Yu, Z.X.[Zheng-Xin],
Hu, J.[Jia],
Min, G.[Geyong],
Zhao, Z.W.[Zhi-Wei],
Miao, W.[Wang],
Hossain, M.S.[M. Shamim],
Mobility-Aware Proactive Edge Caching for Connected Vehicles Using
Federated Learning,
ITS(22), No. 8, August 2021, pp. 5341-5351.
IEEE DOI
2108
Servers, Peer-to-peer computing, Predictive models, Privacy,
Machine learning, Security, Probabilistic logic, Content caching,
vehicular networks
BibRef
Ribero, M.[Mónica],
Henderson, J.[Jette],
Williamson, S.[Sinead],
Vikalo, H.[Haris],
Federating recommendations using differentially private prototypes,
PR(129), 2022, pp. 108746.
Elsevier DOI
2206
Recommender systems, Differential Privacy, Federated Learning,
Cross-Silo Federated Learning, Matrix Factorization
BibRef
Sun, T.[Tao],
Li, D.S.[Dong-Sheng],
Wang, B.[Bao],
Decentralized Federated Averaging,
PAMI(45), No. 4, April 2023, pp. 4289-4301.
IEEE DOI
2303
Servers, Convergence, Costs, Training, Collaborative work,
Peer-to-peer computing, Privacy, Decentralized optimization,
stochastic gradient descent
BibRef
Zhang, Z.[Zheng],
Ma, X.[Xindi],
Ma, J.F.[Jian-Feng],
Local Differential Privacy Based Membership-Privacy-Preserving
Federated Learning for Deep-Learning-Driven Remote Sensing,
RS(15), No. 20, 2023, pp. 5050.
DOI Link
2310
BibRef
Yan, R.[Rui],
Qu, L.Q.[Liang-Qiong],
Wei, Q.Y.[Qing-Yue],
Huang, S.C.[Shih-Cheng],
Shen, L.[Liyue],
Rubin, D.L.[Daniel L.],
Xing, L.[Lei],
Zhou, Y.Y.[Yu-Yin],
Label-Efficient Self-Supervised Federated Learning for Tackling Data
Heterogeneity in Medical Imaging,
MedImg(42), No. 7, July 2023, pp. 1932-1943.
IEEE DOI
2307
Data models, Biomedical imaging, Task analysis, Training,
Transformers, Distributed databases, Self-supervised learning,
data efficiency
BibRef
Qu, L.Q.[Liang-Qiong],
Zhou, Y.Y.[Yu-Yin],
Liang, P.P.[Paul Pu],
Xia, Y.D.[Ying-Da],
Wang, F.F.[Fei-Fei],
Adeli, E.[Ehsan],
Fei-Fei, L.[Li],
Rubin, D.L.[Daniel L.],
Rethinking Architecture Design for Tackling Data Heterogeneity in
Federated Learning,
CVPR22(10051-10061)
IEEE DOI
2210
Training, Federated learning, Organizations,
Transformers, Data models, Robustness, Privacy and federated learning
BibRef
Phong, L.T.[Le Trieu],
Phuong, T.T.[Tran Thi],
Wang, L.H.[Li-Hua],
Ozawa, S.[Seiichi],
Frameworks for Privacy-Preserving Federated Learning,
IEICE(E107-D), No. 1, January 2024, pp. 2-12.
WWW Link.
2401
BibRef
Li, Y.[Yanan],
Yang, S.[Shusen],
Ren, X.B.[Xue-Bin],
Shi, L.[Liang],
Zhao, C.[Cong],
Multi-Stage Asynchronous Federated Learning With Adaptive
Differential Privacy,
PAMI(46), No. 2, February 2024, pp. 1243-1256.
IEEE DOI
2401
BibRef
Zhao, Z.N.[Zhong-Nan],
Liang, X.L.[Xiao-Liang],
Huang, H.[Hai],
Wang, K.[Kun],
Deep federated learning hybrid optimization model based on encrypted
aligned data,
PR(148), 2024, pp. 110193.
