Pang, G.[Guan],
Wang, G.J.[Gui-Jin],
Lin, X.G.[Xing-Gang],
Real-Time Human Detection Using Hierarchical HOG Matrices,
IEICE(E93-D), No. 3, March 2010, pp. 658-661.
WWW Link.
1003
BibRef
Cao, H.[Hui],
Yamaguchi, K.[Koichiro],
Ohta, M.[Mitsuhiko],
Naito, T.[Takashi],
Ninomiya, Y.[Yoshiki],
Feature Interaction Descriptor for Pedestrian Detection,
IEICE(E93-D), No. 9, September 2010, pp. 2656-2659.
WWW Link.
1003
BibRef
Earlier: A1, A2, A4, A5, Only:
Pedestrian Recognition Using Second-Order HOG Feature,
ACCV09(II: 628-634).
Springer DOI
0909
See also Road Image Segmentation and Recognition Using Hierarchical Bag-of-Textons Method.
BibRef
Cao, H.[Hui],
Naito, T.[Takashi],
Ninomiya, Y.[Yoshiki],
Approximate RBF kernel SVM and its applications in pedestrian
classification,
MLMotion08(xx-yy).
0810
BibRef
Hua, C.S.[Chun-Sheng],
Makihara, Y.S.[Yasu-Shi],
Yagi, Y.S.[Yasu-Shi],
Pedestrian Detection by Using a Spatio-Temporal Histogram of Oriented
Gradients,
IEICE(E96-D), No. 6, June 2013, pp. 1376-1386.
WWW Link.
1306
BibRef
Satpathy, A.[Amit],
Jiang, X.D.[Xu-Dong],
Eng, H.L.[How-Lung],
Human Detection by Quadratic Classification on Subspace of Extended
Histogram of Gradients,
IP(23), No. 1, January 2014, pp. 287-297.
IEEE DOI
1402
BibRef
Earlier:
Extended Histogram of Gradients with Asymmetric Principal Component and
Discriminant Analyses for Human Detection,
CRV11(64-71).
IEEE DOI
1105
BibRef
Earlier:
Extended Histogram of Gradients feature for human detection,
ICIP10(3473-3476).
IEEE DOI
1009
gradient methods
BibRef
Kim, S.[Soojin],
Cho, K.[Kyeongsoon],
Efficient Pedestrian Detection Using Multi-Scale HOG Features with Low
Computational Complexity,
IEICE(E97-D), No. 2, February 2013, pp. 366-369.
WWW Link.
1402
BibRef
Marin, J.,
Vázquez, D.[David],
López, A.M.[Antonio M.],
Amores, J.[Jaume],
Kuncheva, L.I.,
Occlusion Handling via Random Subspace Classifiers for Human
Detection,
Cyber(44), No. 3, March 2014, pp. 342-354.
IEEE DOI
1404
image classification
BibRef
González, A.,
Vázquez, D.[David],
López, A.M.[Antonio M.],
Amores, J.[Jaume],
On-Board Object Detection: Multicue, Multimodal, and Multiview Random
Forest of Local Experts,
Cyber(47), No. 11, November 2017, pp. 3980-3990.
IEEE DOI
1710
Cameras, Detectors, Feature extraction, Laser radar,
Object detection, Radio frequency, Multicue, multimodal,
multiview (MV), object, detection
BibRef
Marin, J.[Javier],
Vazquez, D.[David],
Lopez, A.M.[Antonio M.],
Amores, J.[Jaume],
Leibe, B.[Bastian],
Random Forests of Local Experts for Pedestrian Detection,
ICCV13(2592-2599)
IEEE DOI
1403
HOG; LBP; Local Experts; Pedestrian detection; Random Forest
BibRef
Chen, P.,
Huang, C.,
Lien, C.,
Tsai, Y.,
An Efficient Hardware Implementation of HOG Feature Extraction for
Human Detection,
ITS(15), No. 2, April 2014, pp. 656-662.
IEEE DOI
1404
Approximation methods
BibRef
Whytock, T.P.[Tenika P.],
Belyaev, A.[Alexander],
Robertson, N.M.[Neil M.],
Dynamic Distance-Based Shape Features for Gait Recognition,
JMIV(50), No. 3, November 2014, pp. 314-326.
Springer DOI
1410
BibRef
Earlier:
Towards Robust Gait Recognition,
ISVC13(II:523-531).
Springer DOI
1311
BibRef
And:
Improving Robustness and Precision in GEI + HOG Action Recognition,
ISVC13(I:119-128).
Springer DOI
1310
BibRef
Li, N.[Nijun],
Cheng, X.[Xu],
Zhang, S.F.[Suo-Fei],
Wu, Z.Y.[Zhen-Yang],
Realistic human action recognition by Fast HOG3D and self-organization
feature map,
MVA(25), No. 7, October 2014, pp. 1793-1812.
WWW Link.
1410
BibRef
Cheng, X.[Xu],
Li, N.[Nijun],
Zhou, T.C.[Tong-Chi],
Zhou, L.[Lin],
Wu, Z.Y.[Zhen-Yang],
Robust Superpixel Tracking with Weighted Multiple-Instance Learning,
IEICE(E98-D), No. 4, April 2015, pp. 980-984.
