8.7.4 Snakes, Restricted Curves, Splines, etc.

Chapter Contents (Back)
Splines. Deformable Curves. Snakes. Active Contours. Curve Evolution.

Chen, G., Yang, Y.H.H.,
Edge-Detection by Regularized Cubic B-Spline Fitting,
SMC(25), No. 4, April 1995, pp. 636-643. BibRef 9504

Olstad, B., Torp, A.H.,
Encoding of A-Priori Information in Active Contour Models,
PAMI(18), No. 9, September 1996, pp. 863-872.
IEEE DOI Grammatical Encoding. BibRef 9609

Olstad, B., and Tysdahl, H.E.,
Improving the Computational Complexity of Active Contour Algorithms,
SCIA93(I: 257-263). BibRef 9300

Bruckstein, A.M., Sapiro, G., and Shaked, D.,
Evolutions of Planar Polygons,
PRAI(9), 1995, pp. 991-1014. BibRef 9500

Bruckstein, A.M., Shaked, D.,
On Projective Invariant Smoothing and Evolutions of Planar Curves and Polygons,
JMIV(7), No. 3, June 1997, pp. 225-240.
DOI Link 9708
BibRef

Shaked, D.[Doron],
Invariant Signatures from Polygonal Approximations of Smooth Curves,
VF01(451 ff.).
Springer DOI 0209
BibRef

Fua, P., Brechbuhler, C.,
Imposing Hard Constraints on Deformable Models Through Optimization in Orthogonal Subspaces,
CVIU(65), No. 2, February 1997, pp. 148-162.
DOI Link 9704

See also Parametrization of Closed Surfaces for 3-D Shape-Description. BibRef

Fua, P., Brechbuhler, C.,
Imposing Hard Constraints on Soft Snakes,
ECCV96(II:495-506).
Springer DOI BibRef 9600
And: SRI-TN-553,October 1995. BibRef
And:
Consistent Site Modeling: Imposing Hard Constraints on Deformable Models,
ARPA96(1077-1094). Building Evaluation. Two step process to constrain the optimization. Imposes constraints on the tangent at specific locations. BibRef

Neuenschwander, W.M., Fua, P., Iverson, L., Szekely, G., Kubler, O.,
Ziplock Snakes,
IJCV(25), No. 3, December 1997, pp. 191-201.
DOI Link 9712
BibRef
Earlier: SRI-TN-548. 1994. For 3d application:
See also From Ziplock Snakes to Velcro(TM) Surfaces. BibRef

Neuenschwander, W.M., Fua, P., Szekely, G., Kubler, O.,
Making Snakes Converge from Minimal Initialization,
ICPR94(A:613-615).
IEEE DOI BibRef 9400
And: A2, A4, A1, A3: ARPA94(II:1627-1636). BibRef
And: A1, A2, A3, A4:
Initializing Snakes,
CVPR94(658-663).
IEEE DOI Different behavior for different initial values (concavities). BibRef

Iverson, L.[Lee],
Dynamic Programming Delineation,
DARPA97(951-956). User input, automatic fitting. BibRef 9700

Sapiro, G., Cohen, A., Bruckstein, A.M.,
A Subdivision Scheme for Continuous-Scale B-Splines and Affine-Invariant Progressive Smoothing,
JMIV(7), No. 1, January 1997, pp. 23-40.
DOI Link 9703
BibRef

Wong, Y.Y., Yuen, P.C., Tong, C.S.,
Segmented snake for contour detection,
PR(31), No. 11, November 1998, pp. 1669-1679.
Elsevier DOI BibRef 9811

Pievatolo, A., Green, P.J.,
Boundary Detection through Dynamic Polygons,
RoyalStat(B-60), Part 3, 1998, pp. 609-626. BibRef 9800

Keren, D.[Daniel], Gotsman, C.[Craig],
Fitting Curves and Surfaces With Constrained Implicit Polynomials,
PAMI(21), No. 1, January 1999, pp. 31-41.
IEEE DOI The math of the fitting. Apply to Snakes and surface fitting. BibRef 9901