Elsevier DOI
2402
Federated learning, Gaussian Mixture Model,
Variational AutoEncoder, Encrypted aligned data, Privacy protection
BibRef
Dong, J.H.[Jia-Hua],
Li, H.L.[Hong-Liu],
Cong, Y.[Yang],
Sun, G.[Gan],
Zhang, Y.[Yulun],
Van Gool, L.J.[Luc J.],
No One Left Behind: Real-World Federated Class-Incremental Learning,
PAMI(46), No. 4, April 2024, pp. 2054-2070.
IEEE DOI
2403
Task analysis, Training, Prototypes, COVID-19, Servers, Semantics,
Privacy, Catastrophic forgetting, class imbalance,
privacy preservation
BibRef
Piotrowski, T.[Tomasz],
Ismayilov, R.[Rafail],
Frey, M.[Matthias],
Cavalcante, R.L.G.[Renato L.G.],
Inverse Feasibility in Over-the-Air Federated Learning,
SPLetters(31), 2024, pp. 1434-1438.
IEEE DOI
2405
Servers, Security, Computational modeling, Privacy, Inverse problems,
Communication system security, Wireless networks, inverse problems
BibRef
Ye, Q.L.[Qiao-Ling],
Amini, A.A.[Arash A.],
Zhou, Q.[Qing],
Federated Learning of Generalized Linear Causal Networks,
PAMI(46), No. 10, October 2024, pp. 6623-6636.
IEEE DOI
2409
Distributed databases, Optimization, Federated learning, Data privacy,
Data models, Servers, Simulated annealing, topological sorts
BibRef
Liu, X.[Xuan],
Cai, S.Q.[Si-Qi],
He, R.J.[Ren-Jie],
Yuan, J.L.[Jing-Ling],
Mutual Gradient Inversion: Unveiling Privacy Risks of Federated
Learning on Multi-Modal Signals,
SPLetters(31), 2024, pp. 2745-2749.
IEEE DOI
2410
Training, Data models, Federated learning, Servers, Threat modeling,
Image reconstruction, Differential privacy, Federated learning,
privacy leakage
BibRef
Zhou, T.F.[Tian-Fei],
Yuan, Y.[Ye],
Wang, B.L.[Bing-Lu],
Konukoglu, E.[Ender],
Federated Feature Augmentation and Alignment,
PAMI(46), No. 12, December 2024, pp. 11119-11135.
IEEE DOI
2411
Training, Data models, Transformers, Prototypes, Federated learning,
Degradation, Data privacy, Feature alignment, feature augmentation,
federated learning
BibRef
You, X.Y.[Xian-Yao],
Liu, C.Y.[Cai-Yun],
Li, J.[Jun],
Sun, Y.[Yan],
Liu, X.M.[Xi-Meng],
FedMDO: Privacy-Preserving Federated Learning via Mixup Differential
Objective,
CirSysVideo(34), No. 10, October 2024, pp. 10449-10463.
IEEE DOI
2411
Federated learning, Differential privacy, Protection, Training, Servers,
Privacy, Task analysis, Federated learning, data privacy, data augmentation
BibRef
Fang, X.W.[Xiu-Wen],
Ye, M.[Mang],
Du, B.[Bo],
Robust Asymmetric Heterogeneous Federated Learning With Corrupted
Clients,
PAMI(47), No. 4, April 2025, pp. 2693-2705.
IEEE DOI
2503
BibRef
Earlier: A1, A2, Only:
Robust Federated Learning with Noisy and Heterogeneous Clients,
CVPR22(10062-10071)
IEEE DOI
2210
Data models, Computational modeling, Noise, Federated learning,
Robustness, Training, Data augmentation, Analytical models.
Adaptation models, Privacy, Collaboration,
Collaborative work, Federated learning
BibRef
Jin, S.[Suyeon],
Cha, C.[Chaeyeon],
Park, H.[Hyunggon],
Alternating Offer-Based Payment Allocation for Privacy Non-Disclosure
in Federated Learning,
SPLetters(32), 2025, pp. 1500-1504.
