Deng, J.[Jia],
Krause, J.[Jonathan],
Stark, M.,
Fei-Fei, L.[Li],
Leveraging the Wisdom of the Crowd for Fine-Grained Recognition,
PAMI(38), No. 4, April 2016, pp. 666-676.
IEEE DOI
1603
BibRef
Earlier: A2, A3, A1, A4:
3D Object Representations for Fine-Grained Categorization,
3DRR13(554-561)
IEEE DOI
1403
BibRef
And: A1, A2, A4, Only:
Fine-Grained Crowdsourcing for Fine-Grained Recognition,
CVPR13(580-587)
IEEE DOI
1309
differences between classes very local.
Human in loop.
computational geometry.
Birds
See also Stanford Cars Dataset.
BibRef
Stark, M.[Michael],
Krause, J.[Jonathan],
Pepik, B.[Bojan],
Meger, D.[David],
Little, J.J.[James J.],
Schiele, B.[Bernt],
Koller, D.[Daphne],
Fine-Grained Categorization for 3D Scene Understanding,
BMVC12(36).
DOI Link
1301
BibRef
Krause, J.[Jonathan],
Gebru, T.[Timnit],
Deng, J.[Jia],
Li, L.J.[Li-Jia],
Fei-Fei, L.[Li],
Learning Features and Parts for Fine-Grained Recognition,
ICPR14(26-33)
IEEE DOI
1412
Detectors
BibRef
Branson, S.[Steve],
van Horn, G.[Grant],
Wah, C.[Catherine],
Perona, P.[Pietro],
Belongie, S.J.[Serge J.],
The Ignorant Led by the Blind:
A Hybrid Human-Machine Vision System for Fine-Grained Categorization,
IJCV(108), No. 1-2, May 2014, pp. 3-29.
Springer DOI
1405
BibRef
Wah, C.[Catherine],
Maji, S.[Subhransu],
Belongie, S.J.[Serge J.],
Learning Localized Perceptual Similarity Metrics for Interactive
Categorization,
WACV15(502-509)
IEEE DOI
1503
BibRef
Wah, C.[Catherine],
van Horn, G.[Grant],
Branson, S.[Steve],
Maji, S.[Subhransu],
Perona, P.[Pietro],
Belongie, S.J.[Serge J.],
Similarity Comparisons for Interactive Fine-Grained Categorization,
CVPR14(859-866)
IEEE DOI
1409
BibRef
Branson, S.[Steve],
Perona, P.[Pietro],
Belongie, S.J.[Serge J.],
Strong supervision from weak annotation:
Interactive training of deformable part models,
ICCV11(1832-1839).
IEEE DOI
1201
Large scale learning of structured models. Interactive (semi-automated)
labeling and learning.
BibRef
Zhang, Y.[Yu],
Wei, X.S.[Xiu-Shen],
Wu, J.X.[Jian-Xin],
Cai, J.F.[Jian-Fei],
Lu, J.B.[Jiang-Bo],
Nguyen, V.A.[Viet-Anh],
Do, M.N.[Minh N.],
Weakly Supervised Fine-Grained Categorization With Part-Based Image
Representation,
IP(25), No. 4, April 2016, pp. 1713-1725.
IEEE DOI
1604
Birds
BibRef
Nakayama, H.[Hideki],
Tsuda, T.[Tomoya],
Efficient Two-Step Middle-Level Part Feature Extraction for
Fine-Grained Visual Categorization,
IEICE(E99-D), No. 6, June 2016, pp. 1626-1634.
WWW Link.
1606
BibRef
Huang, C.,
He, Z.,
Cao, G.,
Cao, W.,
Task-Driven Progressive Part Localization for Fine-Grained Object
Recognition,
MultMed(18), No. 12, December 2016, pp. 2372-2383.
IEEE DOI
1612
BibRef
Earlier: A1, A2, Only:
Task-driven progressive part localization for fine-grained
recognition,
WACV16(1-9)
IEEE DOI
1606
Correlation
BibRef
Yao, H.T.[Han-Tao],
Zhang, D.M.[Dong-Ming],
Li, J.T.[Jin-Tao],
Zhou, J.S.[Jian-She],
Zhang, S.L.[Shi-Liang],
Zhang, Y.D.[Yong-Dong],
DSP: Discriminative Spatial Part modeling for Fine-Grained Visual
Categorization,
IVC(63), No. 1, 2017, pp. 24-37.
