4.12.2.2 Highly Squinted Radar, Highly Squinted SAR

Chapter Contents (Back)
Radar. SAR. Highly Squinted. Squinted.

Sun, X., Yeo, T.S., Zhang, C., Lu, Y., Kooi, P.S.,
Time-Varying Step-Transform Algorithm for High Squint SAR Imaging,
GeoRS(7), No. 6, November 1999, pp. 2668.
IEEE Top Reference. 9911
BibRef

Bara, M., Scheiber, R., Broquetas, A., Moreira, A.,
Interferometric SAR Signal Analysis in the Presence of Squint,
GeoRS(38), No. 5, September 2000, pp. 2164-2178.
IEEE Top Reference. 0010
BibRef

Yeo, T.S.[Tat Soon], Tan, N.L.[Ngee Leng], Zhang, C.B.[Cheng Bo], Lu, Y.H.[Yi Hui],
A new subaperture approach to high squint SAR processing,
GeoRS(39), No. 5, May 2001, pp. 954-968.
IEEE Top Reference. 0106
BibRef

Yocky, D.A., Wahl, D.E., Jakowatz, Jr., C.V.,
Terrain Elevation Mapping Results From Airborne Spotlight-Mode Coherent Cross-Track SAR Stereo,
GeoRS(42), No. 2, February 2004, pp. 301-308.
IEEE Abstract. 0403
Different imaging model. Uses image pairs with common synthetic apertures but different squint angles allowing automated stereo correspondence and disparity estimation. BibRef

Yocky, D.A., Jakowatz, C.V.,
Shift-Scale Complex Correlation for Wide-Angle Coherent Cross-Track SAR Stereo Processing,
GeoRS(45), No. 3, March 2007, pp. 576-583.
IEEE DOI 0703
BibRef

Bezvesilniy, O.O., Dukhopelnykova, I.V., Vynogradov, V.V., Vavriv, D.M.,
Retrieving 3-D Topography by Using a Single-Antenna Squint-Mode Airborne SAR,
GeoRS(45), No. 11, November 2007, pp. 3574-3582.
IEEE DOI 0709
BibRef

Castillo-Rubio, C.F., Llorente-Romano, S., Burgos-García, M.,
Spatially Variant Apodization for Squinted Synthetic Aperture Radar Images,
IP(16), No. 8, August 2007, pp. 2023-2027.
IEEE DOI 0709
BibRef

Wang, Y., Zhang, Z., Deng, Y.,
Squint Spotlight SAR Raw Signal Simulation in the Frequency Domain Using Optical Principles,
GeoRS(46), No. 8, August 2008, pp. 2208-2215.
IEEE DOI 0808
BibRef

Sun, G.C., Jiang, X., Xing, M., Qiao, Z., Wu, Y., Bao, Z.,
Focus Improvement of Highly Squinted Data Based on Azimuth Nonlinear Scaling,
GeoRS(49), No. 6, June 2011, pp. 2308-2322.
IEEE DOI 1106
BibRef

An, D.X.[Dao-Xiang], Huang, X.T.[Xiao-Tao], Jin, T.[Tian], Zhou, Z.M.[Zhi-Min],
Extended Two-Step Focusing Approach for Squinted Spotlight SAR Imaging,
GeoRS(50), No. 7, July 2012, pp. 2889-2900.
IEEE DOI 1208
BibRef

An, D.X.[Dao-Xiang], Huang, X.T.[Xiao-Tao], Jin, T.[Tian], Zhou, Z.M.[Zhi-Min],
Extended Nonlinear Chirp Scaling Algorithm for High-Resolution Highly Squint SAR Data Focusing,
GeoRS(50), No. 9, September 2012, pp. 3595-3609.
IEEE DOI 1209
BibRef

Xiong, T., Xing, M., Xia, X.G., Bao, Z.,
New Applications of Omega-K Algorithm for SAR Data Processing Using Effective Wavelength at High Squint,
GeoRS(51), No. 5, May 2013, pp. 3156-3169.
IEEE DOI 1305
BibRef