IEEE DOI
2504
Servers, Resource management, Games, Costs, Training, Accuracy, Privacy,
NIST, Computational modeling, Vectors, Federated learning, alternating-offers
BibRef
Dai, C.[Cheng],
Zhu, T.[Tianli],
Xiang, S.[Sha],
Xie, L.P.[Li-Ping],
Garg, S.[Sahil],
Hossain, M.S.[M. Shamim],
PSFL: Personalized Split Federated Learning Framework for Distributed
Model Training in Intelligent Transportation Systems,
ITS(26), No. 9, September 2025, pp. 14110-14119.
IEEE DOI
2510
Computational modeling, Servers, Training, Data models, Data privacy,
Adaptation models, Federated learning, 6G mobile communication,
non-independent and identically distributed (non-IID) data
BibRef
Zhang, C.J.[Chun-Jiong],
Shan, G.Y.[Gao-Yang],
Roh, B.H.[Byeong-Hee],
FMD-IoV: Security and Robust Enhancement for Federated Multi-Domain
Learning-Based IoV,
ITS(26), No. 9, September 2025, pp. 14225-14236.
IEEE DOI
2510
Data models, Feature extraction, Training, Soft sensors, Convergence,
Automobiles, Object detection, Data privacy, generalizability
BibRef
Ha, S.B.[Seung-Bum],
Lee, T.[Taehwan],
Lim, J.[Jiyoun],
Yoon, S.W.[Sung Whan],
Benchmarking federated learning for semantic datasets: Federated
scene graph generation,
PRL(197), 2025, pp. 195-201.
Elsevier DOI Code:
WWW Link.
2510
Scene graph generation, Panoptic scene graph generation,
Federated learning, Distributed learning, Data privacy, Benchmark
BibRef
Qin, X.[Xian],
Yang, X.[Xue],
Tang, X.[Xiaohu],
Practical privacy-preserving federated learning based on multiparty
homomorphic encryption for large-scale models,
PR(171), 2026, pp. 112174.
Elsevier DOI
2511
Federated learning, Privacy-preserving, Secure aggregation,
Robustness against client collusion, Dropout-resiliency guarantee
BibRef
Shi, Y.F.[Yi-Fan],
Wei, K.[Kang],
Shen, L.[Li],
Liu, Y.Q.[Ying-Qi],
Wang, X.Q.[Xue-Qian],
Yuan, B.[Bo],
Tao, D.C.[Da-Cheng],
Toward the Flatter Landscape and Better Generalization in Federated
Learning Under Client-Level Differential Privacy,
PAMI(47), No. 12, December 2025, pp. 11632-11643.
IEEE DOI
2511
Noise, Privacy, Perturbation methods, Degradation, Robustness,
Training, Convergence, Protection, Data models, Federated learning,
local update sparsification
BibRef
Yoon, T.[Tehrim],
Hwang, M.Y.[Min-Young],
Yang, E.[Eunho],
VQ-FedDiff: Federated Learning Algorithm of Diffusion Models With
Client-Specific Vector-Quantized Conditioning,
PAMI(47), No. 12, December 2025, pp. 11863-11873.
IEEE DOI
2511
Diffusion models, Data models, Training, Servers, Federated learning,
Privacy, Data privacy, Computational modeling, Measurement
BibRef
Liu, J.Y.[Ji-Yuan],
Liu, X.W.[Xin-Wang],
Wang, S.Q.[Si-Qi],
Wan, X.H.[Xin-Hang],
Li, D.S.[Dong-Sheng],
Lu, K.[Kai],
He, K.L.[Kun-Lun],
Communication-Efficient Federated Multi-View Clustering,
PAMI(48), No. 1, January 2026, pp. 17-32.
IEEE DOI
2512
Servers, Data visualization, Kernel, Computational complexity,
Encoding, Training, Distributed databases, Data privacy, matrix approximation
BibRef
Pennisi, M.[Matteo],
Salanitri, F.P.[Federica Proietto],
Bellitto, G.[Giovanni],
Casella, B.[Bruno],
Aldinucci, M.[Marco],
Palazzo, S.[Simone],
Spampinato, C.[Concetto],
FedER: Federated Learning through Experience Replay and
privacy-preserving data synthesis,
CVIU(238), 2024, pp. 103882.
Elsevier DOI Code:
WWW Link.