WWW Link.
1505
BibRef
Liu, Y.F.[Yi-Feng],
Zeng, L.[Lin],
Huang, Y.[Yan],
An efficient HOG-ALBP feature for pedestrian detection,
SIViP(8), No. S1, December 2014, pp. 125-134.
WWW Link.
1411
BibRef
Hua, C.S.[Chun-Sheng],
Makihara, Y.S.[Yasu-Shi],
Yagi, Y.S.[Yasu-Shi],
Iwasaki, S.[Shun],
Miyagawa, K.[Keisuke],
Li, B.[Bo],
Onboard monocular pedestrian detection by combining spatio-temporal hog
with structure from motion algorithm,
MVA(26), No. 2-3, April 2015, pp. 161-183.
Springer DOI
1504
BibRef
Wu, S.[Si],
Laganière, R.[Robert],
Payeur, P.[Pierre],
Improving pedestrian detection with selective gradient
self-similarity feature,
PR(48), No. 8, 2015, pp. 2364-2376.
Elsevier DOI
1505
Pedestrian detection
BibRef
Wu, S.[Si],
Wang, S.,
Laganière, R.[Robert],
Liu, C.,
Wong, H.S.,
Xu, Y.,
Exploiting Target Data to Learn Deep Convolutional Networks for
Scene-Adapted Human Detection,
IP(27), No. 3, March 2018, pp. 1418-1432.
IEEE DOI
1801
Adaptation models, Data models, Detectors, Feature extraction,
Labeling, Training, Human detection, convolutional network,
self-paced learning
BibRef
Kim, W.J.[Won-Jun],
Han, J.J.[Jae-Joon],
Directional coherence-based spatiotemporal descriptor for object
detection in static and dynamic scenes,
MVA(28), No. 1-2, February 2017, pp. 49-59.
Springer DOI
1702
Histogram of orientations
BibRef
Liu, B.Z.[Bao-Zhen],
Wu, H.[Hang],
Su, W.H.[Wei-Hua],
Sun, J.G.[Jing-Gong],
Sector-ring HOG for rotation-invariant human detection,
SP:IC(54), No. 1, 2017, pp. 1-10.
Elsevier DOI
1704
Rotation-invariant detection
BibRef
Liu, B.Z.[Bao-Zhen],
Wu, H.[Hang],
Su, W.H.[Wei-Hua],
Zhang, W.C.[Wen-Chang],
Sun, J.G.[Jing-Gong],
Rotation-invariant object detection using Sector-ring HOG and boosted
random ferns,
VC(34), No. 5, May 2018, pp. 707-719.
WWW Link.
1804
BibRef
Bilal, M.,
Hanif, M.S.,
Benchmark Revision for HOG-SVM Pedestrian Detector Through
Reinvigorated Training and Evaluation Methodologies,
ITS(21), No. 3, March 2020, pp. 1277-1287.
IEEE DOI
2003
Support vector machines, Detectors, Training, Feature extraction,
Kernel, Benchmark testing, Quantization (signal),
pedestrian detection
BibRef
Liu, X.,
Toh, K.,
Allebach, J.P.,
Pedestrian Detection Using Pixel Difference Matrix Projection,
ITS(21), No. 4, April 2020, pp. 1441-1454.
IEEE DOI
2004
Feature extraction, Detectors, Histograms, Shape,
Intelligent transportation systems, Video surveillance,
HOG
BibRef
Errami, M.[Mounir],
Rziza, M.[Mohammed],
An Efficient Pedestrian Detector Based on Saliency and HOG Features
Modeling,
ISVC16(II: 101-107).
Springer DOI
1701
BibRef
Balasubramanian, P.,
Pathak, S.,
Mittal, A.,
Improving Gradient Histogram Based Descriptors for Pedestrian
Detection in Datasets with Large Variations,
Robust16(1177-1186)
IEEE DOI
1612
BibRef
Xu, Y.[Yuan],
Li, C.N.[Cai-Nian],
Xu, X.L.[Xiao-Liang],
Jiang, M.[Mei],
Zhang, J.G.[Jian-Guo],
A two-stage hog feature extraction processor embedded with SVM for
pedestrian detection,
ICIP15(3452-3455)
IEEE DOI
1512
FPGA
BibRef
Mahmoud, A.[Ali],
El-Barkouky, A.[Ahmed],
Graham, J.[James],
Farag, A.[Aly],
Pedestrian detection using mixed partial derivative based histogram
of oriented gradients,
ICIP14(2334-2337)
IEEE DOI
1502
Histogram of Oriented Gradients
BibRef
Miramontes-Jaramillo, D.[Daniel],
Kober, V.[Vitaly],
Díaz-Ramírez, V.H.[Víctor Hugo],
Rotation Invariant Tracking Algorithm Based on Circular HOGs,
MCPR15(115-124).
Springer DOI
1506
BibRef
Earlier:
A Robust Tracking Algorithm Based on HOGs Descriptor,
CIARP14(54-61).