Elsevier DOI
1706
Orientational, Spatial, Part model
BibRef
Xie, G.S.[Guo-Sen],
Zhang, X.Y.[Xu-Yao],
Yang, W.H.[Wen-Han],
Xu, M.L.[Ming-Liang],
Yan, S.C.[Shui-Cheng],
Liu, C.L.[Cheng-Lin],
LG-CNN: From local parts to global discrimination for fine-grained
recognition,
PR(71), No. 1, 2017, pp. 118-131.
Elsevier DOI
1707
Fine-grained, recognition
BibRef
Sun, T.[Ting],
Sun, L.[Lin],
Yeung, D.Y.[Dit-Yan],
Fine-grained categorization via CNN-based automatic extraction and
integration of object-level and part-level features,
IVC(64), No. 1, 2017, pp. 47-66.
Elsevier DOI
1708
Fine-grained categorization
BibRef
Zheng, H.,
Fu, J.,
Zha, Z.,
Luo, J.,
Mei, T.,
Learning Rich Part Hierarchies With Progressive Attention Networks
for Fine-Grained Image Recognition,
IP(29), No. 1, 2020, pp. 476-488.
IEEE DOI
1910
convolutional neural nets, image recognition,
learning (artificial intelligence), optimisation,
progressive attention
BibRef
Zhang, Y.B.[Ya-Bin],
Jia, K.[Kui],
Wang, Z.X.[Zhi-Xin],
Part-Aware Fine-Grained Object Categorization Using Weakly Supervised
Part Detection Network,
MultMed(22), No. 5, May 2020, pp. 1345-1357.
IEEE DOI
2005
Proposals, Detectors, Task analysis, Streaming media,
Feature extraction, Benchmark testing, Supervised learning,
weakly supervised learning
BibRef
Liu, X.,
Han, Z.,
Liu, Y.S.,
Zwicker, M.,
Fine-Grained 3D Shape Classification With Hierarchical Part-View
Attention,
IP(30), 2021, pp. 1744-1758.
IEEE DOI
2101
Shape, Semantics, Feature extraction,
Proposals, Automobiles, Airplanes, recurrent neural network
BibRef
Zheng, X.T.[Xiang-Tao],
Qi, L.[Lei],
Ren, Y.T.[Yu-Tao],
Lu, X.Q.[Xiao-Qiang],
Fine-Grained Visual Categorization by Localizing Object Parts With
Single Image,
MultMed(23), 2021, pp. 1187-1199.
IEEE DOI
2105
Feature extraction, Detectors, Training, Image representation,
Visualization, Semantics, Birds,
Dropout learning
BibRef
Zhao, Y.F.[Yi-Fan],
Li, J.[Jia],
Chen, X.[Xiaowu],
Tian, Y.H.[Yong-Hong],
Part-Guided Relational Transformers for Fine-Grained Visual
Recognition,
IP(30), 2021, pp. 9470-9481.
IEEE DOI
2112
Transformers, Visualization, Correlation, Task analysis,
Feature extraction, Semantics, Costs, relationship
BibRef
Han, J.W.[Jun-Wei],
Yao, X.[Xiwen],
Cheng, G.[Gong],
Feng, X.X.[Xiao-Xu],
Xu, D.[Dong],
P-CNN: Part-Based Convolutional Neural Networks for Fine-Grained
Visual Categorization,
PAMI(44), No. 2, February 2022, pp. 579-590.
IEEE DOI
2201
Visualization, Training, Detectors, Streaming media, Measurement,
Feature extraction, Convolutional neural networks,
fine-grained visual categorization
BibRef
Liu, M.[Man],
Zhang, C.J.[Chun-Jie],
Bai, H.[Huihui],
Zhang, R.[Riquan],
Zhao, Y.[Yao],
Cross-Part Learning for Fine-Grained Image Classification,
IP(31), 2022, pp. 748-758.
IEEE DOI
2201
Transformers, Location awareness, Task analysis, Proposals,
Feature extraction, Navigation, transformer
BibRef
Yu, X.H.[Xiao-Han],
Zhao, Y.[Yang],
Gao, Y.S.[Yong-Sheng],
SPARE: Self-supervised part erasing for ultra-fine-grained visual
categorization,
PR(128), 2022, pp. 108691.