2312
Decentralized learning, Federated learning,
Privacy in machine learning and classification
BibRef
Qian, W.J.[Wen-Jun],
Yu, W.[Wei],
Ge, X.[Xin],
Li, C.[Cong],
Li, L.[Lianyuan],
Li, Z.[Zheng],
PDP-FedKD: Personalized Differential Privacy With Adaptive Budget
Selection in Heterogeneous Federated Learning,
SPLetters(33), 2026, pp. 166-170.
IEEE DOI
2601
Privacy, Differential privacy, Training, Servers, Data models,
Protection, Adaptation models, Gaussian noise, Federated learning,
budget self-selection
BibRef
Pereira, L.M.[Luiz Manella],
Amini, M.H.[M. Hadi],
Optimal Transport-Based Domain Alignment as a Preprocessing Step for
Federated Learning,
ICIP25(1049-1054)
IEEE DOI
2601
Performance evaluation, Data privacy, Accuracy, Federated learning,
Scalability, Computational modeling, Prediction algorithms,
Image Preprocessing
BibRef
Fraux, D.[David],
Druart, A.[Anaïs],
Marat, S.G.[Sophie Guegan],
FeDepthX: A Federated Learning Depth eXperiment,
IPTA25(1-6)
IEEE DOI
2601
Training, Data privacy, Accuracy, Federated learning,
Depth measurement, Computational modeling, Training data,
privacy preservation
BibRef
Kumar, K.N.[K. Naveen],
Jha, R.R.[Ranjeet Ranjan],
Mohan, C.K.[C. Krishna],
Tallamraju, R.B.[Ravindra Babu],
Fortifying Federated Learning Towards Trustworthiness via Auditable
Data Valuation and Verifiable Client Contribution,
CVPR25(4999-5009)
IEEE DOI
2508
Training, Data privacy, Federated learning, Gaussian noise,
Density functional theory, Servers, Security, Cost accounting,
data poisoning threat
BibRef
Kumar, K.N.[K. Naveen],
Mitra, R.[Reshmi],
Mohan, C.K.[C. Krishna],
Revamping Federated Learning Security from a Defender's Perspective:
A Unified Defense with Homomorphic Encrypted Data Space,
CVPR24(24387-24397)
IEEE DOI
2410
Training, Data privacy, Privacy, Federated learning,
Computational modeling, Predictive models, Data models,
Defenders perspective
BibRef
Zhu, G.X.[Gong-Xi],
Li, D.H.[Dong-Hao],
Gu, H.L.[Han-Lin],
Yao, Y.[Yuan],
Fan, L.X.[Li-Xin],
Han, Y.X.[Yu-Xing],
FedMIA: An Effective Membership Inference Attack Exploiting 'All for
One' Principle in Federated Learning,
CVPR25(20643-20653)
IEEE DOI Code:
WWW Link.
2508
Training, Measurement, Data privacy, Codes, Federated learning,
Buildings, Focusing, Data models, membership inference attack,
federated learning
BibRef
Tan, Z.[Zihan],
Wan, G.C.[Guan-Cheng],
Huang, W.K.[Wen-Ke],
Li, H.[He],
Zhang, G.[Guibin],
Yang, C.[Carl],
Ye, M.[Mang],
FedSPA : Generalizable Federated Graph Learning under Homophily
Heterogeneity,
CVPR25(15464-15475)
IEEE DOI Code:
WWW Link.
2508
Training, Data privacy, Codes, Collaboration, Graph neural networks,
federated learning
BibRef
Xie, L.[Luyuan],
Luan, T.Y.[Tian-Yu],
Cai, W.Y.[Wen-Yuan],
Yan, G.[Guochen],
Chen, Z.Y.[Zhao-Yu],
Xi, N.[Nan],
Fang, Y.J.[Yue-Jian],
Shen, Q.[Qingni],
Wu, Z.H.[Zhong-Hai],
Yuan, J.S.[Jun-Song],
dFLMoE: Decentralized Federated Learning via Mixture of Experts for
Medical Data Analysis,
CVPR25(10203-10213)
IEEE DOI
2508
Training, Privacy, Head, Federated learning, Computational modeling,
Back, Stability analysis, Robustness, Servers,
medical data analysis
BibRef
Ma, Y.B.[Yan-Biao],
Dai, W.[Wei],
Huang, W.K.[Wen-Ke],
Chen, J.Y.[Jia-Yi],
Geometric Knowledge-Guided Localized Global Distribution Alignment
for Federated Learning,
CVPR25(20958-20968)
IEEE DOI Code:
WWW Link.