Wang, Y.[Yan], Li, J.W.[Jing-Wen], Chen, J.[Jie], Xu, H.P.[Hua-Ping], Sun, B.[Bing],
A Parameter-Adjusting Polar Format Algorithm for Extremely High Squint SAR Imaging,
GeoRS(52), No. 1, January 2014, pp. 640-650.
IEEE DOI 1402
fast Fourier transforms BibRef

Wang, Y.[Yan], Min, R.[Rui], Ding, Z.G.[Ze-Gang], Zeng, T.[Tao], Li, L.H.[Ling-Hao],
Multi-Layer Overlapped Subaperture Algorithm for Extremely-High-Squint High-Resolution Wide-Swath SAR Imaging with Continuously Time-Varying Radar Parameters,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Xu, W., Deng, Y., Huang, P., Wang, R.,
Full-Aperture SAR Data Focusing in the Spaceborne Squinted Sliding-Spotlight Mode,
GeoRS(52), No. 8, August 2014, pp. 4596-4607.
IEEE DOI 1403
Azimuth BibRef

Xing, M., Wu, Y., Zhang, Y.D., Sun, G.C., Bao, Z.,
Azimuth Resampling Processing for Highly Squinted Synthetic Aperture Radar Imaging With Several Modes,
GeoRS(52), No. 7, July 2014, pp. 4339-4352.
IEEE DOI 1403
Algorithm design and analysis BibRef

Zeng, T.[Tao], Hu, C.[Cheng], Wu, L.X.[Li-Xin], Liu, F.F.[Fei-Feng], Tian, W.M.[Wei-Ming], Zhu, M.[Mao], Long, T.[Teng],
Extended NLCS Algorithm of BiSAR Systems With a Squinted Transmitter and a Fixed Receiver: Theory and Experimental Confirmation,
GeoRS(51), No. 10, 2013, pp. 5019-5030.
IEEE DOI 1311
approximation theory BibRef

Xu, G.[Gang], Xing, M.D.[Meng-Dao], Zhang, L.[Lei], Bao, Z.[Zheng],
Robust Autofocusing Approach for Highly Squinted SAR Imagery Using the Extended Wavenumber Algorithm,
GeoRS(51), No. 10, 2013, pp. 5031-5046.
IEEE DOI 1311
airborne radar BibRef

Ding, Z., Liu, L., Zeng, T., Yang, W., Long, T.,
Improved Motion Compensation Approach for Squint Airborne SAR,
GeoRS(51), No. 8, 2013, pp. 4378-4387.
IEEE DOI 1307
Azimuth-subaperture aliasing BibRef

Zeng, T.[Tao], Li, Y.[Yinghe], Ding, Z.G.[Ze-Gang], Long, T.[Teng], Yao, D.[Di], Sun, Y.Q.[Ying-Qin],
Subaperture Approach Based on Azimuth-Dependent Range Cell Migration Correction and Azimuth Focusing Parameter Equalization for Maneuvering High-Squint-Mode SAR,
GeoRS(53), No. 12, December 2015, pp. 6718-6734.
IEEE DOI 1512
FM radar BibRef

Wang, P.[Pengbo], Liu, W.[Wei], Chen, J.[Jie], Niu, M.[Mu], Yang, W.[Wei],
A High-Order Imaging Algorithm for High-Resolution Spaceborne SAR Based on a Modified Equivalent Squint Range Model,
GeoRS(53), No. 3, March 2015, pp. 1225-1235.
IEEE DOI 1412
correlation methods BibRef

Guo, Y.[Yanan], Wang, P.[Pengbo], Chen, J.[Jie], Men, Z.R.[Zhi-Rong], Cui, L.[Lei], Zhuang, L.[Lei],
A Novel Imaging Algorithm for High-Resolution Wide-Swath Space-Borne SAR Based on a Spatial-Variant Equivalent Squint Range Model,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Li, Z., Xing, M., Liang, Y., Gao, Y., Chen, J., Huai, Y., Zeng, L., Sun, G.C., Bao, Z.,
A Frequency-Domain Imaging Algorithm for Highly Squinted SAR Mounted on Maneuvering Platforms With Nonlinear Trajectory,
GeoRS(54), No. 7, July 2016, pp. 4023-4038.
IEEE DOI 1606
Acceleration BibRef

