20.8.2 Fluorescence Tomography, X-ray Fluorescence Computed Tomography XFCT

Chapter Contents (Back)
Fluorescence Tomography. See also Fluorescence Analysis, Microscopic Analysis, Cells.

Hsieh, J.[Jiang],
Three-dimensional artifact induced by projection weighting and misalignment,
MedImg(18), No. 4, April 1999, pp. 364-368.
IEEE Top Reference. 0110
BibRef
And:
Investigation of a 3D Image Artifact Caused by Projection Weighting and Misalignment,
ICIP99(II:681-685).
IEEE DOI BibRef
Earlier:
Impact of helical reconstruction algorithm on 3D image artifacts,
ICIP98(II: 690-694).
IEEE DOI 9810
BibRef
Earlier:
Partial volume artifact reduction in computed tomography,
ICIP96(III: 567-570).
IEEE DOI 9610
BibRef

Hsieh, J.[Jiang],
Reconstruction Optimization for Temporal Response Improvement in CT Fluoroscopy,
ICIP99(II:672-676).
IEEE DOI BibRef 9900
Earlier:
Improving the Temporal Response of Computed Tomography Fluoroscopy with Optimized Halfscan,
ICIP97(I: 484-487).
IEEE DOI BibRef

Schulz, R.B., Ripoll, J., Ntziachristos, V.,
Experimental fluorescence tomography of tissues with noncontact measurements,
MedImg(23), No. 4, April 2004, pp. 492-500.
IEEE Abstract. 0406
BibRef

Soubret, A., Ripoll, J., Ntziachristos, V.,
Accuracy of Fluorescent Tomography in the Presence of Heterogeneities: Study of the Normalized Born Ratio,
MedImg(24), No. 10, October 2005, pp. 1377-1386.
IEEE DOI 0510
BibRef

La Riviere, P.J., Vargas, P.A.,
Monotonic penalized-likelihood image reconstruction for X-ray fluorescence computed tomography,
MedImg(25), No. 9, September 2006, pp. 1117-1129.
IEEE DOI 0609
BibRef

La Riviere, P.J., Vargas, P.A.,
Correction for Resolution Nonuniformities Caused by Anode Angulation in Computed Tomography,
MedImg(27), No. 9, September 2008, pp. 1333-1341.
IEEE DOI 0809
BibRef

Hyde, D., Miller, E.L., Brooks, D.H., Ntziachristos, V.,
Data Specific Spatially Varying Regularization for Multimodal Fluorescence Molecular Tomography,
MedImg(29), No. 2, February 2010, pp. 365-374.
IEEE DOI 1002
BibRef

Schulz, R.B., Ale, A., Sarantopoulos, A., Freyer, M., Soehngen, E., Zientkowska, M., Ntziachristos, V.,
Hybrid System for Simultaneous Fluorescence and X-Ray Computed Tomography,
MedImg(29), No. 2, February 2010, pp. 465-473.
IEEE DOI 1002
BibRef

Sperl, J., Beque, D., Claus, B., de Man, B., Senzig, B., Brokate, M.,
Computer-Assisted Scan Protocol and Reconstruction (CASPAR): Reduction of Image Noise and Patient Dose,
MedImg(29), No. 3, March 2010, pp. 724-732.
IEEE DOI 1003
Tomography. health issues from too much. Adaptive level, lower where noise is not an issue. BibRef

Baritaux, J.C., Hassler, K., Unser, M.,
An Efficient Numerical Method for General L_{p} Regularization in Fluorescence Molecular Tomography,
MedImg(29), No. 4, April 2010, pp. 1075-1087.
IEEE DOI 1003
BibRef

Baritaux, J.C., Hassler, K., Bucher, M., Sanyal, S., Unser, M.,
Sparsity-Driven Reconstruction for FDOT With Anatomical Priors,
MedImg(30), No. 5, May 2011, pp. 1143-1153.
IEEE DOI 1105
Isolates few anatomical regions where the fluorescent probe has accumulated. BibRef

Miqueles, E.X., de Pierro, A.R.,
Iterative Reconstruction in X-ray Fluorescence Tomography Based on Radon Inversion,
MedImg(30), No. 2, February 2011, pp. 438-450.
IEEE DOI 1102
BibRef

Bazalova, M., Kuang, Y., Pratx, G., Xing, L.,
Investigation of X-ray Fluorescence Computed Tomography (XFCT) and K-Edge Imaging,
MedImg(31), No. 8, August 2012, pp. 1620-1627.
IEEE DOI 1208
BibRef

Ahmad, M., Bazalova, M., Xiang, L., Xing, L.,
Order of Magnitude Sensitivity Increase in X-ray Fluorescence Computed Tomography (XFCT) Imaging With an Optimized Spectro-Spatial Detector Configuration: Theory and Simulation,
MedImg(33), No. 5, May 2014, pp. 1119-1128.
IEEE DOI 1405
Computed tomography BibRef

Kuang, Y., Pratx, G., Bazalova, M., Meng, B., Qian, J., Xing, L.,
First Demonstration of Multiplexed X-Ray Fluorescence Computed Tomography (XFCT) Imaging,
MedImg(32), No. 2, February 2013, pp. 262-267.
IEEE DOI 1301
BibRef