Keren, D.[Daniel],
Topologically Faithful Fitting of Simple Closed Curves,
PAMI(26), No. 1, January 2004, pp. 118-123.
IEEE Abstract. 0401
Implicit representations are easier to work with, but not always possible to create. Map curve to unit circle, then test of inside/outside is simplified. BibRef

Cham, T.J.[Tat-Jen], Cipolla, R.[Roberto],
Automated B-Spline Curve Representation Incorporating MDL and Error-Minimizing Control Point Insertion Strategies,
PAMI(21), No. 1, January 1999, pp. 49-53.
IEEE Abstract.
IEEE DOI 9901
BibRef
Earlier:
Automated B-Spline Curve Representation with MDL-based Active Contours,
BMVC96(Deformable Models). 9608
University of Cambridge BibRef

Knoll, C.[Christian], Alcañiz Raya, M.[Mariano], Grau, V.[Vicente], Monserrat, C.[Carlos], Juan, M.C.[M. Carmen],
Outlining of the prostate using snakes with shape restrictions based on the wavelet transform,
PR(32), No. 10, October 1999, pp. 1767-1781.
Elsevier DOI (Doctoral Thesis: Dissertation) BibRef 9910

Grau, V.[Vicente], Alcañiz Raya, M.[Mariano], Monserrat, C.[Carlos], Juan, M.C.[M. Carmen], Martí-Bonmatí, L.[Luis],
Hierarchical image segmentation using a correspondence with a tree model,
PR(37), No. 1, January 2004, pp. 47-59.
Elsevier DOI 0311
Apply to MRI Brain images. BibRef

Cong, G.[Ge], Parvin, B.[Bahram],
Model-Based Segmentation of Nuclei,
PR(33), No. 8, August 2000, pp. 1383-1393.
Elsevier DOI 0005
BibRef
Earlier: CVPR99(I: 256-261).
IEEE DOI BibRef
Earlier:
Curve Evolution for Corner Enhancement,
ICPR98(Vol I: 708-710).
IEEE DOI 9808
BibRef

Chang, H.[Hang], Yang, Q.[Qing], Parvin, B.[Bahram],
Segmentation of heterogeneous blob objects through voting and level set formulation,
PRL(28), No. 13, 1 October 2007, pp. 1781-1787.
Elsevier DOI 0709
Segmentation; Voting; Level set; Voronoi; Subcellular localization; Nuclear segmentation; 3D cell culture assay BibRef

Chang, H.[Hang], Yang, Q.[Qing], Parvin, B.[Bahram],
A Bayesian Approach for Image Segmentation with Shape Priors,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Brigger, P., Hoeg, J., Unser, M.,
B-Spline Snakes: A Flexible Tool for Parametric Contour Detection,
IP(9), No. 9, September 2000, pp. 1484-1496.
IEEE DOI 0008
BibRef

Neumann, A.[Anke],
Graphical gaussian shape models and their application to image segmentation,
PAMI(25), No. 3, March 2003, pp. 316-329.
IEEE DOI 0301
Use an underlying graph with relations between both nearby key points and more global interactions. Applied to tomographic image segmentation. BibRef

Jacob, M., Blu, T., Unser, M.,
Efficient Energies and Algorithms for Parametric Snakes,
IP(13), No. 9, September 2004, pp. 1231-1244.
IEEE DOI 0409
BibRef

Precioso, F., Barlaud, M., Blu, T., Unser, M.,
Robust Real-Time Segmentation of Images and Videos Using a Smooth-Spline Snake-based algorithm,
IP(14), No. 7, July 2005, pp. 910-924.
IEEE DOI 0506
BibRef
Earlier:
Smoothing B-spline active contour for fast and robust image and video segmentation,
ICIP03(I: 137-140).
IEEE DOI 0312
BibRef

Kybic, J., Unser, M.,
Multidimensional Elastic Registration of Images Using Splines,
ICIP00(Vol II: 455-458).
IEEE DOI 0008
BibRef

Kohlrausch, J.[Jan], Rohr, K.[Karl], Stiehl, H.S.[H. Siegfried],
A New Class of Elastic Body Splines for Nonrigid Registration of Medical Images,
JMIV(23), No. 3, November 2005, pp. 253-280.
Springer DOI 0510
BibRef

