Sinclair, D.A.,
Blake, A.,
Smith, S., and
Rothwell, C.A.,
Planar Region Detection and Motion Recovery,
IVC(11), No. 4, May 1993, pp. 229-234.
Elsevier DOI
BibRef
9305
Earlier:
BMVC92(xx-yy).
PDF File.
9209
See also Isoperimetric Normalization of Planar Curves.
BibRef
Gevers, T.,
Robust Segmentation and Tracking of Colored Objects in Video,
CirSysVideo(14), No. 6, June 2004, pp. 776-781.
IEEE Abstract.
0407
Color based deformable model.
Color constant gradients.
BibRef
Gevers, T.,
Ghebreab, S.,
Smeulders, A.W.M.,
Color Invariant Snakes,
BMVC98(xx-yy).
BibRef
9800
Jehan-Besson, S.[Stéphanie],
Barlaud, M.[Michel],
Aubert, G.[Gilles],
A 3-Step Algorithm Using Region-Based Active Contours for Video Objects
Detection,
JASP(2002), No. 6, June 2002, pp. 572-581.
0208
BibRef
Earlier:
Video Objects Segmentation Using Eulerian Region-Based Active Contours,
ICCV01(I: 353-360).
IEEE DOI
0106
BibRef
And:
Region-based Active Contours for Video Object Segmentation with Camera
Compensation,
ICIP01(II: 61-64).
IEEE DOI
0108
BibRef
Earlier:
Detection and Tracking of Moving Objects Using a New Level Set Based
Method,
ICPR00(Vol III: 1100-1105).
IEEE DOI
0009
BibRef
Jehan-Besson, S.[Stéphanie],
Barlaud, M.[Michel],
Aubert, G.[Gilles],
DREAM 2 S: Deformable Regions Driven by an Eulerian Accurate
Minimization Method for Image and Video Segmentation,
IJCV(53), No. 1, June 2003, pp. 45-70.
DOI Link
0304
BibRef
Earlier:
ECCV02(III: 365 ff.).
Springer DOI
0205
See also Object-based Motion Method for Video Coding, An.
See also Using the Shape Gradient for Active Contour Segmentation: From the Continuous to the Discrete Formulation.
See also Outer-Layer Based Tracking using Entropy as a Similarity Measure.
BibRef
Roy, T.[Tristan],
Debreuve, É.[Éric],
Barlaud, M.[Michel],
Aubert, G.[Gilles],
Segmentation of a Vector Field: Dominant Parameter and Shape
Optimization,
JMIV(24), No. 2, March 2006, pp. 259-276.
Springer DOI
0605
BibRef
Herbulot, A.[Ariane],
Jehan-Besson, S.[Stéphanie],
Duffner, S.[Stefan],
Barlaud, M.[Michel],
Aubert, G.[Gilles],
Segmentation of Vectorial Image Features Using Shape Gradients and
Information Measures,
JMIV(25), No. 3, October 2006, pp. 365-386.
Springer DOI
0611
BibRef
Earlier: A1, A2, A4, A5, Only:
Shape gradient for multi-modal image segmentation using mutual
information,
ICIP04(IV: 2729-2732).
IEEE DOI
0505
See also DREAM 2 S: Deformable Regions Driven by an Eulerian Accurate Minimization Method for Image and Video Segmentation.
BibRef
Castaud, M.,
Barlaud, M.,
Video segmentation using active contours on a group of pictures,
ICIP02(II: 81-84).
IEEE DOI
0210
BibRef
Lecellier, F.[François],
Fadili, J.[Jalal],
Jehan-Besson, S.[Stéphanie],
Aubert, G.[Gilles],
Revenu, M.[Marinette],
Saloux, E.[Eric],
Region-Based Active Contours with Exponential Family Observations,
JMIV(36), No. 1, January 2010, pp. xx-yy.
Springer DOI
1001
BibRef
Earlier: A1, A3, A2, A4, A5, A6:
Region-Based Active Contour with Noise and Shape Priors,
ICIP06(1649-1652).
IEEE DOI
0610
BibRef
Lecellier, F.[Francois],
Jehan-Besson, S.[Stephanie],
Fadili, J.[Jalal],
Aubert, G.[Gilles],
Revenu, M.[Marinette],
Optimization of Divergences within the Exponential Family for Image
Segmentation,
SSVM09(137-149).
Springer DOI
0906
BibRef
Earlier: A1, A3, A2, A5, A4:
Region-based active contours and sparse representations for texture
segmentation,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Cuturi, M.[Marco],
Peyré, G.[Gabriel],
A Smoothed Dual Approach for Variational Wasserstein Problems,
SIIMS(9), No. 1, 2016, pp. 320-343.
