Sun, X.,
Yeo, T.S.,
Zhang, C.,
Lu, Y.,
Kooi, P.S.,
Time-Varying Step-Transform Algorithm for High Squint SAR Imaging,
GeoRS(7), No. 6, November 1999, pp. 2668.
IEEE Top Reference.
9911
BibRef
Bara, M.,
Scheiber, R.,
Broquetas, A.,
Moreira, A.,
Interferometric SAR Signal Analysis in the Presence of Squint,
GeoRS(38), No. 5, September 2000, pp. 2164-2178.
IEEE Top Reference.
0010
BibRef
Yeo, T.S.[Tat Soon],
Tan, N.L.[Ngee Leng],
Zhang, C.B.[Cheng Bo],
Lu, Y.H.[Yi Hui],
A new subaperture approach to high squint SAR processing,
GeoRS(39), No. 5, May 2001, pp. 954-968.
IEEE Top Reference.
0106
BibRef
Yocky, D.A.,
Wahl, D.E.,
Jakowatz, Jr., C.V.,
Terrain Elevation Mapping Results From Airborne Spotlight-Mode Coherent
Cross-Track SAR Stereo,
GeoRS(42), No. 2, February 2004, pp. 301-308.
IEEE Abstract.
0403
Different imaging model.
Uses image pairs with common synthetic apertures but different squint
angles allowing automated stereo correspondence and disparity
estimation.
BibRef
Yocky, D.A.,
Jakowatz, C.V.,
Shift-Scale Complex Correlation for Wide-Angle Coherent Cross-Track SAR
Stereo Processing,
GeoRS(45), No. 3, March 2007, pp. 576-583.
IEEE DOI
0703
BibRef
Bezvesilniy, O.O.,
Dukhopelnykova, I.V.,
Vynogradov, V.V.,
Vavriv, D.M.,
Retrieving 3-D Topography by Using a Single-Antenna Squint-Mode
Airborne SAR,
GeoRS(45), No. 11, November 2007, pp. 3574-3582.
IEEE DOI
0709
BibRef
Castillo-Rubio, C.F.,
Llorente-Romano, S.,
Burgos-García, M.,
Spatially Variant Apodization for Squinted Synthetic Aperture Radar
Images,
IP(16), No. 8, August 2007, pp. 2023-2027.
IEEE DOI
0709
BibRef
Wang, Y.,
Zhang, Z.,
Deng, Y.,
Squint Spotlight SAR Raw Signal Simulation in the Frequency Domain
Using Optical Principles,
GeoRS(46), No. 8, August 2008, pp. 2208-2215.
IEEE DOI
0808
BibRef
Sun, G.C.,
Jiang, X.,
Xing, M.,
Qiao, Z.,
Wu, Y.,
Bao, Z.,
Focus Improvement of Highly Squinted Data Based on Azimuth Nonlinear
Scaling,
GeoRS(49), No. 6, June 2011, pp. 2308-2322.
IEEE DOI
1106
BibRef
An, D.X.[Dao-Xiang],
Huang, X.T.[Xiao-Tao],
Jin, T.[Tian],
Zhou, Z.M.[Zhi-Min],
Extended Two-Step Focusing Approach for Squinted Spotlight SAR Imaging,
GeoRS(50), No. 7, July 2012, pp. 2889-2900.
IEEE DOI
1208
BibRef
An, D.X.[Dao-Xiang],
Huang, X.T.[Xiao-Tao],
Jin, T.[Tian],
Zhou, Z.M.[Zhi-Min],
Extended Nonlinear Chirp Scaling Algorithm for High-Resolution Highly
Squint SAR Data Focusing,
GeoRS(50), No. 9, September 2012, pp. 3595-3609.
IEEE DOI
1209
BibRef
Xiong, T.,
Xing, M.,
Xia, X.G.,
Bao, Z.,
New Applications of Omega-K Algorithm for SAR Data Processing Using
Effective Wavelength at High Squint,
GeoRS(51), No. 5, May 2013, pp. 3156-3169.
IEEE DOI
1305
BibRef
Wang, Y.[Yan],
Li, J.W.[Jing-Wen],
Chen, J.[Jie],
Xu, H.P.[Hua-Ping],
Sun, B.[Bing],
A Parameter-Adjusting Polar Format Algorithm for Extremely High
Squint SAR Imaging,
GeoRS(52), No. 1, January 2014, pp. 640-650.
