Freeman, H.,
On the Encoding of Arbitrary Geometric Configurations,
IRE Trans. on Electr. Comp. or
TC(10), No. 2, June, 1961, pp. 260-268.
BibRef
6106
CMetImAly77(247-255).
Chain Codes. This paper is old enough that there were no references.
Chain coding -- i.e. each pixel is a number (1-8 or for implementations 0-7)
representing the direction to the next edge pixel. A curve or contour is
thus a chain of directions.
BibRef
Freeman, H.,
On the Classification of Line-Drawing Data,
MPSVF(408-412). 1967.
BibRef
6700
Freeman, H.,
A Review of Relevant Problems in the Processing of Line-Drawing Data,
AII(155-174). 1969.
BibRef
6900
Freeman, H.,
Boundary Encoding and Processing,
PPP70(241-266).
BibRef
7000
And:
TRNYU, February 1970.
BibRef
Freeman, H.,
Computer Processing of Line Drawing Images,
Surveys(6), No. 1, March 1974, pp. 57-97.
WWW Link.
Survey, Chain Code.
Chain Codes, Survey.
The complete basic paper for chain codes and others.
See also Comparative Analysis of Line-Drawing Modeling Schemes.
BibRef
7403
Freeman, H.,
Use of Incremental Curvature for Describing and Analyzing Two-Dimensional
Shape,
PRIP79(437-444).
BibRef
7900
Saghri, J.A.,
Freeman, H.,
Analysis of the Precision of Generalized Chain Codes
for the Representation of Planar Curves,
PAMI(3), No. 5, September 1981, pp. 533-539.
Chain Codes, Evaluation.
BibRef
8109
Freeman, H.,
Glass, J.M.,
On the Quantization of Line-Drawing Data,
SSC(5), No. 1, January 1969, pp. 70-79.
BibRef
6901
Freeman, H.,
Shapira, R.,
Determining the Minimum-Area Encasing Rectangle for an Arbitrary Curve,
CACM(18), 1975, pp. 409-413.
BibRef
7500
Freeman, H.[Herbert],
Boundary Encoding Revisited,
AIU96(84-91).
BibRef
9600
Freeman, H.,
Analysis of Line Drawings,
DIPA77(187-209). 1977.
BibRef
7700
Freeman, H.,
Application of the Generalized Chain Coding Scheme to
Map Data Processing,
PRIP78(220-226).
BibRef
7800
Freeman, H.,
Saaghri, A.,
Generalized Chain Codes for Planar Curves,
ICPR78(701-703).
BibRef
7800
Freeman, H.,
Shaper Characterization by the Method of Roving Line-Segment Scanning,
PRAI-78(199).
BibRef
7800
Groen, F.C.A.,
Verbeek, P.W.,
Freeman-Code Probabilities of Object Boundary Quantized Contours,
CGIP(7), No. 3, June 1978, pp. 391-402.
Elsevier DOI
BibRef
7806
Proffitt, D.,
Rosen, D.,
Metrication Errors and Coding Efficiency of Chain-Encoding Schemes
for the Representation of Lines and Edges,
CGIP(10), No. 4, August 1979, pp. 318-332.
Elsevier DOI
BibRef
7908
Koplowitz, J.,
On the Performance of Chain Codes for Quantization of Line Drawings,
PAMI(3), No. 2, March 1981, pp. 180-185.
BibRef
8103
Chakravarty, I.[Indranil],
A Single-Pass, Chain Generating Algorithm for Region Boundaries,
CGIP(15), No. 2, February 1981, pp. 182-193.
Elsevier DOI
BibRef
8102
Lee, H.C.,
Fu, K.S.,
Using the FFT to Determine Digital Straight Line Chain Codes,
CGIP(18), No. 4, April 1982, pp. 359-368.
Elsevier DOI
BibRef
8204
Wu, L.D.,
On the Chain Code of a Line,
PAMI(4), No. 3, May 1982, pp. 347-353.
Detect the straightness of a line segment. The same as
the above paper by Kropatsch and Tockner.
BibRef
8205
Wu, L.D.[Li-De],
On the Freeman's Conjecture About the Chain Code of a Line,
ICPR80(32-34).