Saha, P.K.[Punam Kumar], Das, B.[Bipul], Wehrli, F.W.[Felix W.],
An object class-uncertainty induced adaptive force and its application to a new hybrid snake,
PR(40), No. 10, October 2007, pp. 2656-2671.
Elsevier DOI 0707
Snake; Entropy; Object class-uncertainty; Adaptive force; Force-field; Hybrid model; Image gradient; B-spline; Elasticity; Rigidity; Energy minimization; Contour orientation BibRef

Kubota, T.[Toshiro],
A Shape Representation with Elastic Quadratic Polynomials: Preservation of High Curvature Points under Noisy Conditions,
IJCV(82), No. 2, April 2009, pp. xx-yy.
Springer DOI 0903
Iteratively update the spline representation.
See also Salient Closed Boundary Extraction with Ratio Contour. BibRef

Hub, M., Kessler, M.L., Karger, C.P.,
A Stochastic Approach to Estimate the Uncertainty Involved in B-Spline Image Registration,
MedImg(28), No. 11, November 2009, pp. 1708-1716.
IEEE DOI 0911
BibRef

Arrate, F.[Felipe], Ratnanather, J.T.[J. Tilak], Younes, L.[Laurent],
Diffeomorphic Active Contours,
SIIMS(3), No. 2, 2010, pp. 176-198.
DOI Link groups of diffeomorphisms; image segmentation; shape analysis; deformable templates BibRef 1000

Charfi, M.[Maher], Zrida, J.[Jalel],
Speed Improvement of B-Snake Algorithm Using Dynamic Programming Optimization,
IP(20), No. 10, October 2011, pp. 2848-2855.
IEEE DOI 1110
BibRef

Bakir, H.[Houda], Charfi, M.[Maher], Zrida, J.[Jalel],
Automatic active contour segmentation approach via vector field convolution,
SIViP(10), No. 1, January 2016, pp. 9-18.
WWW Link. 1601
BibRef

Kadoury, S., Labelle, H., Paragios, N.,
Spine Segmentation in Medical Images Using Manifold Embeddings and Higher-Order MRFs,
MedImg(32), No. 7, 2013, pp. 1227-1238.
IEEE DOI 1307
Markov processes BibRef

Xu, G.L.[Gui-Li], Lin, C.[Chuan], Cheng, Y.[Yuehua],
Dense connection decoding network for crisp contour detection,
IET-IPR(15), No. 4, 2021, pp. 956-963.
DOI Link 2106
BibRef

Swita, R.[Robert], Suszynski, Z.[Zbigniew],
B-splines image approximation using resampled chordal parameterization,
IET-IPR(18), No. 11, 2024, pp. 2984-2995.
DOI Link 2409
approximation, B-splines, chordal parametrization BibRef


Meena, S.[Sachin], Palaniappan, K.[Kannappan], Seetharaman, G.[Guna],
User driven sparse point-based image segmentation,
ICIP16(844-848)
IEEE DOI 1610
Biomedical imaging BibRef

Meena, S.[Sachin], Prasath, V.B.S.[V. B. Surya], Palaniappan, K.[Kannappan], Seetharaman, G.[Guna],
Elastic body spline based image segmentation,
ICIP14(4378-4382)
IEEE DOI 1502
Biomedical imaging BibRef

Duan, Y.P.[Yu-Ping], Huang, W.M.[Wei-Min], Chang, H.B.[Hui-Bin],
Shape Prior Regularized Continuous Max-Flow Approach to Image Segmentation,
ICPR12(2516-2519).
WWW Link. 1302
BibRef

Maier, G.[Georg], Janda, F.[Florian], Schindler, A.[Andreas],
Minimum description length arc spline approximation of digital curves,
ICIP12(1869-1872).
IEEE DOI 1302
BibRef

Li, C.[Chao], Sun, Y.[Ying],
Active image: A shape and topology preserving segmentation method using B-spline free form deformations,
ICIP10(2221-2224).
IEEE DOI 1009
BibRef

Amate, L.[Laure], Rendas, M.J.[Maria Joao],
Learning Probabilistic Models of Contours,
ICPR10(645-648).
IEEE DOI 1008
Learn spline-based models. BibRef