2508
Training, Privacy, Shape, Federated learning, Prototypes,
Data collection, Data models, Optimization
BibRef
Shi, C.L.[Chang-Long],
Zhao, H.[He],
Zhang, B.J.[Bing-Jie],
Zhou, M.Y.[Ming-Yuan],
Guo, D.D.[Dan-Dan],
Chang, Y.[Yi],
FedAWA: Adaptive Optimization of Aggregation Weights in Federated
Learning Using Client Vectors,
CVPR25(30651-30660)
IEEE DOI
2508
Training, Adaptation models, Data privacy, Federated learning,
Computational modeling, Vectors, Data models, Stability analysis,
machine learning
BibRef
Chen, H.[Haokun],
Li, H.[Hang],
Zhang, Y.[Yao],
Bi, J.[Jinhe],
Zhang, G.[Gengyuan],
Zhang, Y.[Yueqi],
Torr, P.[Philip],
Gu, J.D.[Jin-Dong],
Krompass, D.[Denis],
Tresp, V.[Volker],
FedBiP: Heterogeneous One-Shot Federated Learning with Personalized
Latent Diffusion Models,
CVPR25(30440-30450)
IEEE DOI Code:
WWW Link.
2508
Data privacy, Federated learning, Scalability, Diffusion models,
Data models, Regulation, Satellite images, Biomedical imaging,
data augmentation
BibRef
Khalil, Y.H.[Yasser H.],
Brunswic, L.[Leo],
Lamghari, S.[Soufiane],
Li, X.[Xu],
Beitollahi, M.[Mahdi],
Chen, X.[Xi],
NoT: Federated Unlearning via Weight Negation,
CVPR25(25759-25769)
IEEE DOI
2508
Data privacy, Federated learning, Computational modeling,
Perturbation methods, Data models, Servers, Optimization, weight negation
BibRef
Yan, Y.L.[Yun-Lu],
Fu, H.Z.[Hua-Zhu],
Li, Y.X.[Yue-Xiang],
Xie, J.H.[Jin-Heng],
Ma, J.[Jun],
Yang, G.[Guang],
Zhu, L.[Lei],
A Simple Data Augmentation for Feature Distribution Skewed Federated
Learning,
CVPR25(25749-25758)
IEEE DOI Code:
WWW Link.
2508
Privacy, Codes, Federated learning, Distributed databases,
Data augmentation, Security, federated learning, data augmentation
BibRef
Caldarola, D.[Debora],
Cagnasso, P.[Pietro],
Caputo, B.[Barbara],
Ciccone, M.[Marco],
Beyond Local Sharpness: Communication-Efficient Global
Sharpness-aware Minimization for Federated Learning,
CVPR25(25187-25197)
IEEE DOI
2508
Training, Privacy, Federated learning, Focusing, Minimization,
Robustness, Explosions, Servers, Optimization, federated learning,
sharpness-aware minimization
BibRef
Mendieta, M.[Matías],
Sun, G.Y.[Guang-Yu],
Chen, C.[Chen],
Navigating Heterogeneity and Privacy in One-Shot Federated Learning
with Diffusion Models,
WACV25(2601-2610)
IEEE DOI Code:
WWW Link.
2505
Training, Federated learning, Filtering, Navigation,
Diffusion models, Data models, Security, Faces, Pragmatics
BibRef
Kanhere, A.[Adway],
Kulkarni, P.[Pranav],
Yi, P.H.[Paul H.],
Parekh, V.S.[Vishwa S.],
Privacy-Preserving Collaboration for Multi-Organ Segmentation via
Federated Learning from Sites with Partial Labels,
EnhanceMedIm24(2380-2387)
IEEE DOI Code:
WWW Link.