DOI Link
1604
BibRef
Peyre, G.[Gabriel],
Fadili, J.[Jalal],
Rabin, J.[Julien],
Wasserstein active contours,
ICIP12(2541-2544).
IEEE DOI
1302
BibRef
Jehan-Besson, S.[Stephanie],
Barlaud, M.[Michel],
Aubert, G.[Gilles],
Faugeras, O.D.,
Shape gradients for histogram segmentation using active contours,
ICCV03(408-415).
IEEE DOI
0311
BibRef
Gastaud, M.,
Barlaud, M.,
Aubert, G.,
Combining shape prior and statistical features for active contour
segmentation,
CirSysVideo(14), No. 5, May 2004, pp. 726-734.
IEEE Abstract.
0407
BibRef
Earlier:
Tracking video objects using active contours,
Motion02(90-95).
IEEE DOI
0303
BibRef
Debreuve, É.,
Gastaud, M.,
Barlaud, M.,
Aubert, G.,
Using the Shape Gradient for Active Contour Segmentation:
From the Continuous to the Discrete Formulation,
JMIV(28), No. 1, May 2007, pp. 47-66.
Springer DOI
0710
See also Outer-Layer Based Tracking using Entropy as a Similarity Measure.
See also DREAM 2 S: Deformable Regions Driven by an Eulerian Accurate Minimization Method for Image and Video Segmentation.
BibRef
Boltz, S.[Sylvain],
Debreuve, É.[Éric],
Barlaud, M.[Michel],
Joint Appearance and Deformable Shape for Nonparametric Segmentation,
HUMO07(180-195).
Springer DOI
0710
BibRef
And:
A High Dimensional Framework for Joint Color-Spatial Segmentation,
ICIP07(VI: 313-316).
IEEE DOI
0709
See also Motion and Appearance Nonparametric Joint Entropy for Video Segmentation.
See also High-Dimensional Statistical Measure for Region-of-Interest Tracking.
BibRef
Debreuve, E.,
Barlaud, M.,
Marmorat, J.P.,
Aubert, G.,
Active Contour Segmentation with a Parametric Shape Prior:
Link with the Shape Gradient,
ICIP06(1653-1656).
IEEE DOI
0610
BibRef
Jehan-Besson, S.,
Gastaud, M.,
Barlaud, M.,
Aubert, G.,
Region-based active contours using geometrical and statistical features
for image segmentation,
ICIP03(II: 643-646).
IEEE DOI
0312
BibRef
Cremers, D.[Daniel],
Schnörr, C.[Christoph],
Statistical Shape Knowledge in Variational Motion Segmentation,
IVC(21), No. 1, January 2003, pp. 77-86.
Elsevier DOI
PDF File.
0301
BibRef
Earlier:
Motion Competition:
Variational Integration of Motion Segmentation and Shape Regularization,
DAGM02(472-480).
Springer DOI
PS File.
Award, DAGM.
0303
See also Shape Statistics in Kernel Space for Variational Image Segmentation.
See also Motion Competition: A Variational Approach to Piecewise Parametric Motion Segmentation.
BibRef
Cremers, D.[Daniel],
A variational framework for image segmentation combining motion
estimation and shape regularization,
CVPR03(I: 53-58).
IEEE DOI
0307
BibRef
And:
Statistical Shape Knowledge in Variational Image Segmentation,
Ph.D.Thesis, Department of Mathematics and Computer Science,
University of Mannheim, Germany, July 2002.
PDF File.
BibRef
Cremers, D.[Daniel],
Soatto, S.[Stefano],
Motion Competition:
A Variational Approach to Piecewise Parametric Motion Segmentation,
IJCV(62), No. 3, May 2005, pp. 249-265.
Springer DOI
0501
BibRef
Earlier:
Variational space-time motion segmentation,
ICCV03(886-893).
IEEE DOI
0311
See also Statistical Shape Knowledge in Variational Motion Segmentation.
BibRef
Prakash, S.[Surya],
Abhilash, R.,
Das, S.[Sukhendu],
SnakeCut: An Integrated Approach Based on Active Contour and GrabCut
for Automatic Foreground Object Segmentation,
ELCVIA(6), No. 3, December 2007, pp. 13-29.
DOI Link
0801
BibRef
Prakash, S.[Surya],
Das, S.[Sukhendu],
Segmenting Multiple Textured Objects Using Geodesic Active Contour and
DWT,
PReMI07(111-118).
Springer DOI
0712
BibRef
Shaaban, K.M.[Khaled M.],
Omar, N.M.[Nagwa M.],
Region-based Deformable Net for automatic color image segmentation,
IVC(27), No. 10, 2 September 2009, pp. 1504-1514.
