumar M.],
Semantic segmentation of urban airborne LiDAR data of varying
landcover diversity using XGBoost,
IET-CV(19), No. 1, 2025, pp. e12334.
DOI Link
2502
feature extraction, feature selection, laser ranging,
learning (artificial intelligence), remote sensing
BibRef
Bai, L.Z.[Li-Zhi],
Yang, J.[Jun],
Tian, C.Q.[Chun-Qi],
Sun, Y.[Yaoru],
Mao, M.[Maoyu],
Xu, Y.J.[Yan-Jun],
Xu, W.R.[Wei-Rong],
DCANet: Differential convolution attention network for RGB-D semantic
segmentation,
PR(162), 2025, pp. 111379.
Elsevier DOI
2503
Semantic segmentation, RGB-D, Differential convolution, Attention
BibRef
Han, J.W.[Jia-Wei],
Liu, K.Q.[Kai-Qi],
Li, W.[Wei],
Zhang, F.[Feng],
Xia, X.G.[Xiang-Gen],
Generating Inverse Feature Space for Class Imbalance in Point Cloud
Semantic Segmentation,
PAMI(47), No. 7, July 2025, pp. 5778-5793.
IEEE DOI
2506
Point cloud compression, Semantic segmentation, Training, Prototypes,
Convolution, Transformers, Propagation losses, dynamic loss weights
BibRef
Jiang, L.C.[Liang-Cun],
Ma, J.C.[Jia-Cheng],
Zhou, H.[Han],
Shangguan, B.[Boyi],
Xiao, H.Y.[Hong-Yu],
Chen, Z.Q.[Ze-Qiang],
Large-Scale Point Cloud Semantic Segmentation with Density-Based Grid
Decimation,
IJGI(14), No. 7, 2025, pp. 279.
DOI Link
2507
BibRef
Ruoppa, L.[Lassi],
Oinonen, O.[Oona],
Taher, J.[Josef],
Lehtomäki, M.[Matti],
Takhtkeshha, N.[Narges],
Kukko, A.[Antero],
Kaartinen, H.[Harri],
Hyyppä, J.[Juha],
Unsupervised deep learning for semantic segmentation of multispectral
LiDAR forest point clouds,
PandRS(228), 2025, pp. 694-722.
Elsevier DOI Code:
WWW Link.
2509
Multispectral point cloud, Unsupervised deep learning, Semantic segmentation,
LiDAR, Airborne laser scanning (ALS), Leaf-wood separation
BibRef
Lu, Y.M.[Yi-Ming],
Ge, B.[Bin],
Xia, C.X.[Chen-Xing],
Zhu, X.[Xu],
Zhang, M.G.[Meng-Ge],
Gao, M.Y.[Meng-Ya],
Chen, N.J.[Ning-Jie],
Hu, J.J.[Jian-Jun],
Zhi, J.J.[Jun-Jie],
FCEGNet: Feature calibration and edge-guided MLP decoder Network for
RGB-D semantic segmentation,
CVIU(260), 2025, pp. 104448.
Elsevier DOI
2510
Feature calibration, Edge-guided, Semantic segmentation, RGB-D
BibRef
Jamal, M.A.[Muhammad Abdullah],
Mohareri, O.[Omid],
Multi-Modal Contrastive Masked Autoencoders: A Two-Stage Progressive
Pre-training Approach for RGBD Datasets,
CVPR25(17947-17957)
IEEE DOI
2508
Correlation, Semantic segmentation, Autoencoders, Noise reduction,
Contrastive learning, Feature extraction, Diffusion models, pre-training
BibRef
Zhang, J.X.[Jia-Xin],
Jiang, J.J.[Jun-Jun],
Chen, Y.[Youyu],
Jiang, K.[Kui],
Liu, X.M.[Xian-Ming],
COB-GS: Clear Object Boundaries in 3DGS Segmentation Based on
Boundary-Adaptive Gaussian Splitting,
CVPR25(19335-19344)
IEEE DOI Code:
WWW Link.