Elsevier DOI
2205
Self-Supervised part erasing,
Ultra-fine-grained visual categorization,
Weakly-supervised part segmentation
BibRef
Liu, H.B.[Hua-Bin],
Li, J.G.[Jian-Guo],
Li, D.[Dian],
See, J.[John],
Lin, W.Y.[Wei-Yao],
Learning Scale-Consistent Attention Part Network for Fine-Grained
Image Recognition,
MultMed(24), 2022, pp. 2902-2913.
IEEE DOI
2206
Image recognition, Task analysis, Logic gates, Location awareness,
Visualization, Training, Object detection,
attention part
BibRef
Wang, S.J.[Shi-Jie],
Wang, Z.H.[Zhi-Hui],
Li, H.J.[Hao-Jie],
Chang, J.L.[Jian-Long],
Ouyang, W.L.[Wan-Li],
Tian, Q.[Qi],
Semantic-Guided Information Alignment Network for Fine-Grained Image
Recognition,
CirSysVideo(33), No. 11, November 2023, pp. 6558-6570.
IEEE DOI
2311
BibRef
Yan, T.T.[Tian-Tian],
Li, H.J.[Hao-Jie],
Sun, B.[Baoli],
Wang, Z.H.[Zhi-Hui],
Luo, Z.X.[Zhong-Xuan],
Discriminative Feature Mining and Enhancement Network for
Low-Resolution Fine-Grained Image Recognition,
CirSysVideo(32), No. 8, August 2022, pp. 5319-5330.
IEEE DOI
2208
Feature extraction, Image recognition, Task analysis, Reliability,
Image reconstruction, Automobiles, Training, part selection
BibRef
Han, X.[Xuan],
You, M.Y.[Ming-Yu],
Lu, P.[Ping],
Improving the Conditional Fine-Grained Image Generation With Part
Perception,
MultMed(26), 2024, pp. 4792-4804.
IEEE DOI
2403
Image synthesis, Task analysis, Semantics, Generators, Training,
Benchmark testing, Indexes, Fine-grained image generation, part perception
BibRef
Wang, C.M.[Chuan-Ming],
Fu, H.Y.[Hui-Yuan],
Ma, H.D.[Hua-Dong],
Learning Mutually Exclusive Part Representations for Fine-Grained
Image Classification,
MultMed(26), 2024, pp. 3113-3124.
IEEE DOI
2402
Feature extraction, Image classification, Filter banks,
Annotations, Training, Semantics, Task analysis, multi-granularity
BibRef
Wang, C.M.[Chuan-Ming],
Fu, H.Y.[Hui-Yuan],
Liu, P.[Peiye],
Ma, H.D.[Hua-Dong],
Part-Level Relationship Learning for Fine-Grained Few-Shot Image
Classification,
MultMed(27), 2025, pp. 1448-1460.
IEEE DOI
2503
Measurement, Feature extraction, Image classification,
Extraterrestrial measurements, Few shot learning, Prototypes,
relationship learning
BibRef
Wang, J.H.[Jia-Hui],
Xu, Q.[Qin],
Jiang, B.[Bo],
Luo, B.[Bin],
Tang, J.H.[Jin-Hui],
Multi-Granularity Part Sampling Attention for Fine-Grained Visual
Classification,
IP(33), 2024, pp. 4529-4542.
IEEE DOI Code:
WWW Link.
2408
Feature extraction, Semantics, Visualization, Shape,
Location awareness, Attention mechanisms, Transformers,
attention mechanism
BibRef
Korsch, D.[Dimitri],
Shadaydeh, M.[Maha],
Denzler, J.[Joachim],
Simplified Concrete Dropout - Improving the Generation of Attribution
Masks for Fine-grained Classification,
IJCV(133), No. 8, August 2025, pp. 5857-5871.
Springer DOI
2508
BibRef
Korsch, D.[Dimitri],
Bodesheim, P.[Paul],
Denzler, J.[Joachim],
Classification-Specific Parts for Improving Fine-Grained Visual
Categorization,
GCPR19(62-75).