Lombaert, H.[Herve], Cheriet, F.[Farida],
Geodesic Thin Plate Splines for Image Segmentation,
ICPR10(2234-2237).
IEEE DOI 1008
BibRef

Hoffmann, M.[Miklós], Juhász, I.[Imre],
On Interpolation by Spline Curves with Shape Parameters,
GMP08(xx-yy).
Springer DOI 0804
BibRef

Tae-o-sot, S., Auethavekiat, S., Jitapunkul, S.,
Shape Based Segmentation by Level Set Method for Medical Objects Containing Two Regions,
ICIP06(1929-1932).
IEEE DOI 0610
BibRef
Earlier: A1, A3, A2:
Shape-Based Object Segmentation with Simultaneous Intensity Adjustment,
CRV06(56-56).
IEEE DOI 0607
BibRef

Mills, A.[Anna], Shardlow, T.[Tony], Marsland, S.[Stephen],
Computing the Geodesic Interpolating Spline,
WBIR06(169-177).
Springer DOI 0607
BibRef

Hladavka, J., Bahler, K.,
MDL Spline Models: Gradient and Polynomial Reparameterisations,
BMVC05(xx-yy).
HTML Version. 0509
BibRef

Lingrand, D.[Diane], Montagnat, J.[Johan],
Levelset and B-Spline Deformable Model Techniques for Image Segmentation: A Pragmatic Comparative Study,
SCIA05(25-34).
Springer DOI 0506
BibRef

Leung, C.C., Chan, C.H., Chan, F.H.Y., Tsui, W.K.,
B-spline snakes in two stages,
ICPR04(I: 568-571).
IEEE DOI 0409
BibRef

Liu, L., Schunck, B.G., and Meyer, C.R.,
Optimal Contour Approximation by Deformable Piecewise Cubic Splines,
CVPR91(638-643).
IEEE DOI BibRef 9100

Gavrila, D.M.[Dariu M.],
Hermite Deformable Contours,
ICPR96(I: 130-135).
IEEE DOI 9608
BibRef
And: UMDTR-3610, February 1996.
WWW Link. (Univ. of Maryland, CfAR, USA) BibRef

Rueckert, D., Burger, P.,
Contour Fitting Using an Adaptive Spline Model,
BMVC95(207-216).
PDF File. BibRef 9500

Menet, S., Saint-Marc, P., and Medioni, G.G.,
B-Snakes: Implementation and Application to Stereo,
DARPA90(720-726). BibRef 9000 USC Computer Vision BibRef
And:
Active Contour Models: Overview, Implementation and Applications,
SMC-C90(194-199). Snakes using B-Splines. BibRef

Heitger, F.,
Feature Detection using Suppression and Enhancement,
ETHTR 163, Image Science Lab, Zurich, 1995. BibRef 9500

Henricsson, O., Heitger, F.,
The Role of Key-Points in Finding Contours,
ECCV94(B:371-382).
Springer DOI Corner Detector. BibRef 9400

Rosenthaler, L., Heitger, F., Kübler, O., von der Heydt, R.,
Detection of general edges and keypoints,
ECCV92(78-86).
Springer DOI 9205
BibRef

Heitger, F., Gerig, G., Rosenthaler, L., and Kubler, O.,
Extraction of Boundary Keypoints and Completion of Simple Figures,
SCIA89(xx). BibRef 8900

Henricsson, O., Neuenschwander, W.M.,
Controlling Growing Snakes by Using Key-Points,
ICPR94(A:68-73).
IEEE DOI BibRef 9400

Houzelle, S., Strat, T.M., Fua, P., Fischler, M.A.,
Using Contextual Information to Set Control Parameters of a Vision Process,
ICPR94(A:830-832).
IEEE DOI BibRef 9400

Tehrani, S., Weymouth, T.E., and Schunck, B.G.,
Interpolating Cubic Spline Contours by Minimizing Second Derivative Discontinuity,
ICCV90(713-716).
IEEE DOI BibRef 9000

Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Cartoon Plus Texture Segmentation, Cartoon-Texture Segmentation .


Last update:Nov 26, 2024 at 16:40:19