Elsevier DOI
0906
Deformable contours
BibRef
Shaaban, K.M.[Khaled M.],
Omar, N.M.[Nagwa M.],
3D information extraction using Region-based Deformable Net for
monocular robot navigation,
JVCIR(23), No. 2, February 2012, pp. 397-408.
Elsevier DOI
1201
Robot navigation; Monocular vision; Stereo vision; Correspondence
problem; Video segmentation; Deformable contours; 3D information
extraction; Depth information extraction
BibRef
Shaaban, K.M.[Khaled M.],
Omar, N.M.[Nagwa M.],
Depth extraction of partially occluded objects using deformable net,
JVCIR(39), No. 1, 2016, pp. 1-11.
Elsevier DOI
1608
Monocular vision navigation
BibRef
Mahmoodi, S.,
Shape-Based Active Contours for Fast Video Segmentation,
SPLetters(16), No. 10, October 2009, pp. 857-860.
IEEE DOI
0907
BibRef
Ning, J.,
Zhang, L.,
Zhang, D.,
Yu, W.,
Joint Registration and Active Contour Segmentation for Object
Tracking,
CirSysVideo(23), No. 9, 2013, pp. 1589-1597.
IEEE DOI
1309
Active contour model
BibRef
Heo, S.,
Koo, H.I.,
Cho, N.I.,
Open-Contour Tracking Using a New State-Space Model and Nonrigid
Motion Training,
CirSysVideo(27), No. 11, November 2017, pp. 2355-2366.
IEEE DOI
1712
Dynamics, Object tracking, Shape, Splines (mathematics),
Target tracking, Training, Nonrigid shape, omega shape tracking, open-contour tracking
BibRef
Needham, T.[Tom],
Shape Analysis of Framed Space Curves,
JMIV(61), No. 8, October 2019, pp. 1154-1172.
Springer DOI
1909
elastic shape analysis approach to shape matching
BibRef
Oliver-Parera, M.[Maria],
Muzeau, J.[Julien],
Ladret, P.[Patricia],
Bertolino, P.[Pascal],
Contour Detection of Multiple Moving Objects in Unconstrained Scenes
using Optical Strain,
DICTA20(1-8)
IEEE DOI
2201
Adaptation models, Computational modeling, Optical computing,
Optical noise, Task analysis, Optical flow, Strain,
Adaptive Threshold
BibRef
Lin, T.,
Liu, X.,
Li, X.,
Ding, E.,
Wen, S.,
BMN: Boundary-Matching Network for Temporal Action Proposal
Generation,
ICCV19(3888-3897)
IEEE DOI
2004
feature extraction, image classification,
image colour analysis, image motion analysis, Reliability
BibRef
Khan, N.[Naeemullah],
Sundaramoorthi, G.[Ganesh],
Learned Shape-Tailored Descriptors for Segmentation,
CVPR18(666-674)
IEEE DOI
1812
Image segmentation, Training, Measurement, Aggregates,
Neural networks, Lighting
BibRef
Khan, N.[Naeemullah],
Hong, B.W.,
Yezzi, A.J.[Anthony J.],
Sundaramoorthi, G.[Ganesh],
Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale
Spaces,
CVPR17(1733-1742)
IEEE DOI
1711
Image segmentation, Mathematical model,
Motion segmentation, Smoothing methods, Space heating
BibRef
Khan, N.[Naeemullah],
Algarni, M.[Marei],
Yezzi, A.J.[Anthony J.],
Sundaramoorthi, G.[Ganesh],
Shape-tailored local descriptors and their application to
segmentation and tracking,
CVPR15(3890-3899)
IEEE DOI
1510
BibRef
Imamura, K.[Kousuke],
Hiraoka, M.[Masaki],
Hashimoto, H.[Hideo],
Watershed algorithm for moving object extraction considering energy
minimization by snakes,
AVSBS07(534-539).
IEEE DOI
0709
BibRef
And:
Moving Object Extraction by Watershed Algorithm Considering Energy
Minimization,
ACIVS07(711-719).
Springer DOI
0708
BibRef
Haseyama, M.,
Yokoyama, Y.,
Moving Object Extraction Using a Shape-Constraint-Based Splitting
Active Contour Model,
ICIP05(III: 1260-1263).
IEEE DOI
0512
BibRef
Ciampini, R.,
Blanc-Féraud, L.[Laure],
Barlaud, M.,
Salerno, E.,
Motion-based segmentation by means of active contours,
ICIP98(II: 667-670).
IEEE DOI
9810
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Variational Models, Snake Models, Active Contours .