BibRef
8000
Wu, L.D.,
Consistent Piecewise Linear Approximation,
ICPR82(840-842).
BibRef
8200
Scholten, D.K.,
Wilson, S.G.,
Chain Coding with a Hexagonal Lattice,
PAMI(5), No. 5, September 1983, pp. 526-533.
BibRef
8309
Danielsson, P.E.,
On the Efficiency of Two-Bit Link Chain-Code,
PRL(1), 1983, pp. 227-228.
BibRef
8300
Xu, J.,
Tou, J.T.,
Predictive Searching for Chain Encoding by Computers,
CIS(11), 1982, pp. 213-229.
BibRef
8200
Shoucri, R.,
Benesch, R.,
Thomas, S.,
Note on the Determination of a Digital Straight Line
from Chain Codes,
CVGIP(29), No. 1, January 1985, pp. 133-139.
Elsevier DOI Average period of chain code, or second-order difference.
BibRef
8501
Neuhoff, D.L.,
Castor, K.G.,
A Rate and Distortion Analysis of Chain Codes for Line Drawings,
IT(31), No. 1, 1985, pp. 53-67.
BibRef
8500
Minami, T.,
Shinohara, K.,
Encoding of Line Drawings with a Multiple Grid Chain Code,
PAMI(8), No. 2, March 1986, pp. 269-276.
BibRef
8603
Ali, S.M.,
Burge, R.E.,
A New Algorithm for Extracting the Interior of Bounded Regions
Based on Chain Coding,
CVGIP(43), No. 2, August 1988, pp. 256-264.
Elsevier DOI
BibRef
8808
Meer, P.,
Sher, C.A.[C. Allen],
Rosenfeld, A.,
The Chain Pyramid: Hierarchical Contour Processing,
PAMI(12), No. 4, April 1990, pp. 363-376.
IEEE DOI
BibRef
9004
And:
Processing of Line Drawings in a Hierarchical Environment,
CVPR89(638-645).
IEEE DOI
Pyramid Structure. Fast parallel processing of chain codes.
BibRef
Chang, L.W.[Long-Wen],
Leu, K.L.[Kuen-Long],
A Fast Algorithm for the Restoration of Images Based on
Chain Codes Description and Its Applications,
CVGIP(50), No. 3, June 1990, pp. 296-307.
Elsevier DOI Region filling from chain codes.
BibRef
9006
Koplowitz, J.,
Raj, A.P.S.,
A Robust Filtering Algorithm for Subpixel Reconstruction of
Chain Coded Line Drawings,
PAMI(9), No. 3, May 1987, pp. 451-457.
BibRef
8705
Sriraman, R.,
Koplowitz, J.,
Mohan, S.,
Tree Searched Chain Coding for Subpixel Reconstruction of Planar Curves,
PAMI(11), No. 1, January 1989, pp. 95-104.
IEEE DOI
BibRef
8901
Wong, P.W.,
Koplowitz, J.,
Chain Codes and Their Linear Reconstruction Filters,
IT(38), 1992, pp. 268-280.
BibRef
9200
O'Gorman, L.,
Primitives Chain Code,
CVIP92(167-183).
BibRef
9200
Lu, C.C.,
Dunham, J.G.,
Highly Efficient Coding Schemes for Contour Lines Based on
Chain Code Representations,
Commun(39), No. 10, October 1991, pp. 1511-1514.
BibRef
9110
Shih, F.Y.,
Wong, W.T.,
An Improved Fast Algorithm for the Restoration of Images Based
on Chain Codes Description,
GMIP(56), No. 4, July 1994, pp. 348-351.
BibRef
9407
Kiryati, N.[Nahum],
Kübler, O.[Olaf],
Chain Code Probabilities and Optimal Length Estimators for
Digitized 3-Dimensional Curves,
PR(28), No. 3, March 1995, pp. 361-372.
Elsevier DOI
BibRef
9503
Earlier:
On Chain Code Probabilities and Length Estimators for
Digitized Three Dimensional Curves,
ICPR92(I:259-262).
IEEE DOI
BibRef
van de Wetering, H.,
van Overveld, K.,
Chain Codes and Their Application in Curve Design,
GMIP(58), No. 5, September 1996, pp. 464-470.