2508
Training, Visualization, Accuracy, Semantics, Object segmentation,
Robustness, Object recognition, Optimization, 3d segmentation,
3d gaussian splatting
BibRef
Yin, B.W.[Bo-Wen],
Cao, J.L.[Jiao-Long],
Cheng, M.M.[Ming-Ming],
Hou, Q.[Qibin],
DFormerv2: Geometry Self-Attention for RGBD Semantic Segmentation,
CVPR25(19345-19355)
IEEE DOI Code:
WWW Link.
2508
Geometry, Codes, Semantic segmentation, Neural networks,
Feature extraction, Encoding, Computational efficiency, rgbd, depth,
segmentation
BibRef
Cai, J.X.[Jia-Xin],
Su, J.Z.[Jing-Ze],
Li, Q.[Qi],
Yang, W.J.[Wen-Jie],
Wang, S.[Shu],
Zhao, T.S.[Tie-Song],
He, S.F.[Sheng-Feng],
Liu, W.X.[Wen-Xi],
Keep the Balance: A Parameter-Efficient Symmetrical Framework for
RGB+X Semantic Segmentation,
CVPR25(10587-10598)
IEEE DOI
2508
Training, Adaptation models, Costs, Correlation,
Semantic segmentation, Computational modeling, Noise, PEFT
BibRef
Xiao, G.[Gang],
Ge, S.[Sihan],
Wang, Q.[Qibing],
Li, R.[Ren],
Lu, J.W.[Jia-Wei],
PTFormer: Propagation Transformer for Point Cloud Semantic
Segmentation,
ICIVC24(157-162)
IEEE DOI
2503
Point cloud compression, Solid modeling, Shape,
Semantic segmentation, Semantics, Object detection, Transformers
BibRef
Du, S.Q.[Si-Qi],
Wang, W.X.[Wei-Xi],
Guo, R.Z.[Ren-Zhong],
Wang, R.S.[Rui-Sheng],
Tang, S.J.[Sheng-Jun],
AsymFormer: Asymmetrical Cross-Modal Representation Learning for
Mobile Platform Real-Time RGB-D Semantic Segmentation,
UrbanModel24(7608-7615)
IEEE DOI Code:
WWW Link.
2410
Representation learning, Accuracy, Quantization (signal), Fuses,
Semantic segmentation, Computational modeling, Redundancy,
Multi-Modal Representation Learning
BibRef
Wu, Z.W.[Zong-Wei],
Gobichettipalayam, S.[Shriarulmozhivarman],
Tamadazte, B.[Brahim],
Allibert, G.[Guillaume],
Paudel, D.P.[Danda Pani],
Demonceaux, C.[Cédric],
Robust RGB-D Fusion for Saliency Detection,
3DV22(403-413)
IEEE DOI Code:
WWW Link.
2408
Fuses, Source coding, Semantic segmentation, Aggregates,
Object detection, Benchmark testing
BibRef
Rizzoli, G.[Giulia],
Shenaj, D.[Donald],
Zanuttigh, P.[Pietro],
Source-Free Domain Adaptation for RGB-D Semantic Segmentation with
Vision Transformers,
Pretrain24(607-616)
IEEE DOI
2404
Adaptation models, Image color analysis, Semantic segmentation,
Semantics, Transformers, Feature extraction, Data models
BibRef
Hua, Z.W.[Zhong-Wei],
Qi, L.Z.[Li-Zhe],
Du, D.M.[Da-Ming],
Jiang, W.X.[Wen-Xuan],
Sun, Y.Q.[Yun-Quan],
Dual Attention Based Multi-scale Feature Fusion Network for Indoor
RGBD Semantic Segmentation,
ICPR22(3639-3644)
IEEE DOI
2212
Image color analysis, Fuses, Semantic segmentation,
Image edge detection, Semantics, Lighting, Color
BibRef
Zhang, Y.F.[Yi-Fei],
Sidibé, D.[Désiré],
Morel, O.[Olivier],
Meriaudeau, F.[Fabrice],
Incorporating Depth Information into Few-Shot Semantic Segmentation,
ICPR21(3582-3588)
IEEE DOI
2105
Measurement, Image segmentation, Visualization,
Image color analysis, Fuses, Semantics, Neural networks
BibRef
Chen, X.K.[Xiao-Kang],
Lin, K.Y.[Kwan-Yee],
Wang, J.B.[Jing-Bo],
Wu, W.[Wayne],
Qian, C.[Chen],
Li, H.S.[Hong-Sheng],
Zeng, G.[Gang],
Bi-directional Cross-modality Feature Propagation with
Separation-and-aggregation Gate for RGB-D Semantic Segmentation,
ECCV20(XI:561-577).
