Morgenthaler, D.G.,
Hennessy, S.J.,
DeMenthon, D.F.,
Range-Video Fusion and Comparison of Inverse Perspective Algorithms
in Static Images,
SMC(20), 1990, pp. 1301-1312.
BibRef
9000
Chu, C.C., and
Aggarwal, J.K.,
Image Interpretation Using Multiple Sensing Modalities,
PAMI(14), No. 8, August 1992, pp. 840-847.
IEEE DOI
BibRef
9208
Earlier:
Multi-Sensor Image Interpretation Using Laser Radar
and Thermal Images,
CAIA91(24-28).
Combine range, intensity and velocity from ladar with thermal.
BibRef
Chu, C.C.[Chen-Chau],
Nandhakumar, N.,
Aggarwal, J.K.,
Image Segmentation Using Laser Radar Data,
PR(23), No. 6, 1990, pp. 569-581.
Elsevier DOI Ladar images, indoor scenes.
See also Pyramid-Based Image Segmentation Using Multisensory Data.
BibRef
9000
Chu, C., and
Aggarwal, J.K.,
Interpretation of Laser Radar Images by a Knowledge-Based System,
MVA(4), No. 3, August 1991, pp. xx-yy.
See above.
BibRef
9108
Zhang, G.H., and
Wallace, A.M.,
Physical Modeling and Combination of Range and Intensity Edge Data,
CVGIP(58), No. 2, September 1993, pp. 191-220.
DOI Link
BibRef
9309
Earlier:
Edge Classification and Depth Reconstruction by Fusion of
Range and Intensity Edge Data,
ECCV92(744-748).
Springer DOI
BibRef
Earlier:
Edge Labelling by Fusion of Intensity and Range Data,
BMVC91(xx-yy).
PDF File.
9109
BibRef
Zhang, G.H., and
Wallace, A.M.,
Extending Semantic Edge Labelling,
BMVC95(xx-yy).
PDF File.
9509
BibRef
Davis, I.L.,
Stentz, A.,
Sensor Fusion
for Autonomous Navigation Using Neural Networks,
NAVLAB96(Chapter 8).
BibRef
9600
Nadabar, S.G.[Sateesha G.],
Jain, A.K.[Anil K.],
Fusion of range and intensity images on a connection machine (CM-2),
PR(28), No. 1, January 1995, pp. 11-26.
Elsevier DOI
0401
Bayesian framework.
BibRef
Lee, G.C.[Greg Chungmou],
Stockman, G.[George],
Detection of Object Wings in Fused Range and Intensity Imagery,
PR(31), No. 2, February 1998, pp. 137-158.
Elsevier DOI
9802
primitives in scenes, objects are piecewise quadric.
BibRef
Chang, I.S.[In Su],
Park, R.H.[Rae-Hong],
Segmentation based on fusion of range and intensity images using robust
trimmed methods,
PR(34), No. 10, October 2001, pp. 1951-1962.
Elsevier DOI
0108
Segmentation from fusion of range and intensity.
See also Range image reconstruction based on robust multiresolution estimation of surface parameters.
BibRef
Baltzakis, H.G.[Haris G.],
Argyros, A.A.[Antonis A.],
Trahanias, P.E.[Panos E.],
Fusion of laser and visual data for robot motion planning and collision
avoidance,
MVA(15), No. 2, December 2003, pp. 92-100.
Springer DOI
0401
BibRef
Earlier:
Fusion of range and visual data for the extraction of scene structure
information,
ICPR02(IV: 7-11).
IEEE DOI
0211
BibRef
Town, C.[Christopher],
Multi-sensory and Multi-modal Fusion for Sentient Computing,
IJCV(71), No. 2, February 2007, pp. 235-253.
Springer DOI
0609
BibRef
Earlier:
Fusion of Visual and Ultrasonic Information for Environmental Modelling,
OTCBVS04(124).
IEEE DOI
0502
Calibrated cameras. SPIRIT system.
BibRef
Wendt, A.[Axel],
A concept for feature based data registration by simultaneous
consideration of laser scanner data and photogrammetric images,
PandRS(62), No. 2, June 2007, pp. 122-134.