9611
BibRef
Lindenbaum, M.,
Compression of Chain Codes Using Digital Straight Line Sequences,
PRL(7), 1988, pp. 167-171.
BibRef
8800
Sundar Raj, P.A.,
Koplowitz, J.,
On Bit Reduction of Chain Coded Line Drawings,
PRL(4), 1986, pp. 99-102.
BibRef
8600
Kaneko, T.,
Okudaira, M.,
Encoding of Arbitrary Curves Based on the Chain Code Representation,
Commun(33), 1985, pp. 697-707.
BibRef
8500
Wilson, G.R.,
Properties of Contour Codes,
VISP(144), No. 3, June 1997, pp. 145-149.
9708
BibRef
Zingaretti, P.[Primo],
Gasparroni, M.[Massimiliano],
Vecci, L.[Lorenzo],
Fast Chain Coding of Region Boundaries,
PAMI(20), No. 4, April 1998, pp. 407-415.
IEEE DOI
9806
Code, Chain Code. Single pass algorithm to convert from raster to chain codes.
Detailed code in the paper.
BibRef
Zabinsky, S.I.[Steven Ira],
Simplified chain encoding,
US_Patent5,995,670, Nov 30, 1999
WWW Link.
BibRef
9911
Bribiesca, E.[Ernesto],
A new chain code,
PR(32), No. 2, February 1999, pp. 235-251.
Elsevier DOI Vertex chain code.
BibRef
9902
Bribiesca, E.[Ernesto],
A chain code for representing 3D curves,
PR(33), No. 5, May 2000, pp. 755-765.
Elsevier DOI
0003
BibRef
Bribiesca, E.[Ernesto],
A method for representing 3D tree objects using chain coding,
JVCIR(19), No. 3, April 2008, pp. 184-198.
Elsevier DOI
0803
3D tree objects; 3D tree structures; Unique tree descriptor;
3D discrete branches; Chain coding; 3D tree representation
BibRef
Bribiesca, E.[Ernesto],
A measure of tortuosity based on chain coding,
PR(46), No. 3, March 2013, pp. 716-724.
Elsevier DOI
1212
Measure of tortuosity; Slope chain code; Chain coding; Curves; Retinal
blood vessels
BibRef
Nunes, P.[Paulo],
Marqués, F.[Ferran],
Pereira, F.[Fernando],
Gasull, A.[Antoni],
A contour-based approach to binary shape coding using a multiple grid
chain code,
SP:IC(15), No. 7-8, May 2000, pp. 585-599.
Elsevier DOI
0005
BibRef
Earlier: A1, A3, A2, Only:
Multi-Grid Chain Coding of Binary Shapes,
ICIP97(III: 114-117).
IEEE DOI
BibRef
Earlier: A2, A4, Only:
Partition coding using multigrid chain code and motion compensation,
ICIP96(II: 935-938).
IEEE DOI
9610
BibRef
Chen, Z.,
Chen, I.P.,
A simple recursive method for converting a chain code into a quadtree
with a lookup table,
IVC(19), No. 7, May 2001, pp. 413-426.
Elsevier DOI
0104
BibRef
Andrieux, J.,
Seni, G.,
Coding efficiency of multi-ring and single-ring differential chain
coding for telewriting application,
VISP(148), No. 4, August 2001, pp. 241-247.
0201
BibRef
Liu, Y.K.[Yong Kui],
Zalik, B.[Borut],
An efficient chain code with Huffman coding,
PR(38), No. 4, April 2005, pp. 553-557.
Elsevier DOI
0501
BibRef
Salem, A.B.M.[Abdel-Badeeh M.],
Sewisy, A.A.[Adel A.],
Elyan, U.A.[Usama A.],
A Vertex Chain Code Approach for Image Recognition,
GVIP(05), No. V3, 2005, pp. xx-yy
HTML Version.
BibRef
0500
Wagenknecht, G.,
A contour tracing and coding algorithm for generating 2D contour codes
from 3D classified objects,
PR(40), No. 4, April 2007, pp. 1294-1306.