Springer DOI
1911
BibRef
Xie, X.X.[Xing-Xing],
Cheng, G.[Gong],
Li, W.B.[Wen-Bo],
Lang, C.[Chunbo],
Zhang, P.[Peng],
Yao, Y.Q.[Yan-Qing],
Han, J.W.[Jun-Wei],
Learning Discriminative Representation for Fine-Grained Object
Detection in Remote Sensing Images,
CirSysVideo(35), No. 8, August 2025, pp. 8197-8208.
IEEE DOI Code:
WWW Link.
2508
Object detection, Remote sensing, Feature extraction, Airplanes, Training,
Detectors, Accuracy, Location awareness, confusion-minimized loss
BibRef
Yang, Y.Q.[Yu-Qi],
Chang, D.L.[Dong-Liang],
Du, R.[Ruoyi],
Song, Y.Z.[Yi-Zhe],
Ma, Z.Y.[Zhan-Yu],
Adaptive Multi-Resolution Feature Fusion for Fine-Grained Visual
Classification,
CirSysVideo(35), No. 8, August 2025, pp. 8252-8264.
IEEE DOI Code:
WWW Link.
2508
Image resolution, Feature extraction, Training, Accuracy, Visualization,
Image recognition, Adaptation models, meta-learning
BibRef
Saha, O.[Oindrila],
Maji, S.[Subhransu],
PARTICLE: Part Discovery and Contrastive Learning for Fine-grained
Recognition,
VIPriors23(167-176)
IEEE DOI
2401
BibRef
Zhang, L.B.[Lian-Bo],
Huang, S.L.[Shao-Li],
Liu, W.[Wei],
Intra-class Part Swapping for Fine-Grained Image Classification,
WACV21(3208-3217)
IEEE DOI
2106
Location awareness, Training, Image recognition,
Training data, Data models, Noise measurement
BibRef
Wang, X.G.[Xiao-Gang],
Sun, X.[Xun],
Cao, X.Y.[Xin-Yu],
Xu, K.[Kai],
Zhou, B.[Bin],
Learning Fine-Grained Segmentation of 3D Shapes without Part Labels,
CVPR21(10271-10280)
IEEE DOI
2111
Training, Solid modeling, Shape,
Semantics, Graph neural networks
BibRef
Yu, F.G.[Feng-Gen],
Liu, K.[Kun],
Zhang, Y.[Yan],
Zhu, C.Y.[Chen-Yang],
Xu, K.[Kai],
PartNet: A Recursive Part Decomposition Network for Fine-Grained and
Hierarchical Shape Segmentation,
CVPR19(9483-9492).
IEEE DOI
2002
BibRef
Ge, W.F.[Wei-Feng],
Lin, X.R.[Xiang-Ru],
Yu, Y.[Yizhou],
Weakly Supervised Complementary Parts Models for Fine-Grained Image
Classification From the Bottom Up,
CVPR19(3029-3038).
IEEE DOI
2002
BibRef
Mo, K.[Kaichun],
Zhu, S.L.[Shi-Lin],
Chang, A.X.[Angel X.],
Yi, L.[Li],
Tripathi, S.[Subarna],
Guibas, L.J.[Leonidas J.],
Su, H.[Hao],
PartNet: A Large-Scale Benchmark for Fine-Grained and Hierarchical
Part-Level 3D Object Understanding,
CVPR19(909-918).
IEEE DOI
2002
BibRef
Xin, Q.,
Lv, T.,
Gao, H.,
Random Part Localization Model for Fine Grained Image Classification,
ICIP19(420-424)
IEEE DOI
1910
fine-grained, convolutional neural network, random part localization
BibRef
Dai, X.,
Southall, B.,
Trinh, N.,
Matei, B.,
Efficient Fine-Grained Classification and Part Localization Using One
Compact Network,
CEFR-LCV17(996-1004)
IEEE DOI
1802
Automobiles, Birds, Convolution, Switches, Training
BibRef
Lam, M.,
Mahasseni, B.,
Todorovic, S.,
Fine-Grained Recognition as HSnet Search for Informative Image Parts,
CVPR17(6497-6506)
IEEE DOI
1711
Feature extraction, Image recognition,
Object recognition, Proposals, Search problems, Trajectory
BibRef
Zhang, J.Y.[Jia-Yi],
Xu, S.P.[Shi-Pu],
Liu, Y.[Yang],
Hao, Y.P.[Yong-Ping],
Research on the identification method of micro assembly part,
ICIVC17(295-298)
IEEE DOI
1708
Charge coupled devices, Control systems, Image edge detection,
Noise reduction, Shape, Smoothing methods, Visualization,
image recognition, micro assembly, template matching
BibRef
Takahashi, T.[Toru],
Kudo, Y.[Yuta],
Ishiyama, R.[Rui],
Mass-produced parts traceability system based on automated scanning
of 'Fingerprint of Things',
MVA17(202-206)
DOI Link
1708
Fasteners, Fingerprint recognition, Image matching, Imaging, Metals,
Mobile handsets, Prototypes. Too small for id tags.