2410
Spleen, Image segmentation, Annotations, Federated learning,
Collaboration, Liver, Data models, federated learning, computed tomography
BibRef
Tabassum, N.[Nawrin],
Chow, K.H.[Ka-Ho],
Wang, X.[Xuyu],
Zhang, W.B.[Wen-Bin],
Wu, Y.Z.[Yan-Zhao],
On the Efficiency of Privacy Attacks in Federated Learning,
FedVision244(4226-4235)
IEEE DOI Code:
WWW Link.
2410
Privacy, Data privacy, Costs, Federated learning, Training data,
Benchmark testing
BibRef
Soni, S.[Sunny],
Saeed, A.[Aaqib],
Asano, Y.M.[Yuki M.],
Federated Learning with a Single Shared Image,
ZeroShot24(7782-7790)
IEEE DOI
2410
Training, Schedules, Data privacy, Machine learning algorithms,
Federated learning, Training data, Performance gain
BibRef
Lee, G.[Gihun],
Jeong, M.[Minchan],
Kim, S.[Sangmook],
Oh, J.[Jaehoon],
Yun, S.Y.[Se-Young],
FedSOL: Stabilized Orthogonal Learning with Proximal Restrictions in
Federated Learning,
CVPR24(12512-12522)
IEEE DOI
2410
Degradation, Data privacy, Federated learning,
Perturbation methods, Aggregates, Data models, Federated Learning,
Continual Learning
BibRef
Xie, C.[Chulin],
Huang, D.A.[De-An],
Chu, W.[Wenda],
Xu, D.[Daguang],
Xiao, C.W.[Chao-Wei],
Li, B.[Bo],
Anandkumar, A.[Anima],
Perada: Parameter-Efficient Federated Learning Personalization with
Generalization Guarantees,
CVPR24(23838-23848)
IEEE DOI Code:
WWW Link.
2410
Adaptation models, Costs, Codes, Federated learning,
Computational modeling, Aggregates, Privacy
BibRef
Tran, M.T.[Minh-Tuan],
Le, T.[Trung],
Le, X.M.[Xuan-May],
Harandi, M.[Mehrtash],
Phung, D.[Dinh],
Text-Enhanced Data-Free Approach for Federated Class-Incremental
Learning,
CVPR24(23870-23880)
IEEE DOI Code:
WWW Link.
2410
Training, Data privacy, Codes, Federated learning,
Computational modeling, Data models, federated learning, text embedding
BibRef
Li, W.Q.[Wen-Qian],
Fu, S.[Shuran],
Zhang, F.[Fengrui],
Pang, Y.[Yan],
Data Valuation and Detections in Federated Learning,
CVPR24(12027-12036)
IEEE DOI Code:
WWW Link.
2410
Training, Measurement, Data privacy, Federated learning,
Computational modeling, Data models, Data Valuation, Trustworthy ML
BibRef
Zhang, J.Q.[Jian-Qing],
Liu, Y.[Yang],
Hua, Y.[Yang],
Cao, J.[Jian],
An Upload-Efficient Scheme for Transferring Knowledge From a
Server-Side Pre-trained Generator to Clients in Heterogeneous
Federated Learning,
CVPR24(12109-12119)
IEEE DOI Code:
WWW Link.
2410
Training, Privacy, Federated learning, Image edge detection,
Generators, Data models, large pre-trained generator, model heterogeneity
BibRef
Zhao, J.C.[Joshua C.],
Dabholkar, A.[Ahaan],
Sharma, A.[Atul],
Bagchi, S.[Saurabh],
Leak and Learn: An Attacker's Cookbook to Train Using Leaked Data
from Federated Learning,
CVPR24(12247-12256)
IEEE DOI
2410
Training, Data privacy, Federated learning, Training data,
Semisupervised learning, Data models, Servers, Federated learning, privacy
BibRef
Tu, N.A.[Nguyen Anh],
Abu, A.[Assanali],
Aikyn, N.[Nartay],
Makhanov, N.[Nursultan],
Lee, M.H.[Min-Ho],
Le-Huy, K.[Khiem],
Wong, K.S.[Kok-Seng],
FedFSLAR: A Federated Learning Framework for Few-shot Action
Recognition,
RWSurvil24(270-279)
IEEE DOI
2404
Metalearning, Adaptation models, Data privacy, Correlation,
Federated learning, Computational modeling
BibRef
Eloul, S.[Shaltiel],
Silavong, F.[Fran],
Kamthe, S.[Sanket],
Georgiadis, A.[Antonios],
Moran, S.J.[Sean J.],
Mixing Gradients in Neural Networks as a Strategy to Enhance Privacy
in Federated Learning,
WACV24(3944-3953)
IEEE DOI
2404
Measurement, Training, Resistance, Privacy, Federated learning, Noise,
Neural networks, Algorithms, Adversarial learning,
Datasets and evaluations
BibRef
Wang, F.[Feng],
Velipasalar, S.[Senem],
Gursoy, M.C.[M. Cenk],
Maximum Knowledge Orthogonality Reconstruction with Gradients in
Federated Learning,
WACV24(3872-3881)
IEEE DOI Code:
WWW Link.