IEEE DOI
1402
fast Fourier transforms
BibRef
Wang, Y.[Yan],
Min, R.[Rui],
Ding, Z.G.[Ze-Gang],
Zeng, T.[Tao],
Li, L.H.[Ling-Hao],
Multi-Layer Overlapped Subaperture Algorithm for
Extremely-High-Squint High-Resolution Wide-Swath SAR Imaging with
Continuously Time-Varying Radar Parameters,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Xu, W.,
Deng, Y.,
Huang, P.,
Wang, R.,
Full-Aperture SAR Data Focusing in the Spaceborne Squinted
Sliding-Spotlight Mode,
GeoRS(52), No. 8, August 2014, pp. 4596-4607.
IEEE DOI
1403
Azimuth
BibRef
Xing, M.,
Wu, Y.,
Zhang, Y.D.,
Sun, G.C.,
Bao, Z.,
Azimuth Resampling Processing for Highly Squinted Synthetic Aperture
Radar Imaging With Several Modes,
GeoRS(52), No. 7, July 2014, pp. 4339-4352.
IEEE DOI
1403
Algorithm design and analysis
BibRef
Zeng, T.[Tao],
Hu, C.[Cheng],
Wu, L.X.[Li-Xin],
Liu, F.F.[Fei-Feng],
Tian, W.M.[Wei-Ming],
Zhu, M.[Mao],
Long, T.[Teng],
Extended NLCS Algorithm of BiSAR Systems With a Squinted Transmitter
and a Fixed Receiver: Theory and Experimental Confirmation,
GeoRS(51), No. 10, 2013, pp. 5019-5030.
IEEE DOI
1311
approximation theory
BibRef
Xu, G.[Gang],
Xing, M.D.[Meng-Dao],
Zhang, L.[Lei],
Bao, Z.[Zheng],
Robust Autofocusing Approach for Highly Squinted SAR Imagery Using
the Extended Wavenumber Algorithm,
GeoRS(51), No. 10, 2013, pp. 5031-5046.
IEEE DOI
1311
airborne radar
BibRef
Ding, Z.,
Liu, L.,
Zeng, T.,
Yang, W.,
Long, T.,
Improved Motion Compensation Approach for Squint Airborne SAR,
GeoRS(51), No. 8, 2013, pp. 4378-4387.
IEEE DOI
1307
Azimuth-subaperture aliasing
BibRef
Zeng, T.[Tao],
Li, Y.[Yinghe],
Ding, Z.G.[Ze-Gang],
Long, T.[Teng],
Yao, D.[Di],
Sun, Y.Q.[Ying-Qin],
Subaperture Approach Based on Azimuth-Dependent Range Cell Migration
Correction and Azimuth Focusing Parameter Equalization for
Maneuvering High-Squint-Mode SAR,
GeoRS(53), No. 12, December 2015, pp. 6718-6734.
IEEE DOI
1512
FM radar
BibRef
Wang, P.[Pengbo],
Liu, W.[Wei],
Chen, J.[Jie],
Niu, M.[Mu],
Yang, W.[Wei],
A High-Order Imaging Algorithm for High-Resolution Spaceborne SAR
Based on a Modified Equivalent Squint Range Model,
GeoRS(53), No. 3, March 2015, pp. 1225-1235.
IEEE DOI
1412
correlation methods
BibRef
Guo, Y.[Yanan],
Wang, P.[Pengbo],
Chen, J.[Jie],
Men, Z.R.[Zhi-Rong],
Cui, L.[Lei],
Zhuang, L.[Lei],
A Novel Imaging Algorithm for High-Resolution Wide-Swath Space-Borne
SAR Based on a Spatial-Variant Equivalent Squint Range Model,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Li, Z.,
Xing, M.,
Liang, Y.,
Gao, Y.,
Chen, J.,
Huai, Y.,
Zeng, L.,
Sun, G.C.,
Bao, Z.,
A Frequency-Domain Imaging Algorithm for Highly Squinted SAR Mounted
on Maneuvering Platforms With Nonlinear Trajectory,
GeoRS(54), No. 7, July 2016, pp. 4023-4038.
IEEE DOI
1606
Acceleration
BibRef
Li, Z.,
Xing, M.,
Xing, W.,
Liang, Y.,
Gao, Y.,
Dai, B.,
Hu, L.,
Bao, Z.,
A Modified Equivalent Range Model and Wavenumber-Domain Imaging
Approach for High-Resolution-High-Squint SAR With Curved Trajectory,
GeoRS(55), No. 7, July 2017, pp. 3721-3734.