Elsevier DOI
0701
Image classification; Contour tracing; Contour coding; Chain code; Crack code
BibRef
Sanchez-Cruz, H.[Hermilo],
Bribiesca, E.[Ernesto],
Rodriguez-Dagnino, R.M.[Ramon M.],
Efficiency of chain codes to represent binary objects,
PR(40), No. 6, June 2007, pp. 1660-1674.
Elsevier DOI
0704
Chain coding; Shapes; Bi-level images; Huffman algorithm; Entropy
BibRef
Chain Code Representation,
2007.
WWW Link.
Code, Chain Code.
Code, Chain Code, C.
Liu, Y.K.[Yong Kui],
Wei, W.[Wei],
Wang, P.J.[Peng Jie],
Zalik, B.[Borut],
Compressed vertex chain codes,
PR(40), No. 11, November 2007, pp. 2908-2913.
Elsevier DOI
0707
Chain code; Contour representation; Compression; Huffman code
BibRef
Park, H.C.[Hee-Chan],
Martin, G.R.[Graham R.],
Yu, A.C.[Andy C.],
Compact representation of contours using directional grid chain code,
SP:IC(23), No. 2, February 2008, pp. 87-100.
Elsevier DOI
0802
Chain code; Contour coding; Shape coding; Object-based representation
BibRef
Sanchez-Cruz, H.[Hermilo],
Proposing a new code by considering pieces of discrete straight lines
in contour shapes,
JVCIR(21), No. 4, May 2010, pp. 311-324.
Elsevier DOI
1006
Entropy; Discrete straight lines; Freeman chain codes; Huffman
algorithm; Shapes; Vertex chain codes; Three orthogonal directions;
Rotation transformations
BibRef
Globacnik, T.[Timotej],
Zalik, B.[Borut],
An efficient raster font compression for embedded systems,
PR(43), No. 12, December 2010, pp. 4137-4147.
Elsevier DOI
1003
Raster fonts; Raster font compression; Chain codes; Chain code
compression; Embedded systems
BibRef
Sánchez-Cruz, H.[Hermilo],
López-Valdez, H.H.[Hiram H.],
Cuevas, F.J.[Francisco J.],
A new relative chain code in 3D,
PR(47), No. 2, 2014, pp. 769-788.
Elsevier DOI
1311
3D chain code
BibRef
Žalik, B.[Borut],
Mongus, D.[Domen],
Lukac, N.[Niko],
A universal chain code compression method,
JVCIR(29), No. 1, 2015, pp. 8-15.
Elsevier DOI
1504
Image processing
BibRef
Žalik, B.[Borut],
Mongus, D.[Domen],
Liu, Y.K.[Yong-Kui],
Lukac, N.[Niko],
Unsigned Manhattan chain code,
JVCIR(38), No. 1, 2016, pp. 186-194.
Elsevier DOI
1605
Boundary of the rasterised shape
BibRef
Bribiesca, E.[Ernesto],
Bribiesca-Contreras, F.[Fernanda],
Carrillo-Bermejo, Á.[Ángel],
Bribiesca-Correa, G.[Graciela],
Hevia-Montiel, N.[Nidiyare],
A chain code for representing high definition contour shapes,
JVCIR(61), 2019, pp. 93-104.
Elsevier DOI
1906
Slope chain code, Extended slope chain code,
High definition contour shapes, Reconfigurable chain code, Bird wings
BibRef
Žalik, B.[Borut],
Mongus, D.[Domen],
Žalik, K.R.[Krista Rizman],
Podgorelec, D.[David],
Lukac, N.[Niko],
Lossless chain code compression with an improved Binary Adaptive
Sequential Coding of zero-runs,
JVCIR(75), 2021, pp. 103050.
Elsevier DOI
2103
Lossless data compression, Run-Length Encoding, Integer coding, Golomb coding
BibRef
Chen, Z.,
Chen, I.P.[I-Pin],
Recursive Conversion of Chain Code into Quadtree with Table Lookup,
ICPR00(Vol II: 1054-1057).
IEEE DOI
0009
BibRef
Lerman, J.S.,
Kulkarni, S.R.,
Koplowitz, J.,
Multiresolution chain coding of contours,
ICIP94(II: 615-619).
IEEE DOI
9411
BibRef
Chapter on Edge Detection and Analysis, Lines, Segments, Curves, Corners, Hough Transform continues in
General Contour Representations .