Elsevier DOI
0709
Vision sciences; Photogrammetry; Terrestrial laser scanning; Hybrid sensor;
Feature extraction; Registration; Automation
BibRef
Wendt, A.,
Heipke, C.,
Simultaneous orientation of brightness, range and intensity images,
IEVM06(xx-yy).
PDF File.
0609
BibRef
Waske, B.,
van der Linden, S.,
Classifying Multilevel Imagery From SAR and Optical Sensors by Decision
Fusion,
GeoRS(46), No. 5, May 2008, pp. 1457-1466.
IEEE DOI
0804
BibRef
Bannai, N.[Nobuyuki],
Fisher, R.B.[Robert B.],
Agathos, A.[Alexander],
Multiple color texture map fusion for 3D models,
PRL(28), No. 6, 15 April 2007, pp. 748-758.
Elsevier DOI
0703
BibRef
Earlier: A1, A3, A2:
Fusing multiple color images for texturing models,
3DPVT04(558-565).
IEEE DOI
0412
BibRef
Earlier: A3, A2, Only:
Colour texture fusion of multiple range images,
3DIM03(139-146).
IEEE DOI
0311
Virtual models; Color consistency; Texture mapping; Color matching
BibRef
Suri, S.,
Reinartz, P.,
Mutual-Information-Based Registration of TerraSAR-X and Ikonos Imagery
in Urban Areas,
GeoRS(48), No. 2, February 2010, pp. 939-949.
IEEE DOI
1002
BibRef
Suri, S.,
Türmer, S.,
Reinartz, P.,
Stilla, U.,
Registration of High Resolution SAR and Optical Satellite Imagery in
Urban Areas,
HighRes09(xx-yy).
PDF File.
0906
BibRef
Gurram, P.,
Saber, E.,
Rhody, H.,
A Segment-Based Mesh Design for Building Parallel-Perspective Stereo
Mosaics,
GeoRS(48), No. 3, March 2010, pp. 1256-1269.
IEEE DOI
1003
BibRef
Gurram, P.,
Rhody, H.,
Saber, E.,
Sahin, F.,
Automated 3D object identification using Bayesian networks,
AIPR09(1-8).
IEEE DOI
0910
BibRef
Gurram, P.,
Rhody, H.,
Kerekes, J.,
Lach, S.,
Saber, E.,
3D Scene Reconstruction through a Fusion of Passive Video and Lidar
Imagery,
AIPR07(133-138).
IEEE DOI
0710
BibRef
Herrera, D.C.[Daniel C.],
Kannala, J.H.[Ju-Ho],
Heikkilä, J.[Janne],
Joint Depth and Color Camera Calibration with Distortion Correction,
PAMI(34), No. 10, October 2012, pp. 2058-2064.
IEEE DOI
1208
BibRef
Earlier:
Accurate and Practical Calibration of a Depth and Color Camera Pair,
CAIP11(II: 437-445).
Springer DOI
1109
Simultaneously calibrates two color cameras, a depth camera,
and the relative pose between them.
BibRef
Herrera, C.D.,
Kannala, J.H.,
Sturm, P.F.,
Heikkila, J.,
A Learned Joint Depth and Intensity Prior Using Markov Random Fields,
3DV13(17-24)
IEEE DOI
1311
Markov processes
BibRef
Braun, A.C.[Andreas C.],
Weidner, U.[Uwe],
Jutzi, B.[Boris],
Hinz, S.[Stefan],
Kernel Composition with the one-against-one Cascade for Integrating
External Knowledge into SVM Classification,
PFG(2012), No. 4, 2012, pp. 371-384.
WWW Link.
1211
BibRef
Earlier:
Integrating external knowledge into SVM classification:
Fusing hyperspectral and laserscanning data by kernel composition.,
HighRes11(xx-yy).
PDF File.
1106
BibRef
Braun, A.C.[Andreas Christian],
Weidner, U.[Uwe],
Hinz, S.[Stefan],
Support Vector Machines for Vegetation Classification A Revision,
PFG(2010), No. 4, 2010, pp. 273-281.
WWW Link.