IEEE DOI
1706
Acceleration, Imaging, Mathematical model, Radar imaging,
Signal processing algorithms, Synthetic aperture radar,
Trajectory, Curved trajectory,
high-resolution-high-squint (HRHS) synthetic aperture radar (SAR),
modified equivalent range model (MERM), wavenumber-domain, imaging
BibRef
Mancon, S.,
Monti Guarnieri, A.,
Giudici, D.,
Tebaldini, S.,
On the Phase Calibration by Multisquint Analysis in TOPSAR and
Stripmap Interferometry,
GeoRS(55), No. 1, January 2017, pp. 134-147.
IEEE DOI
1701
calibration
BibRef
Zhang, L.[Lei],
Wang, G.Y.[Guan-Yong],
Qiao, Z.J.[Zhi-Jun],
Wang, H.X.[Hong-Xian],
Sun, L.G.[Li-Gang],
Two-Stage Focusing Algorithm for Highly Squinted Synthetic Aperture
Radar Imaging,
GeoRS(55), No. 10, October 2017, pp. 5547-5562.
IEEE DOI
1710
airborne radar, matched filters,
motion compensation, synthetic aperture radar,
Radar polarimetry,
Extended two-stage focusing algorithm (ETSFA),
motion compensation (MOCO).
BibRef
Geng, J.W.[Ji-Wen],
Yu, Z.[Ze],
Li, C.S.[Chun-Sheng],
Liu, W.[Wei],
Squint Mode GEO SAR Imaging Using Bulk Range Walk Correction on
Received Signals,
RS(11), No. 1, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Cao, N.,
Lee, H.,
Zaugg, E.,
Shrestha, R.,
Carter, W.E.,
Glennie, C.L.,
Lu, Z.,
Yu, H.,
Estimation of Residual Motion Errors in Airborne SAR Interferometry
Based on Time-Domain Backprojection and Multisquint Techniques,
GeoRS(56), No. 4, April 2018, pp. 2397-2407.
IEEE DOI
1804
Estimation, Focusing, Interferometry, Radar antennas,
Synthetic aperture radar, Time-domain analysis, Trajectory
BibRef
Bie, B.,
Xing, M.,
Xia, X.,
Sun, G.,
Liang, Y.,
Jing, G.,
Wei, T.,
Yu, Y.,
A Frequency Domain Backprojection Algorithm Based on Local Cartesian
Coordinate and Subregion Range Migration Correction for High-Squint
SAR Mounted on Maneuvering Platforms,
GeoRS(56), No. 12, December 2018, pp. 7086-7101.
IEEE DOI
1812
Azimuth, Acceleration, Frequency-domain analysis,
Synthetic aperture radar, Doppler effect, Imaging, Trajectory,
subregion range cell migration correction (SR-RCMC)
BibRef
Chen, Z.[Zhanye],
Zhou, Y.[Yu],
Zhang, L.[Linrang],
Lin, C.H.[Chun-Hui],
Huang, Y.[Yan],
Tang, S.Y.[Shi-Yang],
Ground Moving Target Imaging and Analysis for Near-Space Hypersonic
Vehicle-Borne Synthetic Aperture Radar System with Squint Angle,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Lin, C.H.[Chun-Hui],
Tang, S.Y.[Shi-Yang],
Zhang, L.R.[Lin-Rang],
Guo, P.[Ping],
Focusing High-Resolution Airborne SAR with Topography Variations
Using an Extended BPA Based on a Time/Frequency Rotation Principle,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Tang, S.Y.[Shi-Yang],
Zhang, L.R.[Lin-Rang],
So, H.C.[Hing Cheung],
Focusing High-Resolution Highly-Squinted Airborne SAR Data with
Maneuvers,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Tang, S.Y.[Shi-Yang],
Guo, P.,
Zhang, L.R.[Lin-Rang],
So, H.C.,
Focusing Hypersonic Vehicle-Borne SAR Data Using Radius/Angle
Algorithm,
GeoRS(58), No. 1, January 2020, pp. 281-293.