2404
Data privacy, Privacy, Federated learning, Computational modeling,
Neural networks, Pressing, Reconstruction algorithms, Algorithms,
ethical computer vision
BibRef
Sivasubramanian, D.[Durga],
Nagalapatti, L.[Lokesh],
Iyer, R.[Rishabh],
Ramakrishnan, G.[Ganesh],
Gradient Coreset for Federated Learning,
WACV24(2636-2645)
IEEE DOI
2404
Training, Privacy, Federated learning, Computational modeling, Noise,
Fitting, Training data, Algorithms, Machine learning architectures,
ethical computer vision
BibRef
Amosy, O.[Ohad],
Eyal, G.[Gal],
Chechik, G.[Gal],
Late to the party? On-demand unlabeled personalized federated
learning,
WACV24(2173-2182)
IEEE DOI
2404
Training, Differential privacy, Privacy, Federated learning,
Perturbation methods, Computational modeling, Algorithms
BibRef
Ashraf, T.[Tajamul],
Mir, F.B.A.[Fuzayil Bin Afzal],
Gillani, I.A.[Iqra Altaf],
TransFed: A way to epitomize Focal Modulation using Transformer-based
Federated Learning,
WACV24(543-552)
IEEE DOI
2404
Data privacy, Pneumonia, Federated learning, Scalability, Modulation,
Collaboration, Algorithms, Image recognition and understanding,
Biomedical / healthcare / medicine
BibRef
Wan, G.[Guangnian],
Du, H.T.[Hai-Tao],
Yuan, X.J.[Xue-Jing],
Yang, J.[Jun],
Chen, M.L.[Mei-Ling],
Xu, J.[Jie],
Enhancing Privacy Preservation in Federated Learning via Learning
Rate Perturbation,
ICCV23(4749-4758)
IEEE DOI
2401
BibRef
Li, X.C.[Xin-Chun],
Xu, Y.C.[Yi-Chu],
Song, S.M.[Shao-Ming],
Li, B.S.[Bing-Shuai],
Li, Y.C.[Yin-Chuan],
Shao, Y.F.[Yun-Feng],
Zhan, D.C.[De-Chuan],
Federated Learning with Position-Aware Neurons,
CVPR22(10072-10081)
IEEE DOI
2210
Training, Fuses, Neurons, Optimization methods, Collaborative work,
Encoding, Privacy and federated learning, Representation learning
BibRef
Ma, X.S.[Xiao-Song],
Zhang, J.[Jie],
Guo, S.[Song],
Xu, W.C.[Wen-Chao],
Layer-wised Model Aggregation for Personalized Federated Learning,
CVPR22(10082-10091)
IEEE DOI
2210
Training, Distributed databases, Collaboration, Collaborative work,
Data models, Privacy and federated learning, Others
BibRef
Tang, M.X.[Min-Xue],
Ning, X.F.[Xue-Fei],
Wang, Y.[Yitu],
Sun, J.W.[Jing-Wei],
Wang, Y.[Yu],
Li, H.[Hai],
Chen, Y.R.[Yi-Ran],
FedCor: Correlation-Based Active Client Selection Strategy for
Heterogeneous Federated Learning,
CVPR22(10092-10101)
IEEE DOI
2210
Training, Correlation, Federated learning, Gaussian processes,
Convergence, Privacy and federated learning,Machine learning
BibRef
Gao, L.[Liang],
Fu, H.Z.[Hua-Zhu],
Li, L.[Li],
Chen, Y.[Yingwen],
Xu, M.[Ming],
Xu, C.Z.[Cheng-Zhong],
FedDC: Federated Learning with Non-IID Data via Local Drift
Decoupling and Correction,
CVPR22(10102-10111)
IEEE DOI
2210
Training, Federated learning, Heuristic algorithms,
Computational modeling, Data models,
Privacy and federated learning
BibRef
Cheng, A.[Anda],
Wang, P.S.[Pei-Song],