Springer DOI
1411
BibRef
Earlier:
CWMA: Circular Window Matching Algorithm,
CIARP13(I:439-446).
Springer DOI
1311
BibRef
Beltrán-Herrera, A.,
Vázquez-Santacruz, E.,
Gamboa-Zuñiga, M.,
Real-Time Classification of Lying Bodies by HOG Descriptors,
MCPR14(211-220).
Springer DOI
1407
BibRef
Arie, M.[Makoto],
Shibata, M.[Masatoshi],
Terabayashi, K.[Kenji],
Moro, A.[Alessandro],
Umeda, K.[Kazunori],
Fast human detection using template matching for gradient images and
aSC descriptors based on subtraction stereo,
ICIP13(3118-3122)
IEEE DOI
1402
Human detection
BibRef
Takahisa, K.[Kishino],
Sun, Z.[Zhe],
Micheletto, R.[Ruggero],
A Fast and Precise HOG-Adaboost Based Visual Support System Capable to
Recognize Pedestrian and Estimate Their Distance,
ACVR13(20-29).
Springer DOI
1309
BibRef
Salas, Y.S.[Yainuvis Socarrás],
Bermudez, D.V.[David Vázquez],
López Peña, A.M.[Antonio M.],
Gomez, D.G.[David Gerónimo],
Gevers, T.[Theo],
Improving HOG with Image Segmentation: Application to Human Detection,
ACIVS12(178-189).
Springer DOI
1209
BibRef
Kittipanya-Ngam, P.[Panachit],
Lung, E.H.[Eng How],
HOG-Based Descriptors on Rotation Invariant Human Detection,
VS10(143-152).
Springer DOI
1109
BibRef
Geismann, P.[Philip],
Knoll, A.[Alois],
Speeding Up HOG and LBP Features for Pedestrian Detection by
Multiresolution Techniques,
ISVC10(I: 243-252).
Springer DOI
1011
BibRef
Zeng, C.B.[Cheng-Bin],
Ma, H.D.[Hua-Dong],
Ming, A.[Anlong],
Fast human detection using mi-sVM and a cascade of HOG-LBP features,
ICIP10(3845-3848).
IEEE DOI
1009
BibRef
Dong, L.[Li],
Yu, X.G.[Xin-Guo],
Li, L.Y.[Li-Yuan],
Hoe, J.K.E.[Jerry Kah Eng],
HOG based multi-stage object detection and pose recognition for service
robot,
ICARCV10(2495-2500).
IEEE DOI
1109
BibRef
Wang, X.Y.[Xioa-Yu],
Han, T.X.[Tony X.],
Yan, S.C.[Shui-Cheng],
An HOG-LBP Human Detector with Partial Occlusion Handling,
ICCV09(32-39).
IEEE DOI
0909
BibRef
Lillywhite, K.[Kirt],
Lee, D.J.[Dah-Jye],
Zhang, D.[Dong],
Real-time human detection using histograms of oriented gradients on a
GPU,
WACV09(1-6).
IEEE DOI
0912
See also feature construction method for general object recognition, A.
BibRef
Chuang, C.H.[Cheng-Hsiung],
Huang, S.S.[Shih-Shinh],
Fu, L.C.[Li-Chen],
Hsiao, P.Y.[Pei-Yung],
Monocular multi-human detection using Augmented Histograms of Oriented
Gradients,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Watanabe, T.[Tomoki],
Ito, S.[Satoshi],
Two Co-occurrence Histogram Features Using Gradient Orientations and
Local Binary Patterns for Pedestrian Detection,
ACPR13(415-419)
IEEE DOI
1408
application specific integrated circuits
BibRef
Watanabe, T.[Tomoki],
Ito, S.[Satoshi],
Yokoi, K.[Kentaro],
Co-occurrence Histograms of Oriented Gradients for Pedestrian Detection,
PSIVT09(37-47).
Springer DOI
0901
BibRef
Mu, Y.D.[Ya-Dong],
Yan, S.C.[Shui-Cheng],
Liu, Y.[Yi],
Huang, T.S.[Thomas S.],
Zhou, B.F.[Bing-Feng],
Discriminative local binary patterns for human detection in personal
album,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Wang, C.C.R.[Chi-Chen Raxle],
Lien, J.J.J.[Jenn-Jier James],
AdaBoost Learning for Human Detection Based on Histograms of Oriented
Gradients,
ACCV07(I: 885-895).
Springer DOI
0711
BibRef
Zhu, Q.A.[Qi-Ang],
Yeh, M.C.[Mei-Chen],
Cheng, K.T.[Kwang-Ting],
Avidan, S.[Shai],
Fast Human Detection Using a Cascade of Histograms of Oriented
Gradients,
CVPR06(II: 1491-1498).
IEEE DOI
0606
BibRef
Dalal, N.[Navneet],
Triggs, B.[Bill],
Histograms of Oriented Gradients for Human Detection,
CVPR05(I: 886-893).
IEEE DOI
0507
Award, Longuet-Higgins.
BibRef
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Motion Based Human Detection, Spatio-Temporal Analysis, Pedestrians .