IEEE DOI
2001
Synthetic aperture radar, Azimuth, Acceleration, Bandwidth, Focusing,
Doppler effect, Curvilinear coordinate system,
synthetic aperture radar (SAR)
BibRef
Yang, L.[Lei],
Zhou, S.[Song],
Zhao, L.[Lifan],
Xing, M.D.[Meng-Dao],
Coherent Auto-Calibration of APE and NsRCM under Fast Back-Projection
Image Formation for Airborne SAR Imaging in Highly-Squint Angle,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Ran, L.,
Xie, R.,
Liu, Z.,
Zhang, L.,
Li, T.,
Wang, J.,
Simultaneous Range and Cross-Range Variant Phase Error Estimation and
Compensation for Highly Squinted SAR Imaging,
GeoRS(56), No. 8, August 2018, pp. 4448-4463.
IEEE DOI
1808
airborne radar, gradient methods, image reconstruction,
least squares approximations, radar imaging,
weighted total least square (WTLS)
BibRef
Ran, L.[Lei],
Liu, Z.[Zheng],
Xie, R.[Rong],
Zhang, L.[Lei],
Focusing High-Squint Synthetic Aperture Radar Data Based on
Factorized Back-Projection and Precise Spectrum Fusion,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Bie, B.[Bowen],
Sun, G.C.[Guang-Cai],
Xia, X.G.[Xiang-Gen],
Xing, M.D.[Meng-Dao],
Guo, L.[Liang],
Bao, Z.[Zheng],
High-Speed Maneuvering Platforms Squint Beam-Steering SAR Imaging
Without Subaperture,
GeoRS(57), No. 9, September 2019, pp. 6974-6985.
IEEE DOI
1909
Azimuth, Doppler effect, Apertures, Focusing, Time-domain analysis,
Acceleration, Synthetic aperture radar,
squint beam steering (SBS)
BibRef
Bie, B.[Bowen],
Quan, Y.H.[Ying-Hui],
Xu, K.J.[Kai-Jie],
Sun, G.C.[Guang-Cai],
Xing, M.D.[Meng-Dao],
High Speed Maneuvering Platform Squint TOPS SAR Imaging Based on
Local Polar Coordinate and Angular Division,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Liang, Y.,
Dang, Y.,
Li, G.,
Wu, J.,
Xing, M.,
A Two-Step Processing Method for Diving-Mode Squint SAR Imaging With
Subaperture Data,
GeoRS(58), No. 2, February 2020, pp. 811-825.
IEEE DOI
2001
Imaging, Synthetic aperture radar, Azimuth, Radar polarimetry,
Radar imaging, Trajectory, Predistortion,
two-step processing
BibRef
He, F.,
Dong, Z.,
Zhang, Y.,
Jin, G.,
Yu, A.,
Processing of Spaceborne Squinted Sliding Spotlight and HRWS TOPS
Mode Data Using 2-D Baseband Azimuth Scaling,
GeoRS(58), No. 2, February 2020, pp. 938-955.
IEEE DOI
2001
Azimuth, Synthetic aperture radar, Antennas, Couplings, Baseband,
Spaceborne radar, Imaging, Baseband azimuth scaling (BAS),
terrain observation by progressive scans (TOPS)
BibRef
Huang, D.,
Guo, X.,
Zhang, Z.,
Yu, W.,
Truong, T.,
Full-Aperture Azimuth Spatial-Variant Autofocus Based on Contrast
Maximization for Highly Squinted Synthetic Aperture Radar,
GeoRS(58), No. 1, January 2020, pp. 330-347.
IEEE DOI
2001
Synthetic aperture radar, Azimuth, Radar polarimetry, Imaging,
Radar imaging, Doppler effect,
highly squinted synthetic aperture radar (SAR)
BibRef
Li, Y.[Yu],
Zhang, Y.[Yunhua],
Dong, X.[Xiao],
Squint Model InISAR Imaging Method Based on Reference Interferometric
Phase Construction and Coordinate Transformation,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Chen, X.X.[Xiao-Xiang],
Sun, G.C.[Guang-Cai],
Xing, M.D.[Meng-Dao],
Li, B.[Boyu],
Yang, J.[Jun],
Bao, Z.[Zheng],
Ground Cartesian Back-Projection Algorithm for High Squint Diving
TOPS SAR Imaging,
GeoRS(59), No. 7, July 2021, pp. 5812-5827.
IEEE DOI
2106
Imaging, Synthetic aperture radar, Signal processing algorithms,
Azimuth, Frequency-domain analysis, Antennas, Interpolation,
terrain observation by progressive scans (TOPS) SAR
BibRef
Liu, W.K.[Wen-Kang],
Sun, G.C.[Guang-Cai],
Xing, M.D.[Meng-Dao],
Pascazio, V.[Vito],
Chen, Q.[Quan],
Bao, Z.[Zheng],
2-D Beam Steering Method for Squinted High-Orbit SAR Imaging,
GeoRS(59), No. 6, June 2021, pp. 4827-4840.