1211
BibRef
Ju, H.[Hui],
Toth, C.K.[Charles K.],
Grejner-Brzezinska, D.A.[Dorota A.],
A New Approach to Robust LiDAR/Optical Imagery Registration,
PFG(2012), No. 5, 2012, pp. 523-534.
WWW Link.
1211
BibRef
And: A2, A1, A3:
Matching between Different Image Domains,
PIA11(37-47).
Springer DOI
1110
BibRef
Alismail, H.[Hatem],
Baker, L.D.[L. Douglas],
Browning, B.[Brett],
Automatic Calibration of a Range Sensor and Camera System,
3DIMPVT12(286-292).
IEEE DOI
1212
BibRef
Shah, P.[Parul],
Merchant, S.N.[Shabbir N.],
Desai, U.B.[Uday B.],
Multifocus and multispectral image fusion based on pixel significance
using multiresolution decomposition,
SIViP(7), No. 1, January 2013, pp. 95-109.
WWW Link.
1301
BibRef
Shah, P.[Parul],
Srikanth, T.V.,
Merchant, S.N.[Shabbir N.],
Desai, U.B.[Uday B.],
Multimodal image/video fusion rule using generalized pixel significance
based on statistical properties of the neighborhood,
SIViP(8), No. 4, May 2014, pp. 723-738.
Springer DOI
1404
BibRef
Han, J.,
Shao, L.,
Xu, D.,
Shotton, J.,
Enhanced Computer Vision With Microsoft Kinect Sensor: A Review,
Cyber(43), No. 5, 2013, pp. 1318-1334.
IEEE DOI
1309
omputer vision; Kinect sensor; depth image; information fusion
BibRef
Camplani, M.,
Mantecon, T.,
Salgado, L.,
Depth-Color Fusion Strategy for 3-D Scene Modeling With Kinect,
Cyber(43), No. 6, 2013, pp. 1560-1571.
IEEE DOI
1312
adaptive filters
BibRef
Flener, C.[Claude],
Vaaja, M.[Matti],
Jaakkola, A.[Anttoni],
Krooks, A.[Anssi],
Kaartinen, H.[Harri],
Kukko, A.[Antero],
Kasvi, E.[Elina],
Hyyppä, H.[Hannu],
Hyyppä, J.[Juha],
Alho, P.[Petteri],
Seamless Mapping of River Channels at High Resolution Using Mobile
LiDAR and UAV-Photography,
RS(5), No. 12, 2013, pp. 6382-6407.
DOI Link
1402
BibRef
Vaaja, M.[Matti],
Kurkela, M.[Matti],
Hyyppä, H.[Hannu],
Alho, P.[Petteri],
Hyyppä, J.[Juha],
Kukko, A.[Antero],
Kaartinen, H.[Harri],
Kasvi, E.[Elina],
Kaasalainen, S.[Sanna],
Rönnholm, P.[Petri],
Fusion of Mobile Laser Scanning and Panoramic Images for Studying River
Environment Topography And Changes,
Laser11(xx-yy).
DOI Link
1109
BibRef
Zhao, G.Q.[Gang-Qiang],
Xiao, X.H.[Xu-Hong],
Yuan, J.S.[Jun-Song],
Ng, G.W.[Gee Wah],
Fusion of 3D-LIDAR and camera data for scene parsing,
JVCIR(25), No. 1, 2014, pp. 165-183.
Elsevier DOI
1502
Scene parsing
BibRef
Gerke, M.[Markus],
Xiao, J.[Jing],
Fusion of airborne laserscanning point clouds and images for
supervised and unsupervised scene classification,
PandRS(87), No. 1, 2014, pp. 78-92.
Elsevier DOI
1402
Visibility
BibRef
Gerke, M.,
Nex, F.,
Jende, P.,
Co-Registration of Terrestrial and UAV-Based Images:
Experimental Results,
EuroCOW16(xx-yy).
DOI Link
1605
BibRef
Mikhelson, I.V.[Ilya V.],
Lee, P.G.[Philip G.],
Sahakian, A.V.[Alan V.],
Wu, Y.[Ying],
Katsaggelos, A.K.[Aggelos K.],
Automatic, fast, online calibration between depth and color cameras,
JVCIR(25), No. 1, 2014, pp. 218-226.