BibRef
Zhang, H.[Han],
Xu, T.[Tao],
Elhoseiny, M.[Mohamed],
Huang, X.L.[Xiao-Lei],
Zhang, S.T.[Shao-Ting],
Elgammal, A.E.[Ahmed E.],
Metaxas, D.N.[Dimitris N.],
SPDA-CNN: Unifying Semantic Part Detection and Abstraction for
Fine-Grained Recognition,
CVPR16(1143-1152)
IEEE DOI
1612
BibRef
Shih, K.J.[Kevin J.],
Mallya, A.[Arun],
Singh, S.[Saurabh],
Hoiem, D.[Derek],
Part Localization using Multi-Proposal Consensus for Fine-Grained
Categorization,
BMVC15(xx-yy).
DOI Link
1601
BibRef
Li, D.[Dong],
Li, Y.[Yali],
Wang, S.J.[Sheng-Jin],
Selective parts for fine-grained recognition,
ICIP15(922-926)
IEEE DOI
1512
Fine-grained recognition
BibRef
Liao, L.[Liang],
Hu, R.M.[Rui-Min],
Xiao, J.[Jun],
Wang, Q.[Qi],
Xiao, J.[Jing],
Chen, J.[Jun],
Exploiting effects of parts in fine-grained categorization of
vehicles,
ICIP15(745-749)
IEEE DOI
1512
DPM; SVM; fine-grained categorization; vehicle parts
BibRef
Lin, D.[Di],
Shen, X.Y.[Xiao-Yong],
Lu, C.[Cewu],
Jia, J.Y.[Jia-Ya],
Deep LAC: Deep localization, alignment and classification for
fine-grained recognition,
CVPR15(1666-1674)
IEEE DOI
1510
part localization, alignment, and classification in one deep neural network.
BibRef
Krause, J.[Jonathan],
Jin, H.L.[Hai-Lin],
Yang, J.C.[Jian-Chao],
Fei-Fei, L.[Li],
Fine-grained recognition without part annotations,
CVPR15(5546-5555)
IEEE DOI
1510
BibRef
Zhang, N.[Ning],
Donahue, J.[Jeff],
Girshick, R.[Ross],
Darrell, T.J.[Trevor J.],
Part-Based R-CNNs for Fine-Grained Category Detection,
ECCV14(I: 834-849).
Springer DOI
1408
BibRef
Xie, L.X.[Ling-Xi],
Tian, Q.[Qi],
Hong, R.C.[Ri-Chang],
Yan, S.C.[Shui-Cheng],
Zhang, B.[Bo],
Hierarchical Part Matching for Fine-Grained Visual Categorization,
ICCV13(1641-1648)
IEEE DOI
1403
Fine-Grained Visual Categorization
BibRef
Zhang, N.[Ning],
Farrell, R.[Ryan],
Iandola, F.[Forrest],
Darrell, T.J.[Trevor J.],
Deformable Part Descriptors for Fine-Grained Recognition and
Attribute Prediction,
ICCV13(729-736)
IEEE DOI
1403
BibRef
Chai, Y.N.[Yu-Ning],
Lempitsky, V.[Victor],
Zisserman, A.[Andrew],
Symbiotic Segmentation and Part Localization for Fine-Grained
Categorization,
ICCV13(321-328)
IEEE DOI
1403
Detection; Fine-Grained; Object Recognition; Segmentation
BibRef
Zheng, Y.B.[Ying-Bin],
Jiang, Y.G.[Yu-Gang],
Xue, X.Y.[Xiang-Yang],
Learning Hybrid Part Filters for Scene Recognition,
ECCV12(V: 172-185).
Springer DOI
1210
Not the whole object, but parts that may be shared with multiple objects.
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Fine-Grained Classification Using CNN, Convolutional Neural Networks .