Zhang, X.S.[Xi Sheryl],
Cheng, J.[Jian],
Differentially Private Federated Learning with Local Regularization
and Sparsification,
CVPR22(10112-10121)
IEEE DOI
2210
Degradation, Privacy, Differential privacy, Costs,
Federated learning, Computational modeling,
privacy and ethics in vision
BibRef
Li, Z.H.[Zhuo-Hang],
Zhang, J.X.[Jia-Xin],
Liu, L.Y.[Lu-Yang],
Liu, J.[Jian],
Auditing Privacy Defenses in Federated Learning via Generative
Gradient Leakage,
CVPR22(10122-10132)
IEEE DOI
2210
Degradation, Privacy, Data privacy, Perturbation methods,
Training data, Generative adversarial networks,
Image and video synthesis and generation
BibRef
Huang, W.K.[Wen-Ke],
Ye, M.[Mang],
Du, B.[Bo],
Learn from Others and Be Yourself in Heterogeneous Federated Learning,
CVPR22(10133-10143)
IEEE DOI
2210
Degradation, Privacy, Distance learning, Distributed databases,
Collaboration, Collaborative work, Data models, Privacy and federated learning
BibRef
Xu, J.Y.[Jing-Yi],
Chen, Z.H.[Zi-Han],
Quek, T.Q.S.[Tony Q.S.],
Chong, K.F.E.[Kai Fong Ernest],
FedCorr: Multi-Stage Federated Learning for Label Noise Correction,
CVPR22(10174-10183)
IEEE DOI
2210
Training, Data privacy, Adaptation models, Collaborative work,
Loss measurement, Data models, Stability analysis, Machine learning
BibRef
Zhang, J.Y.[Jing-Yang],
Chen, Y.R.[Yi-Ran],
Li, H.[Hai],
Privacy Leakage of Adversarial Training Models in Federated Learning
Systems,
ArtOfRobust22(107-113)
IEEE DOI
2210
Training, Deep learning, Privacy, Neural networks, Collaborative work
BibRef
Tuor, T.[Tiffany],
Wang, S.Q.[Shi-Qiang],
Ko, B.J.[Bong Jun],
Liu, C.C.[Chang-Chang],
Leung, K.K.[Kin K.],
Overcoming Noisy and Irrelevant Data in Federated Learning,
ICPR21(5020-5027)
IEEE DOI
2105
Training, Data privacy, Distributed databases, Machine learning,
Benchmark testing, Collaborative work, Data models, Data filtering,
open set noise
BibRef
Zhu, Z.R.[Zi-Rui],
Sun, L.F.[Li-Feng],
Federated Trace:
A Node Selection Method for More Efficient Federated Learning,
ICIP21(1234-1238)
IEEE DOI
2201
Training, Measurement, Data privacy, Image processing,
Time series analysis, Clustering algorithms, Federated Learning,
Communication rounds
BibRef
Lim, J.Q.[Jia Qi],
Chan, C.S.[Chee Seng],
From Gradient Leakage To Adversarial Attacks In Federated Learning,
ICIP21(3602-3606)
IEEE DOI
2201
Data privacy, Solid modeling, Computational modeling,
Collaborative work, Solids, Data models, Classification algorithms,
Adversarial Learning
BibRef
Moon, J.,
Kum, S.,
Kim, Y.,
Stankovski, V.,
Pašcinski, U.,
Kochovski, P.,
A Decentralized AI Data Management System In Federated Learning,
ISCV20(1-4)
IEEE DOI
2011
Big Data, data privacy, learning (artificial intelligence),
model training, private locally produced data, Big Data,
Machine learning model
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Fusion for Multiple Classifiers .