Chen, G.,
Yang, Y.H.H.,
Edge-Detection by Regularized Cubic B-Spline Fitting,
SMC(25), No. 4, April 1995, pp. 636-643.
BibRef
9504
Olstad, B.,
Torp, A.H.,
Encoding of A-Priori Information in Active Contour Models,
PAMI(18), No. 9, September 1996, pp. 863-872.
IEEE DOI
Grammatical Encoding.
BibRef
9609
Olstad, B., and
Tysdahl, H.E.,
Improving the Computational Complexity of Active Contour Algorithms,
SCIA93(I: 257-263).
BibRef
9300
Bruckstein, A.M.,
Sapiro, G., and
Shaked, D.,
Evolutions of Planar Polygons,
PRAI(9), 1995, pp. 991-1014.
BibRef
9500
Bruckstein, A.M.,
Shaked, D.,
On Projective Invariant Smoothing and Evolutions of Planar Curves
and Polygons,
JMIV(7), No. 3, June 1997, pp. 225-240.
DOI Link
9708
BibRef
Shaked, D.[Doron],
Invariant Signatures from Polygonal Approximations of Smooth Curves,
VF01(451 ff.).
Springer DOI
0209
BibRef
Fua, P.,
Brechbuhler, C.,
Imposing Hard Constraints on Deformable Models Through Optimization
in Orthogonal Subspaces,
CVIU(65), No. 2, February 1997, pp. 148-162.
DOI Link
9704
See also Parametrization of Closed Surfaces for 3-D Shape-Description.
BibRef
Fua, P.,
Brechbuhler, C.,
Imposing Hard Constraints on Soft Snakes,
ECCV96(II:495-506).
Springer DOI
BibRef
9600
And:
SRI-TN-553,October 1995.
BibRef
And:
Consistent Site Modeling:
Imposing Hard Constraints on Deformable Models,
ARPA96(1077-1094).
Building Evaluation. Two step process to constrain the optimization. Imposes constraints on the
tangent at specific locations.
BibRef
Neuenschwander, W.M.,
Fua, P.,
Iverson, L.,
Szekely, G.,
Kubler, O.,
Ziplock Snakes,
IJCV(25), No. 3, December 1997, pp. 191-201.
DOI Link
9712
BibRef
Earlier:
SRI-TN-548. 1994.
For 3d application:
See also From Ziplock Snakes to Velcro(TM) Surfaces.
BibRef
Neuenschwander, W.M.,
Fua, P.,
Szekely, G.,
Kubler, O.,
Making Snakes Converge from Minimal Initialization,
ICPR94(A:613-615).
IEEE DOI
BibRef
9400
And: A2, A4, A1, A3:
ARPA94(II:1627-1636).
BibRef
And: A1, A2, A3, A4:
Initializing Snakes,
CVPR94(658-663).
IEEE DOI Different behavior for different initial values (concavities).
BibRef
Iverson, L.[Lee],
Dynamic Programming Delineation,
DARPA97(951-956).
User input, automatic fitting.
BibRef
9700
Sapiro, G.,
Cohen, A.,
Bruckstein, A.M.,
A Subdivision Scheme for Continuous-Scale B-Splines and
Affine-Invariant Progressive Smoothing,
JMIV(7), No. 1, January 1997, pp. 23-40.
DOI Link
9703
BibRef
Wong, Y.Y.,
Yuen, P.C.,
Tong, C.S.,
Segmented snake for contour detection,
PR(31), No. 11, November 1998, pp. 1669-1679.
Elsevier DOI
BibRef
9811
Pievatolo, A.,
Green, P.J.,
Boundary Detection through Dynamic Polygons,
RoyalStat(B-60), Part 3, 1998, pp. 609-626.
BibRef
9800
Keren, D.[Daniel],
Gotsman, C.[Craig],
Fitting Curves and Surfaces With Constrained Implicit Polynomials,
PAMI(21), No. 1, January 1999, pp. 31-41.
IEEE DOI The math of the fitting. Apply to Snakes and surface fitting.
BibRef
9901
Keren, D.[Daniel],
Topologically Faithful Fitting of Simple Closed Curves,
PAMI(26), No. 1, January 2004, pp. 118-123.
