15.2.14 Geoid Analysis, Computation, Definition, Vertical Datum

Chapter Contents (Back)
Geoid. Geodetic Calibration. Vertical Datum. The sea level relationship is that elevations are relative to the mean sea level from the geoid.
See also Sea Level Measurement and Change, Satellite Altimetric Data.
See also SAR, Radar Altimetry.
See also Site Model Registration, Georeference, Geo-Registeration.

Vassilaki, D.I.[Dimitra I.],
Matching and Evaluating Free-form Linear Features for Georeferencing Space-borne SAR Imagery,
PFG(2012), No. 4, 2012, pp. 408-419.
WWW Link. 1211

Vassilaki, D.I., Stamos, A.A.,
The 0.4 Arc-Sec Tandem-X Intermediate DEM with Respect to the SRTM and Aster Global DEMS,
DOI Link 1504

Vassilaki, D.I., Stamos, A.A., Ioannidis, C.C.,
Rapid Geometric Correction of SSC TERRASAR-X Images with Direct Georeferencing, Global DEM and Global Geoid Models,
DOI Link 1308
And: A1, A3, A2:
Evaluation of SAR Data as Source of Ground Control Information: First Results,
DOI Link 1308
Earlier: A1, A3, A2:
Georeference of TerraSAR-X Images using Networks of Ground Control Linear Features,
PDF File. 1106

See also Enhanced first approximation for ICP-based global matching of free-form curves in side-looking radar geometry. BibRef

Wu, Q.[Qiong], Wang, H.Y.[Hong-Yao], Wang, B.[Bin], Chen, S.B.[Sheng-Bo], Li, H.Q.[Hong-Qing],
Performance Comparison of Geoid Refinement between XGM2016 and EGM2008 Based on the KTH and RCR Methods: Jilin Province, China,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link 2001

Vu, D.T.[Dinh Toan], Bruinsma, S.[Sean], Bonvalot, S.[Sylvain], Remy, D.[Dominique], Vergos, G.S.[Georgios S.],
A Quasigeoid-Derived Transformation Model Accounting for Land Subsidence in the Mekong Delta towards Height System Unification in Vietnam,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link 2003

Zhang, P.P.[Pan-Pan], Bao, L.F.[Li-Feng], Guo, D.M.[Dong-Mei], Wu, L.[Lin], Li, Q.Q.[Qian-Qian], Liu, H.[Hui], Xue, Z.X.[Zhi-Xin], Li, Z.C.[Zhi-Cai],
Estimation of Vertical Datum Parameters Using the GBVP Approach Based on the Combined Global Geopotential Models,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012

Erol, S.[Serdar], Íz÷gel, E.[Emrah], Kušak, R.A.[Ramazan Alper], Erol, B.[Bihter],
Utilizing Airborne LiDAR and UAV Photogrammetry Techniques in Local Geoid Model Determination and Validation,
IJGI(9), No. 9, 2020, pp. xx-yy.
DOI Link 2009

He, M.L.[Mei-Lin], Shen, W.B.[Wen-Bin], Jiao, J.H.[Jias-Huang], Pan, Y.J.[Yuan-Jin],
The Interannual Fluctuations in Mass Changes and Hydrological Elasticity on the Tibetan Plateau from Geodetic Measurements,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link 2112

Trojanowicz, M.[Marek], Owczarek-Wesolowska, M.[Magdalena], Wang, Y.M.[Yan Ming], Jamroz, O.[Olgierd],
Quasi Geoid and Geoid Modeling with the Use of Terrestrial and Airborne Gravity Data by the GGI Method: A Case Study in the Mountainous Area of Colorado,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link 2112

Lyszkowicz, A.[Adam], Nastula, J.[Jolanta], Zielinski, J.B.[Janusz B.], Birylo, M.[Monika],
A New Model of Quasigeoid for the Baltic Sea Area,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link 2107

Alcantar-Elizondo, N.[Norberto], Garcia-Lopez, R.V.[Ramon Victorino], Torres-Carillo, X.G.[Xochitl Guadalupe], Vazquez-Becerra, G.E.[Guadalupe Esteban],
Combining Global Geopotential Models, Digital Elevation Models, and GNSS/Leveling for Precise Local Geoid Determination in Some Mexico Urban Areas: Case Study,
IJGI(10), No. 12, 2021, pp. xx-yy.
DOI Link 2112

Liu, Y.S.[Yu-Sheng], Lou, L.Z.[Li-Zhi],
Unified Land-Ocean Quasi-Geoid Computation from Heterogeneous Data Sets Based on Radial Basis Functions,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link 2208

Varbla, S.[Sander], Liibusk, A.[Aive], Ellmann, A.[Artu],
Shipborne GNSS-Determined Sea Surface Heights Using Geoid Model and Realistic Dynamic Topography,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link 2206

Wu, Y.H.[Yi-Hao], He, X.[Xiufeng], Huang, J.[Jia], Shi, H.K.[Hong-Kai], Wang, H.[Haihong], Wu, Y.L.[Yun-Long], Ding, Y.[Yuan],
Comparison of Mean Dynamic Topography Modeling from Multivariate Objective Analysis and Rigorous Least Squares Method,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212
Sea surface and geoid combination. BibRef

Varbla, S.[Sander], ┼gren, J.[Jonas], Ellmann, A.[Artu], Poutanen, M.[Markku],
Treatment of Tide Gauge Time Series and Marine GNSS Measurements for Vertical Land Motion with Relevance to the Implementation of the Baltic Sea Chart Datum 2000,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202