Jin, A., Yazici, B., Ntziachristos, V.,
Light Illumination and Detection Patterns for Fluorescence Diffuse Optical Tomography Based on Compressive Sensing,
IP(23), No. 6, June 2014, pp. 2609-2624.
IEEE DOI 1406
Coherence BibRef

Mohajerani, P., Hipp, A., Willner, M., Marschner, M., Trajkovic-Arsic, M., Ma, X., Burton, N.C., Klemm, U., Radrich, K., Ermolayev, V., Tzoumas, S., Siveke, J.T., Bech, M., Pfeiffer, F., Ntziachristos, V.,
FMT-PCCT: Hybrid Fluorescence Molecular Tomography: X-Ray Phase-Contrast CT Imaging of Mouse Models,
MedImg(33), No. 7, July 2014, pp. 1434-1446.
IEEE DOI 1407
Animals BibRef

Zhang, J.[Jiulou], Shi, J.[Junwei], Cao, X.[Xu], Liu, F.[Fei], Bai, J.[Jing], Luo, J.W.[Jian-Wen],
Fast reconstruction of fluorescence molecular tomography via a permissible region extraction strategy,
JOSA-A(31), No. 8, August 2014, pp. 1886-1894.
DOI Link 1408
Image reconstruction techniques BibRef

Amiot, C., Girard, C., Chanussot, J., Pescatore, J., Desvignes, M.,
Curvelet Based Contrast Enhancement in Fluoroscopic Sequences,
MedImg(34), No. 1, January 2015, pp. 137-147.
IEEE DOI 1502
computerised tomography BibRef

Lu, Y.[Yujie], Darne, C.D., Tan, I.C.[I-Chih], Zhu, B.[Banghe], Rightmer, R., Rasmussen, J.C., Sevick-Muraca, E.M.,
Experimental Comparison of Continuous-Wave and Frequency-Domain Fluorescence Tomography in a Commercial Multi-Modal Scanner,
MedImg(34), No. 6, June 2015, pp. 1197-1211.
IEEE DOI 1506
CCD image sensors BibRef

He, X.W.[Xiao-Wei], Dong, F.[Fang], Yu, J.J.[Jing-Jing], Guo, H.B.[Hong-Bo], Hou, Y.Q.[Yu-Qing],
Reconstruction algorithm for fluorescence molecular tomography using sorted L-one penalized estimation,
JOSA-A(32), No. 11, November 2015, pp. 1928-1935.
DOI Link 1512
Inverse problems BibRef

Ahmad, M., Bazalova-Carter, M., Fahrig, R., Xing, L.,
Optimized Detector Angular Configuration Increases the Sensitivity of X-ray Fluorescence Computed Tomography (XFCT),
MedImg(34), No. 5, May 2015, pp. 1140-1147.
IEEE DOI 1505
Detectors BibRef

Di, Z.W.[Zichao Wendy], Leyffer, S.[Sven], Wild, S.M.[Stefan M.],
Optimization-Based Approach for Joint X-Ray Fluorescence and Transmission Tomographic Inversion,
SIIMS(9), No. 1, 2016, pp. 1-23.
DOI Link 1604
BibRef

Mohajerani, P., Ntziachristos, V.,
An Inversion Scheme for Hybrid Fluorescence Molecular Tomography Using a Fuzzy Inference System,
MedImg(35), No. 2, February 2016, pp. 381-390.
IEEE DOI 1602
Accuracy BibRef

Ancora, D., Zacharopoulos, A., Ripoll, J., Zacharakis, G.,
Fluorescence Diffusion in the Presence of Optically Clear Tissues in a Mouse Head Model,
MedImg(36), No. 5, May 2017, pp. 1086-1093.
IEEE DOI 1705
Biomedical optical imaging, Brain modeling, Computational modeling, Fluorescence, Mathematical model, Optical imaging, Optical scattering, Biomedical imaging, Cerebral spinal fluid, Clear tissues, Diffuse optics tomography, Diffusion equation, Fluorescence, Forward modelling, Monte Carlo methods, Neuroimaging BibRef

Naik, N., Patil, N., Yadav, Y., Eriksson, J., Pradhan, A.,
Fully Nonlinear SP_3 Approximation Based Fluorescence Optical Tomography,
MedImg(36), No. 11, November 2017, pp. 2308-2318.
IEEE DOI 1711
Absorption. Nonlinear optics, Optical imaging, Optical scattering, Tomography, Fluorescence tomography, image reconstruction-iterative methods, optical, imaging/OCT/DOT BibRef


Adhikari, L.[Lasith], Zhu, D.W.[Dian-Wen], Li, C.Q.[Chang-Qing], Marcia, R.F.[Roummel F.],
Nonconvex reconstruction for low-dimensional fluorescence molecular tomographic poisson observations,
ICIP15(2404-2408)
IEEE DOI 1512
lp-norm BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Tomographic Object Construction, Object Extraction, Analysis, Organs .


Last update:Jul 19, 2018 at 13:26:08