IEEE Abstract.
0401
Implicit representations are easier to work with, but not always
possible to create.
Map curve to unit circle, then test of inside/outside is simplified.
BibRef
Cham, T.J.[Tat-Jen],
Cipolla, R.[Roberto],
Automated B-Spline Curve Representation Incorporating MDL and
Error-Minimizing Control Point Insertion Strategies,
PAMI(21), No. 1, January 1999, pp. 49-53.
IEEE Abstract.
IEEE DOI
9901
BibRef
Earlier:
Automated B-Spline Curve Representation with MDL-based Active Contours,
BMVC96(Deformable Models).
9608
University of Cambridge
BibRef
Knoll, C.[Christian],
Alcañiz Raya, M.[Mariano],
Grau, V.[Vicente],
Monserrat, C.[Carlos],
Juan, M.C.[M. Carmen],
Outlining of the prostate using snakes with shape restrictions based on
the wavelet transform,
PR(32), No. 10, October 1999, pp. 1767-1781.
Elsevier DOI (Doctoral Thesis: Dissertation)
BibRef
9910
Grau, V.[Vicente],
Alcañiz Raya, M.[Mariano],
Monserrat, C.[Carlos],
Juan, M.C.[M. Carmen],
Martí-Bonmatí, L.[Luis],
Hierarchical image segmentation using a correspondence with a tree
model,
PR(37), No. 1, January 2004, pp. 47-59.
Elsevier DOI
0311
Apply to MRI Brain images.
BibRef
Cong, G.[Ge],
Parvin, B.[Bahram],
Model-Based Segmentation of Nuclei,
PR(33), No. 8, August 2000, pp. 1383-1393.
Elsevier DOI
0005
BibRef
Earlier:
CVPR99(I: 256-261).
IEEE DOI
BibRef
Earlier:
Curve Evolution for Corner Enhancement,
ICPR98(Vol I: 708-710).
IEEE DOI
9808
BibRef
Chang, H.[Hang],
Yang, Q.[Qing],
Parvin, B.[Bahram],
Segmentation of heterogeneous blob objects through voting and level set
formulation,
PRL(28), No. 13, 1 October 2007, pp. 1781-1787.
Elsevier DOI
0709
Segmentation; Voting; Level set; Voronoi; Subcellular localization;
Nuclear segmentation; 3D cell culture assay
BibRef
Chang, H.[Hang],
Yang, Q.[Qing],
Parvin, B.[Bahram],
A Bayesian Approach for Image Segmentation with Shape Priors,
CVPR08(1-8).
IEEE DOI
0806
BibRef
Brigger, P.,
Hoeg, J.,
Unser, M.,
B-Spline Snakes: A Flexible Tool for Parametric Contour Detection,
IP(9), No. 9, September 2000, pp. 1484-1496.
IEEE DOI
0008
BibRef
Neumann, A.[Anke],
Graphical gaussian shape models and their application to image
segmentation,
PAMI(25), No. 3, March 2003, pp. 316-329.
IEEE DOI
0301
Use an underlying graph with relations between both nearby key points
and more global interactions.
Applied to tomographic image segmentation.
BibRef
Jacob, M.,
Blu, T.,
Unser, M.,
Efficient Energies and Algorithms for Parametric Snakes,
IP(13), No. 9, September 2004, pp. 1231-1244.
IEEE DOI
0409
BibRef
Precioso, F.,
Barlaud, M.,
Blu, T.,
Unser, M.,
Robust Real-Time Segmentation of Images and Videos Using a
Smooth-Spline Snake-based algorithm,
IP(14), No. 7, July 2005, pp. 910-924.
IEEE DOI
0506
BibRef
Earlier:
Smoothing B-spline active contour for fast and robust image and video
segmentation,
ICIP03(I: 137-140).
IEEE DOI
0312
BibRef
Kybic, J.,
Unser, M.,
Multidimensional Elastic Registration of Images Using Splines,
ICIP00(Vol II: 455-458).
IEEE DOI
0008
BibRef
Kohlrausch, J.[Jan],
Rohr, K.[Karl],
Stiehl, H.S.[H. Siegfried],
A New Class of Elastic Body Splines for Nonrigid Registration of
Medical Images,
JMIV(23), No. 3, November 2005, pp. 253-280.