Li, Z., Xing, M., Xing, W., Liang, Y., Gao, Y., Dai, B., Hu, L., Bao, Z.,
A Modified Equivalent Range Model and Wavenumber-Domain Imaging Approach for High-Resolution-High-Squint SAR With Curved Trajectory,
GeoRS(55), No. 7, July 2017, pp. 3721-3734.
IEEE DOI 1706
Acceleration, Imaging, Mathematical model, Radar imaging, Signal processing algorithms, Synthetic aperture radar, Trajectory, Curved trajectory, high-resolution-high-squint (HRHS) synthetic aperture radar (SAR), modified equivalent range model (MERM), wavenumber-domain, imaging BibRef

Mancon, S., Monti Guarnieri, A., Giudici, D., Tebaldini, S.,
On the Phase Calibration by Multisquint Analysis in TOPSAR and Stripmap Interferometry,
GeoRS(55), No. 1, January 2017, pp. 134-147.
IEEE DOI 1701
calibration BibRef

Zhang, L., Wang, G., Qiao, Z., Wang, H., Sun, L.,
Two-Stage Focusing Algorithm for Highly Squinted Synthetic Aperture Radar Imaging,
GeoRS(55), No. 10, October 2017, pp. 5547-5562.
IEEE DOI 1710
airborne radar, matched filters, motion compensation, synthetic aperture radar, Radar polarimetry, Extended two-stage focusing algorithm (ETSFA), motion compensation (MOCO). BibRef

Geng, J.W.[Ji-Wen], Yu, Z.[Ze], Li, C.S.[Chun-Sheng], Liu, W.[Wei],
Squint Mode GEO SAR Imaging Using Bulk Range Walk Correction on Received Signals,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Cao, N., Lee, H., Zaugg, E., Shrestha, R., Carter, W.E., Glennie, C.L., Lu, Z., Yu, H.,
Estimation of Residual Motion Errors in Airborne SAR Interferometry Based on Time-Domain Backprojection and Multisquint Techniques,
GeoRS(56), No. 4, April 2018, pp. 2397-2407.
IEEE DOI 1804
Estimation, Focusing, Interferometry, Radar antennas, Synthetic aperture radar, Time-domain analysis, Trajectory BibRef

Bie, B., Xing, M., Xia, X., Sun, G., Liang, Y., Jing, G., Wei, T., Yu, Y.,
A Frequency Domain Backprojection Algorithm Based on Local Cartesian Coordinate and Subregion Range Migration Correction for High-Squint SAR Mounted on Maneuvering Platforms,
GeoRS(56), No. 12, December 2018, pp. 7086-7101.
IEEE DOI 1812
Azimuth, Acceleration, Frequency-domain analysis, Synthetic aperture radar, Doppler effect, Imaging, Trajectory, subregion range cell migration correction (SR-RCMC) BibRef

Chen, Z.[Zhanye], Zhou, Y.[Yu], Zhang, L.[Linrang], Lin, C.H.[Chun-Hui], Huang, Y.[Yan], Tang, S.Y.[Shi-Yang],
Ground Moving Target Imaging and Analysis for Near-Space Hypersonic Vehicle-Borne Synthetic Aperture Radar System with Squint Angle,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Lin, C.H.[Chun-Hui], Tang, S.Y.[Shi-Yang], Zhang, L.R.[Lin-Rang], Guo, P.[Ping],
Focusing High-Resolution Airborne SAR with Topography Variations Using an Extended BPA Based on a Time/Frequency Rotation Principle,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link 1809
BibRef