IEEE DOI
2106
Synthetic aperture radar, Orbits, Beam steering, Azimuth, Satellites,
Image resolution, Antennas, 2-D beam steering (TDBS),
swath maximation
BibRef
Han, J.S.[Jiu-Sheng],
Cao, Y.H.[Yun-He],
Wu, W.H.[Wen-Hua],
Wang, Y.[Yang],
Yeo, T.S.[Tat-Soon],
Liu, S.[Shuai],
Wang, F.[Fengfei],
Robust GMTI Scheme for Highly Squinted Hypersonic Vehicle-Borne
Multichannel SAR in Dive Mode,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Hu, X.C.[Xin-Chang],
Wang, P.[Pengbo],
Zeng, H.C.[Hong-Cheng],
Guo, Y.[Yanan],
An Improved Equivalent Squint Range Model and Imaging Approach for
Sliding Spotlight SAR Based on Highly Elliptical Orbit,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Guo, Z.W.[Zheng-Wei],
Fu, Z.[Zewen],
Chang, J.[Jike],
Wu, L.[Lin],
Li, N.[Ning],
A Novel High-Squint Spotlight SAR Raw Data Simulation Scheme in 2-D
Frequency Domain,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Jin, Y.H.[Yang-Hao],
Liang, B.[Buge],
Chen, J.L.[Jian-Lai],
Xiong, Y.[Yi],
Xiong, M.Y.[Ming-Yao],
Real-Time Imaging Processing of Squint Spaceborne SAR with
High-Resolution Based on Nonuniform PRI Design,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Lv, Y.[Yini],
Shang, M.Y.[Ming-Yang],
Zhong, L.H.[Li-Hua],
Qiu, X.L.[Xiao-Lan],
Ding, C.B.[Chi-Biao],
A Novel Imaging Scheme of Squint Multichannel SAR:
First Result of GF-3 Satellite,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Guo, P.[Ping],
Wu, F.[Fuen],
Wang, A.[Anyi],
Extended Polar Format Algorithm (EPFA) for High-Resolution Highly
Squinted SAR,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Dong, J.M.[Jia-Ming],
Zhang, Q.Y.[Qun-Ying],
Huang, W.Q.[Wen-Qiang],
Wang, H.Y.[Hai-Ying],
Lu, W.[Wei],
Liu, X.J.[Xiao-Jun],
Deceptive Jamming Algorithm against Synthetic Aperture Radar in Large
Squint Angle Mode Based on Non-Linear Chirp Scaling and Low Azimuth
Sampling Reconstruction,
RS(15), No. 23, 2023, pp. 5446.
DOI Link
2312
BibRef
Hu, Y.Z.[Yu-Zhi],
Wang, W.[Wei],
Wu, X.[Xiayi],
Deng, Y.K.[Yun-Kai],
Xiao, D.[Dengjun],
A Novel SV-PRI Strategy and Signal Processing Approach for
High-Squint Spotlight SAR,
RS(16), No. 5, 2024, pp. 871.
DOI Link
2403
BibRef
Deng, K.[Kun],
Huang, Y.[Yan],
Chen, Z.[Zhanye],
Fu, D.N.[Dong-Ning],
Li, W.D.[Wei-Dong],
Tian, X.R.[Xin-Ran],
Hong, W.[Wei],
A Modified Frequency Nonlinear Chirp Scaling Algorithm for High-Speed
High-Squint Synthetic Aperture Radar with Curved Trajectory,
RS(16), No. 9, 2024, pp. 1588.
DOI Link
2405
BibRef
Chen, M.[Min],
Qiu, X.L.[Xiao-Lan],
Cheng, Y.[Yao],
Shang, M.Y.[Ming-Yang],
Li, R.M.[Ruo-Ming],
Li, W.H.[Wang-He],
Two-Dimensional Autofocus for Ultra-High-Resolution Squint Spotlight
Airborne SAR Based on Improved Spectrum Modification,
RS(16), No. 12, 2024, pp. 2158.
DOI Link
2406
BibRef
Rosario, D.,
Estimating Squinted SAR Data:
An Efficient Multivariate Minimization Approach
Using Only Essential 3-D Target Information,
ICIP97(III: 718-721).
IEEE DOI
BibRef
9700
Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Radar Calibraion .