Elsevier DOI
1502
Calibration
BibRef
Parmehr, E.G.[Ebadat G.],
Fraser, C.S.[Clive S.],
Zhang, C.S.[Chun-Sun],
Leach, J.[Joseph],
Automatic registration of optical imagery with 3D LiDAR data using
statistical similarity,
PandRS(88), No. 1, 2014, pp. 28-40.
Elsevier DOI
1402
BibRef
Earlier:
An effective histogram binning for mutual information based
registration of optical imagery and 3D LiDAR data,
ICIP13(1286-1290)
IEEE DOI
1402
BibRef
Earlier:
Automatic Registration of Aerial Images with 3D LiDAR Data Using a
Hybrid Intensity-Based Method,
DICTA12(1-7).
IEEE DOI
1303
Biomedical imaging
Registration
BibRef
Parmehr, E.G.[Ebadat G.],
Fraser, C.S.[Clive S.],
Zhang, C.S.[Chun-Sun],
Automatic Parameter Selection for Intensity-Based Registration of
Imagery to LiDAR Data,
GeoRS(54), No. 12, December 2016, pp. 7032-7043.
IEEE DOI
1612
BibRef
Earlier: A1, A3, A2:
Automatic Registration of Multi-source Data Using Mutual Information,
AnnalsPRS(I-7), No. 2012, pp. 303-308.
DOI Link
1209
geographic information systems
BibRef
Lee, J.[Juheon],
Cai, X.H.[Xiao-Hao],
Schonlieb, C.B.,
Coomes, D.A.,
Nonparametric Image Registration of Airborne LiDAR, Hyperspectral and
Photographic Imagery of Wooded Landscapes,
GeoRS(53), No. 11, November 2015, pp. 6073-6084.
IEEE DOI
1509
geophysical image processing
BibRef
Mutto, C.D.[Carlo Dal],
Zanuttigh, P.[Pietro],
Cortelazzo, G.M.[Guido Maria],
Probabilistic ToF and Stereo Data Fusion Based on Mixed Pixels
Measurement Models,
PAMI(37), No. 11, November 2015, pp. 2260-2272.
IEEE DOI
1511
BibRef
Earlier:
A Probabilistic Approach to ToF and Stereo Data Fusion,
3DPVT10(xx-yy).
WWW Link.
1005
image fusion
BibRef
Marin, G.[Giulio],
Zanuttigh, P.[Pietro],
Mattoccia, S.[Stefano],
Reliable Fusion of ToF and Stereo Depth Driven by Confidence Measures,
ECCV16(VII: 386-401).
Springer DOI
1611
BibRef
Mutto, C.D.[Carlo Dal],
Zanuttigh, P.[Pietro],
Mattoccia, S.[Stefano],
Cortelazzo, G.M.[Guido Maria],
Locally Consistent ToF and Stereo Data Fusion,
CDC4CV12(I: 598-607).
Springer DOI
1210
BibRef
Kwak, K.[Kiho],
Kim, J.S.[Jun-Sik],
Huberr, D.F.[Daniel F.],
Kanade, T.[Takeo],
Online Approximate Model Representation Based on Scale-Normalized and
Fronto-Parallel Appearance,
IJCV(117), No. 1, March 2016, pp. 48-69.
Springer DOI
1604
BibRef
Brell, M.,
Rogass, C.,
Segl, K.,
Bookhagen, B.,
Guanter, L.,
Improving Sensor Fusion: A Parametric Method for the Geometric
Coalignment of Airborne Hyperspectral and Lidar Data,
GeoRS(54), No. 6, June 2016, pp. 3460-3474.
IEEE DOI
1606
geophysical image processing
BibRef
Safdarinezhad, A.[Alireza],
Mokhtarzade, M.[Mehdi],
Zoej, M.J.V.[Mohammad Javad Valadan],
Shadow-Based Hierarchical Matching for the Automatic Registration of
Airborne LiDAR Data and Space Imagery,
RS(8), No. 6, 2016, pp. 466.