Springer DOI
0510
BibRef
Saha, P.K.[Punam Kumar],
Das, B.[Bipul],
Wehrli, F.W.[Felix W.],
An object class-uncertainty induced adaptive force and its application
to a new hybrid snake,
PR(40), No. 10, October 2007, pp. 2656-2671.
Elsevier DOI
0707
Snake; Entropy; Object class-uncertainty; Adaptive force; Force-field;
Hybrid model; Image gradient; B-spline; Elasticity; Rigidity;
Energy minimization; Contour orientation
BibRef
Kubota, T.[Toshiro],
A Shape Representation with Elastic Quadratic Polynomials:
Preservation of High Curvature Points under Noisy Conditions,
IJCV(82), No. 2, April 2009, pp. xx-yy.
Springer DOI
0903
Iteratively update the spline representation.
See also Salient Closed Boundary Extraction with Ratio Contour.
BibRef
Hub, M.,
Kessler, M.L.,
Karger, C.P.,
A Stochastic Approach to Estimate the Uncertainty Involved in B-Spline
Image Registration,
MedImg(28), No. 11, November 2009, pp. 1708-1716.
IEEE DOI
0911
BibRef
Arrate, F.[Felipe],
Ratnanather, J.T.[J. Tilak],
Younes, L.[Laurent],
Diffeomorphic Active Contours,
SIIMS(3), No. 2, 2010, pp. 176-198.
DOI Link groups of diffeomorphisms; image segmentation; shape analysis;
deformable templates
BibRef
1000
Charfi, M.[Maher],
Zrida, J.[Jalel],
Speed Improvement of B-Snake Algorithm Using Dynamic Programming
Optimization,
IP(20), No. 10, October 2011, pp. 2848-2855.
IEEE DOI
1110
BibRef
Bakir, H.[Houda],
Charfi, M.[Maher],
Zrida, J.[Jalel],
Automatic active contour segmentation approach via vector field
convolution,
SIViP(10), No. 1, January 2016, pp. 9-18.
WWW Link.
1601
BibRef
Kadoury, S.,
Labelle, H.,
Paragios, N.,
Spine Segmentation in Medical Images Using Manifold Embeddings and
Higher-Order MRFs,
MedImg(32), No. 7, 2013, pp. 1227-1238.
IEEE DOI
1307
Markov processes
BibRef
Xu, G.L.[Gui-Li],
Lin, C.[Chuan],
Cheng, Y.[Yuehua],
Dense connection decoding network for crisp contour detection,
IET-IPR(15), No. 4, 2021, pp. 956-963.
DOI Link
2106
BibRef
Swita, R.[Robert],
Suszynski, Z.[Zbigniew],
B-splines image approximation using resampled chordal
parameterization,
IET-IPR(18), No. 11, 2024, pp. 2984-2995.
DOI Link
2409
approximation, B-splines, chordal parametrization
BibRef
Meena, S.[Sachin],
Prasath, V.B.S.[V. B. Surya],
Palaniappan, K.[Kannappan],
Seetharaman, G.[Guna],
Elastic body spline based image segmentation,
ICIP14(4378-4382)
IEEE DOI
1502
Biomedical imaging
BibRef
Duan, Y.P.[Yu-Ping],
Huang, W.M.[Wei-Min],
Chang, H.B.[Hui-Bin],
Shape Prior Regularized Continuous Max-Flow Approach to Image
Segmentation,
ICPR12(2516-2519).
WWW Link.
1302
BibRef
Maier, G.[Georg],
Janda, F.[Florian],
Schindler, A.[Andreas],
Minimum description length arc spline approximation of digital curves,
ICIP12(1869-1872).
IEEE DOI
1302
BibRef
Li, C.[Chao],
Sun, Y.[Ying],
Active image: A shape and topology preserving segmentation method using
B-spline free form deformations,
ICIP10(2221-2224).
IEEE DOI
1009
BibRef
Amate, L.[Laure],
Rendas, M.J.[Maria Joao],
Learning Probabilistic Models of Contours,
ICPR10(645-648).
IEEE DOI
1008
Learn spline-based models.