Springer DOI
2011
BibRef
Widyaningrum, E.,
Fajari, M.K.,
Lindenbergh, R.C.,
Hahn, M.,
Tailored Features for Semantic Segmentation with A DGCNN Using Free
Training Samples of A Colored Airborne Point Cloud,
ISPRS20(B2:339-346).
DOI Link
2012
BibRef
Chen, Y.L.[Yun-Lu],
Mensink, T.[Thomas],
Gavves, E.[Efstratios],
3D Neighborhood Convolution: Learning Depth-Aware Features for RGB-D
and RGB Semantic Segmentation,
3DV19(173-182)
IEEE DOI
1911
Convolution, Semantics, Kernel, Solid modeling, Image segmentation,
local convolution
BibRef
Hung, S.,
Lo, S.,
Hang, H.,
Incorporating Luminance, Depth and Color Information by a
Fusion-Based Network for Semantic Segmentation,
ICIP19(2374-2378)
IEEE DOI
1910
RGB-D semantic segmentation, depth map, illuminance, fusion-based network
BibRef
Xing, Y.,
Wang, J.,
Chen, X.,
Zeng, G.,
2.5D Convolution for RGB-D Semantic Segmentation,
ICIP19(1410-1414)
IEEE DOI
1910
RGB-D Semantic Segmentation, Convoutional Neural Networks, Geometry in CNN
BibRef
Hu, X.,
Yang, K.,
Fei, L.,
Wang, K.,
ACNET: Attention Based Network to Exploit Complementary Features for
RGBD Semantic Segmentation,
ICIP19(1440-1444)
IEEE DOI
1910
Attention, Complementary, RGBD semantic segmentation
BibRef
Hou, J.[Ji],
Dai, A.[Angela],
Niessner, M.[Matthias],
3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans,
CVPR19(4416-4425).
IEEE DOI
2002
BibRef
Li, Y.,
Zhang, J.,
Cheng, Y.,
Huang, K.,
Tan, T.,
Semantics-guided multi-level RGB-D feature fusion for indoor semantic
segmentation,
ICIP17(1262-1266)
IEEE DOI
1803
Feature extraction, Fuses, Image segmentation, Legged locomotion,
Semantics, Streaming media, Sun, Indoor semantic segmentation,
RGB-D
BibRef
Wang, J.H.[Jing-Hua],
Wang, Z.H.[Zhen-Hua],
Tao, D.C.[Da-Cheng],
See, S.[Simon],
Wang, G.[Gang],
Learning Common and Specific Features for RGB-D Semantic Segmentation
with Deconvolutional Networks,
ECCV16(V: 664-679).
Springer DOI
1611
BibRef
Fooladgar, F.,
Kasaei, S.,
Semantic Segmentation of RGB-D Images Using 3D and Local Neighbouring
Features,
DICTA15(1-7)
IEEE DOI
1603
BibRef
Deng, Z.,
Todorovic, S.,
Latecki, L.J.,
Semantic Segmentation of RGBD Images with Mutex Constraints,
ICCV15(1733-1741)
IEEE DOI
1602
Computational modeling
BibRef
Banica, D.[Dan],
Sminchisescu, C.[Cristian],
Second-order constrained parametric proposals and sequential
search-based structured prediction for semantic segmentation in RGB-D
images,
CVPR15(3517-3526)
IEEE DOI
1510
BibRef
Lin, D.[Dahua],
Fidler, S.[Sanja],
Urtasun, R.[Raquel],
Holistic Scene Understanding for 3D Object Detection with RGBD
Cameras,
ICCV13(1417-1424)
IEEE DOI
1403
BibRef
Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Large-Scale 3-D Semantic Object Detection .