Tang, S.Y.[Shi-Yang], Zhang, L.R.[Lin-Rang], So, H.C.[Hing Cheung],
Focusing High-Resolution Highly-Squinted Airborne SAR Data with Maneuvers,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Tang, S.Y.[Shi-Yang], Guo, P., Zhang, L.R.[Lin-Rang], So, H.C.,
Focusing Hypersonic Vehicle-Borne SAR Data Using Radius/Angle Algorithm,
GeoRS(58), No. 1, January 2020, pp. 281-293.
IEEE DOI 2001
Synthetic aperture radar, Azimuth, Acceleration, Bandwidth, Focusing, Doppler effect, Curvilinear coordinate system, synthetic aperture radar (SAR) BibRef

Yang, L.[Lei], Zhou, S.[Song], Zhao, L.[Lifan], Xing, M.D.[Meng-Dao],
Coherent Auto-Calibration of APE and NsRCM under Fast Back-Projection Image Formation for Airborne SAR Imaging in Highly-Squint Angle,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Ran, L., Xie, R., Liu, Z., Zhang, L., Li, T., Wang, J.,
Simultaneous Range and Cross-Range Variant Phase Error Estimation and Compensation for Highly Squinted SAR Imaging,
GeoRS(56), No. 8, August 2018, pp. 4448-4463.
IEEE DOI 1808
airborne radar, gradient methods, image reconstruction, least squares approximations, radar imaging, weighted total least square (WTLS) BibRef

Ran, L.[Lei], Liu, Z.[Zheng], Xie, R.[Rong], Zhang, L.[Lei],
Focusing High-Squint Synthetic Aperture Radar Data Based on Factorized Back-Projection and Precise Spectrum Fusion,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Bie, B.[Bowen], Sun, G.C.[Guang-Cai], Xia, X.G.[Xiang-Gen], Xing, M.D.[Meng-Dao], Guo, L.[Liang], Bao, Z.[Zheng],
High-Speed Maneuvering Platforms Squint Beam-Steering SAR Imaging Without Subaperture,
GeoRS(57), No. 9, September 2019, pp. 6974-6985.
IEEE DOI 1909
Azimuth, Doppler effect, Apertures, Focusing, Time-domain analysis, Acceleration, Synthetic aperture radar, squint beam steering (SBS) BibRef

Bie, B.[Bowen], Quan, Y.H.[Ying-Hui], Xu, K.J.[Kai-Jie], Sun, G.C.[Guang-Cai], Xing, M.D.[Meng-Dao],
High Speed Maneuvering Platform Squint TOPS SAR Imaging Based on Local Polar Coordinate and Angular Division,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Liang, Y., Dang, Y., Li, G., Wu, J., Xing, M.,
A Two-Step Processing Method for Diving-Mode Squint SAR Imaging With Subaperture Data,
GeoRS(58), No. 2, February 2020, pp. 811-825.
IEEE DOI 2001
Imaging, Synthetic aperture radar, Azimuth, Radar polarimetry, Radar imaging, Trajectory, Predistortion, two-step processing BibRef

He, F., Dong, Z., Zhang, Y., Jin, G., Yu, A.,
Processing of Spaceborne Squinted Sliding Spotlight and HRWS TOPS Mode Data Using 2-D Baseband Azimuth Scaling,
GeoRS(58), No. 2, February 2020, pp. 938-955.
IEEE DOI 2001
Azimuth, Synthetic aperture radar, Antennas, Couplings, Baseband, Spaceborne radar, Imaging, Baseband azimuth scaling (BAS), terrain observation by progressive scans (TOPS) BibRef

Huang, D., Guo, X., Zhang, Z., Yu, W., Truong, T.,
Full-Aperture Azimuth Spatial-Variant Autofocus Based on Contrast Maximization for Highly Squinted Synthetic Aperture Radar,
GeoRS(58), No. 1, January 2020, pp. 330-347.
IEEE DOI 2001
Synthetic aperture radar, Azimuth, Radar polarimetry, Imaging, Radar imaging, Doppler effect, highly squinted synthetic aperture radar (SAR) BibRef