DOI Link
1608
BibRef
Brell, M.,
Segl, K.,
Guanter, L.,
Bookhagen, B.,
Hyperspectral and Lidar Intensity Data Fusion: A Framework for the
Rigorous Correction of Illumination, Anisotropic Effects, and Cross
Calibration,
GeoRS(55), No. 5, May 2017, pp. 2799-2810.
IEEE DOI
1705
geophysical image processing, hyperspectral imaging,
image classification, image fusion, land use, optical radar,
remote sensing by laser beam, vegetation, active sensor system,
airborne lidar scanner, anisotropy effect,
geometric accuracy, hyperspectral data,
BibRef
Zhang, R.C.[Rong-Chun],
Li, H.[Hao],
Liu, L.[Lanfa],
Wu, M.F.[Ming-Fei],
A G-Super4PCS Registration Method for Photogrammetric and TLS Data in
Geology,
IJGI(6), No. 5, 2017, pp. xx-yy.
DOI Link
1706
TLS: Terrestrial Laser Scanner
BibRef
Kandare, K.[Kaja],
Dalponte, M.[Michele],
Ørka, H.O.[Hans Ole],
Frizzera, L.[Lorenzo],
Næsset, E.[Erik],
Prediction of Species-Specific Volume Using Different Inventory
Approaches by Fusing Airborne Laser Scanning and Hyperspectral Data,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Rasti, B.[Behnood],
Ghamisi, P.[Pedram],
Plaza, J.,
Plaza, A.,
Fusion of Hyperspectral and LiDAR Data Using Sparse and Low-Rank
Component Analysis,
GeoRS(55), No. 11, November 2017, pp. 6354-6365.
IEEE DOI
1711
Data mining, Feature extraction, Gray-scale, Hyperspectral imaging,
Laser radar, Extinction profiles (EPs),
hyperspectral, light detection and ranging (LiDAR), sparse, and,
low-rank, component, analysis, (SLRCA)
BibRef
Rasti, B.[Behnood],
Ghamisi, P.[Pedram],
Ulfarsson, M.O.[Magnus O.],
Hyperspectral Feature Extraction Using Sparse and Smooth Low-Rank
Analysis,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Rasti, B.,
Ulfarsson, M.O.,
Sveinsson, J.R.,
Hyperspectral Feature Extraction Using Total Variation Component
Analysis,
GeoRS(54), No. 12, December 2016, pp. 6976-6985.
IEEE DOI
1612
feature extraction
BibRef
Rasti, B.,
Ghamisi, P.,
Gloaguen, R.,
Hyperspectral and LiDAR Fusion Using Extinction Profiles and Total
Variation Component Analysis,
GeoRS(55), No. 7, July 2017, pp. 3997-4007.
IEEE DOI
1706
Data mining, Feature extraction, Hyperspectral imaging,
Laser radar, Support vector machines, Extinction profiles (EPs),
feature fusion,
orthogonal total variation component analysis (OTVCA),
random forest (RF), support, vector, machines, (SVMs)
BibRef
Li, J.P.[Jian-Ping],
Yang, B.S.[Bi-Sheng],
Chen, C.[Chi],
Huang, R.G.[Rong-Gang],
Dong, Z.[Zhen],
Xiao, W.[Wen],
Automatic registration of panoramic image sequence and mobile laser
scanning data using semantic features,
PandRS(136), 2018, pp. 41-57.
Elsevier DOI
1802
Panoramic image sequence, Mobile laser scanning data,
Semantic features, Registration
BibRef
Yamaguchi, M.[Masahiro],
Truong, T.P.[Trong Phuc],
Mori, S.[Shohei],
Nozick, V.[Vincent],
Saito, H.[Hideo],
Yachida, S.[Shoji],
Sato, H.[Hideaki],
Superimposing Thermal-Infrared Data on 3D Structure Reconstructed by
RGB Visual Odometry,
IEICE(E101-D), No. 5, May 2018, pp. 1296-1307.
WWW Link.