Guo, D.M.[Dong-Mei], Xue, Z.X.[Zhi-Xin],
Analysis of a Relative Offset between the North American and the Global Vertical Datum in Gravity Potential Space,
RS(15), No. 14, 2023, pp. 3610.
DOI Link 2307

Wu, Q.[Qiong], Zhang, G.Y.[Guo-Yu], Wang, B.[Bin], Zhong, L.S.[Lin-Shan], Xiao, F.[Feng],
Performance Comparison of Deterministic and Stochastic Modifications in Stokes's and Hotine's Formulas: The Case of Jilin Province, China,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link 2301
Geoid model. BibRef

Natsiopoulos, D.A.[Dimitrios A.], Mamagiannou, E.G.[Elisavet G.], Pitenis, E.A.[Eleftherios A.], Vergos, G.S.[Georgios S.], Tziavos, I.N.[Ilias N.],
GOCE Downward Continuation to the Earth's Surface and Improvements to Local Geoid Modeling by FFT and LSC,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link 2303

Liu, X.Y.[Xin-Yu], Li, S.S.[Shan-Shan], Yuan, J.J.[Jia-Jia], Fan, D.[Diao], Tan, X.L.[Xu-Li],
Estimation of Geopotential Value W0 for the Geoid and Local Vertical Datum Parameters,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link 2303
Geoid determination. BibRef

Liang, S.H.[Sheng-Hao], Zhang, C.Y.[Chuan-Yin], Jiang, T.[Tao], Wang, W.[Wei],
Research and Evaluation on Dynamic Maintenance of an Elevation Datum Based on CORS Network Deformation,
RS(15), No. 11, 2023, pp. 2935.
DOI Link 2306

Lin, M.[Miao], Yang, M.[Meng], Zhu, J.J.[Jian-Jun],
Experiences with the RTM Method in Local Quasi-Geoid Modeling,
RS(15), No. 14, 2023, pp. 3594.
DOI Link 2307

Bauer-Marschallinger, B.[Bernhard], Falkner, K.[Konstantin],
Wasting petabytes: A survey of the Sentinel-2 UTM tiling grid and its spatial overhead,
PandRS(202), 2023, pp. 682-690.
Elsevier DOI 2308
Universal Transversal Mercator (UTM), Military Grid Reference System (MGRS), Sentinel-2, Analysis-Ready-Data BibRef

Mai, G.C.[Geng-Chen], Xuan, Y.[Yao], Zuo, W.[Wenyun], He, Y.T.[Yu-Tong], Song, J.[JiaMing], Ermon, S.[Stefano], Janowicz, K.[Krzysztof], Lao, N.[Ni],
Sphere2Vec: A general-purpose location representation learning over a spherical surface for large-scale geospatial predictions,
PandRS(202), 2023, pp. 439-462.
Elsevier DOI 2308

WWW Link. representation of points on sphere (i.e. the earth) to use in learning. Spherical location encoding, Spatially explicit artificial intelligence, Remote sensing image classification BibRef

Ferrara, G., Parente, C.,
Adaptation of the Global Geoid Model EGM2008 on Campania Region (Italy) Based on Geodetic Network Points,
DOI Link 2201

Yazid, N.M., Din, A.H.M., Abdullah, N.M., Omar, A.H.,
The Implementation of Modern Geocentric Datum: a Review,
DOI Link 1912

Jaffar, N.J., Musa, T.A., Aris, W.A.W.,
Assessment of Geocentric Datum of Malaysia 2000 (GDM2000),
DOI Link 1912

Pa'suya, M.F., Din, A.H.M., McCubbine, J.C., Omar, A.H., Amin, Z.M., Yahaya, N.A.Z.,
Gravimetric Geoid Modelling Over Peninsular Malaysia Using Two Different Gridding Approaches for Combining Free Air Anomaly,
DOI Link 1912

Ismail, M.K., Din, A.H.M., Uti, M.N., Omar, A.H.,
Establishment of New Fitted Geoid Model In Universiti Teknologi Malaysia,
DOI Link 1901

Faizuddin, A.R.M., Razali, M.M.,
Variation of Chart Datum Towards Maritime Delimitation Due to Rising Sea Level,
DOI Link 1805

Gill, J., Shariff, N.S., Omar, K.M., Din, A.H.M., Amin, Z.M.,
Development of a Time-Dependent 3-Parameter Helmert Datum Transformation Model: A Case Study for Malaysia,
DOI Link 1612

Din, A.H.M., Abazu, I.C., Pa'suya, M.F., Omar, K.M., Hamid, A.I.A.,
The Impact of Sea Level Rise on Geodetic Vertical Datum of Peninsular Malaysia,
DOI Link 1612

Yazid, N.M., Din, A.H.M., Omar, K.M., Som, Z.A.M., Omar, A.H., Yahaya, N.A.Z., Tugi, A.,
Marine Geoid Undulation Assessment over South China Sea Using Global Geopotential Models and Airborne Gravity Data,
DOI Link 1612

Lee, S., Kim, J., Jung, Y., Choi, J., Choi, C.,
Implementation of The Distributed Parallel Program for Geoid Heights Computation Using MPI and Openmp,
DOI Link 1209

Hilger, K.B., Nielsen, A.A., Knudsen, P.,
Aspects of Remote Sensing in the GEOid and Sea level of the North Atlantic Region (GEOSONAR) Project,
SCIA99(Remote Sensing). BibRef 9900

Chapter on Active Vision, Camera Calibration, Mobile Robots, Navigation, Road Following continues in
Autonomous Vehicles .

Last update:Aug 31, 2023 at 09:37:21