BibRef
Lombaert, H.[Herve],
Cheriet, F.[Farida],
Geodesic Thin Plate Splines for Image Segmentation,
ICPR10(2234-2237).
IEEE DOI
1008
BibRef
Hoffmann, M.[Miklós],
Juhász, I.[Imre],
On Interpolation by Spline Curves with Shape Parameters,
GMP08(xx-yy).
Springer DOI
0804
BibRef
Tae-o-sot, S.,
Auethavekiat, S.,
Jitapunkul, S.,
Shape Based Segmentation by Level Set Method for Medical Objects
Containing Two Regions,
ICIP06(1929-1932).
IEEE DOI
0610
BibRef
Earlier: A1, A3, A2:
Shape-Based Object Segmentation with Simultaneous Intensity Adjustment,
CRV06(56-56).
IEEE DOI
0607
BibRef
Mills, A.[Anna],
Shardlow, T.[Tony],
Marsland, S.[Stephen],
Computing the Geodesic Interpolating Spline,
WBIR06(169-177).
Springer DOI
0607
BibRef
Hladavka, J.,
Bahler, K.,
MDL Spline Models: Gradient and Polynomial Reparameterisations,
BMVC05(xx-yy).
HTML Version.
0509
BibRef
Lingrand, D.[Diane],
Montagnat, J.[Johan],
Levelset and B-Spline Deformable Model Techniques for Image Segmentation:
A Pragmatic Comparative Study,
SCIA05(25-34).
Springer DOI
0506
BibRef
Leung, C.C.,
Chan, C.H.,
Chan, F.H.Y.,
Tsui, W.K.,
B-spline snakes in two stages,
ICPR04(I: 568-571).
IEEE DOI
0409
BibRef
Liu, L.,
Schunck, B.G., and
Meyer, C.R.,
Optimal Contour Approximation by Deformable Piecewise Cubic Splines,
CVPR91(638-643).
IEEE DOI
BibRef
9100
Gavrila, D.M.[Dariu M.],
Hermite Deformable Contours,
ICPR96(I: 130-135).
IEEE DOI
9608
BibRef
And:
UMDTR-3610, February 1996.
WWW Link. (Univ. of Maryland, CfAR, USA)
BibRef
Rueckert, D.,
Burger, P.,
Contour Fitting Using an Adaptive Spline Model,
BMVC95(207-216).
PDF File.
BibRef
9500
Menet, S.,
Saint-Marc, P., and
Medioni, G.G.,
B-Snakes: Implementation and Application to Stereo,
DARPA90(720-726).
BibRef
9000
USC Computer Vision
BibRef
And:
Active Contour Models: Overview, Implementation and Applications,
SMC-C90(194-199).
Snakes using B-Splines.
BibRef
Heitger, F.,
Feature Detection using Suppression and Enhancement,
ETHTR 163, Image Science Lab, Zurich, 1995.
BibRef
9500
Henricsson, O.,
Heitger, F.,
The Role of Key-Points in Finding Contours,
ECCV94(B:371-382).
Springer DOI
Corner Detector.
BibRef
9400
Rosenthaler, L.,
Heitger, F.,
Kübler, O.,
von der Heydt, R.,
Detection of general edges and keypoints,
ECCV92(78-86).
Springer DOI
9205
BibRef
Heitger, F.,
Gerig, G.,
Rosenthaler, L., and
Kubler, O.,
Extraction of Boundary Keypoints and Completion of Simple Figures,
SCIA89(xx).
BibRef
8900
Henricsson, O.,
Neuenschwander, W.M.,
Controlling Growing Snakes by Using Key-Points,
ICPR94(A:68-73).
IEEE DOI
BibRef
9400
Houzelle, S.,
Strat, T.M.,
Fua, P.,
Fischler, M.A.,
Using Contextual Information to Set Control Parameters of a
Vision Process,
ICPR94(A:830-832).
IEEE DOI
BibRef
9400
Tehrani, S.,
Weymouth, T.E., and
Schunck, B.G.,
Interpolating Cubic Spline Contours by Minimizing
Second Derivative Discontinuity,
ICCV90(713-716).
IEEE DOI
BibRef
9000
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Cartoon Plus Texture Segmentation, Cartoon-Texture Segmentation .