Li, Y.[Yu], Zhang, Y.[Yunhua], Dong, X.[Xiao],
Squint Model InISAR Imaging Method Based on Reference Interferometric Phase Construction and Coordinate Transformation,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Chen, X.X.[Xiao-Xiang], Sun, G.C.[Guang-Cai], Xing, M.D.[Meng-Dao], Li, B.[Boyu], Yang, J.[Jun], Bao, Z.[Zheng],
Ground Cartesian Back-Projection Algorithm for High Squint Diving TOPS SAR Imaging,
GeoRS(59), No. 7, July 2021, pp. 5812-5827.
IEEE DOI 2106
Imaging, Synthetic aperture radar, Signal processing algorithms, Azimuth, Frequency-domain analysis, Antennas, Interpolation, terrain observation by progressive scans (TOPS) SAR BibRef

Liu, W.K.[Wen-Kang], Sun, G.C.[Guang-Cai], Xing, M.D.[Meng-Dao], Pascazio, V.[Vito], Chen, Q.[Quan], Bao, Z.[Zheng],
2-D Beam Steering Method for Squinted High-Orbit SAR Imaging,
GeoRS(59), No. 6, June 2021, pp. 4827-4840.
IEEE DOI 2106
Synthetic aperture radar, Orbits, Beam steering, Azimuth, Satellites, Image resolution, Antennas, 2-D beam steering (TDBS), swath maximation BibRef

Han, J.S.[Jiu-Sheng], Cao, Y.H.[Yun-He], Wu, W.H.[Wen-Hua], Wang, Y.[Yang], Yeo, T.S.[Tat-Soon], Liu, S.[Shuai], Wang, F.[Fengfei],
Robust GMTI Scheme for Highly Squinted Hypersonic Vehicle-Borne Multichannel SAR in Dive Mode,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Hu, X.C.[Xin-Chang], Wang, P.[Pengbo], Zeng, H.C.[Hong-Cheng], Guo, Y.[Yanan],
An Improved Equivalent Squint Range Model and Imaging Approach for Sliding Spotlight SAR Based on Highly Elliptical Orbit,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Guo, Z.W.[Zheng-Wei], Fu, Z.[Zewen], Chang, J.[Jike], Wu, L.[Lin], Li, N.[Ning],
A Novel High-Squint Spotlight SAR Raw Data Simulation Scheme in 2-D Frequency Domain,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Jin, Y.H.[Yang-Hao], Liang, B.[Buge], Chen, J.L.[Jian-Lai], Xiong, Y.[Yi], Xiong, M.Y.[Ming-Yao],
Real-Time Imaging Processing of Squint Spaceborne SAR with High-Resolution Based on Nonuniform PRI Design,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Lv, Y.[Yini], Shang, M.Y.[Ming-Yang], Zhong, L.H.[Li-Hua], Qiu, X.L.[Xiao-Lan], Ding, C.B.[Chi-Biao],
A Novel Imaging Scheme of Squint Multichannel SAR: First Result of GF-3 Satellite,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Guo, P.[Ping], Wu, F.[Fuen], Wang, A.[Anyi],
Extended Polar Format Algorithm (EPFA) for High-Resolution Highly Squinted SAR,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link 2301
BibRef

Dong, J.M.[Jia-Ming], Zhang, Q.Y.[Qun-Ying], Huang, W.Q.[Wen-Qiang], Wang, H.Y.[Hai-Ying], Lu, W.[Wei], Liu, X.J.[Xiao-Jun],
Deceptive Jamming Algorithm against Synthetic Aperture Radar in Large Squint Angle Mode Based on Non-Linear Chirp Scaling and Low Azimuth Sampling Reconstruction,
RS(15), No. 23, 2023, pp. 5446.
DOI Link 2312
BibRef


Li, C.[Chuang], Zhang, H.[Heng], Deng, Y.K.[Yun-Kai],
Focus Improvement of Airborne High-Squint Bistatic SAR Data Using Modified Azimuth NLCS Algorithm Based on Lagrange Inversion Theorem,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Rosario, D.,
Estimating Squinted SAR Data: An Efficient Multivariate Minimization Approach Using Only Essential 3-D Target Information,
ICIP97(III: 718-721).
IEEE DOI BibRef 9700

Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Radar Calibraion .


Last update:Jan 30, 2024 at 20:33:16