1805
BibRef
Choi, K.H.[Kang Hyeok],
Kim, C.J.[Chang-Jae],
Kim, Y.G.[Yon-Gil],
Comprehensive Analysis of System Calibration between Optical Camera
and Range Finder,
IJGI(7), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Zhang, R.[Rui],
Li, G.Y.[Guang-Yun],
Li, M.L.[Ming-Lei],
Wang, L.[Li],
Fusion of images and point clouds for the semantic segmentation of
large-scale 3D scenes based on deep learning,
PandRS(143), 2018, pp. 85-96.
Elsevier DOI
1808
3D scene segmentation, 2D image, 3D point cloud, Large-scale, High-resolution
BibRef
Xiang, X.Y.[Xue-Yong],
Zong, W.P.[Wen-Peng],
Li, G.Y.[Guang-Yun],
Learnable Upsampling-Based Point Cloud Semantic Segmentation,
ICIVC22(340-347)
IEEE DOI
2301
Point cloud compression, Image segmentation, Interpolation, Costs,
Correlation, Semantics, point cloud, semantic segmentation, upsamping
BibRef
Li, H.[Hao],
Ghamisi, P.[Pedram],
Soergel, U.[Uwe],
Zhu, X.X.[Xiao Xiang],
Hyperspectral and LiDAR Fusion Using Deep Three-Stream Convolutional
Neural Networks,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link
1811
BibRef
Polewski, P.[Przemyslaw],
Yao, W.[Wei],
Cao, L.[Lin],
Gao, S.[Sha],
Marker-free coregistration of UAV and backpack LiDAR point clouds in
forested areas,
PandRS(147), 2019, pp. 307-318.
Elsevier DOI
1901
Coregistration, Unmanned aerial vehicle,
Backpack laser scanning, Graph matching, Precision forestry
BibRef
Brell, M.[Maximilian],
Segl, K.[Karl],
Guanter, L.[Luis],
Bookhagen, B.[Bodo],
3D hyperspectral point cloud generation: Fusing airborne laser
scanning and hyperspectral imaging sensors for improved object-based
information extraction,
PandRS(149), 2019, pp. 200-214.
Elsevier DOI
1903
Lidar, Multispectral point cloud, Laser return intensity,
Unmixing, Sharpening, Imaging spectroscopy, In-flight,
Semantic labeling
BibRef
Li, Y.S.[Yun-Song],
Ge, C.[Chiru],
Sun, W.W.[Wei-Wei],
Peng, J.T.[Jiang-Tao],
Du, Q.[Qian],
Wang, K.[Keyan],
Hyperspectral and LiDAR Data Fusion Classification Using Superpixel
Segmentation-Based Local Pixel Neighborhood Preserving Embedding,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Slawik, L.[Lukasz],
Niedzielko, J.[Jan],
Kania, A.[Adam],
Piórkowski, H.[Hubert],
Kopec, D.[Dominik],
Multiple Flights or Single Flight Instrument Fusion of Hyperspectral
and ALS Data? A Comparison of their Performance for Vegetation
Mapping,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link
1905
Airborne Laser System.
BibRef
Zhou, K.Q.[Ke-Qi],
Ming, D.P.[Dong-Ping],
Lv, X.W.[Xian-Wei],
Fang, J.[Ju],
Wang, M.[Min],
CNN-Based Land Cover Classification Combining Stratified Segmentation
and Fusion of Point Cloud and Very High-Spatial Resolution Remote
Sensing Image Data,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Xue, Z.H.[Zhao-Hui],
Yang, S.[Sirui],
Zhang, H.Y.[Hong-Yan],
Du, P.J.[Pei-Jun],
Coupled Higher-Order Tensor Factorization for Hyperspectral and LiDAR
Data Fusion and Classification,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Zhang, W.Y.[Wan-Yi],
Fu, X.H.[Xiu-Hua],
Wang, C.Y.[Chun-Yang],
Image quality optimization towards lidar registration based on
iterative termination,
JVCIR(64), 2019, pp. 102634.
Elsevier DOI
1911
Laser radar, Registration image, Quality optimization, Image processing
BibRef
Bybee, T.C.,
Budge, S.E.,
Method for 3-D Scene Reconstruction Using Fused LiDAR and Imagery
From a Texel Camera,
GeoRS(57), No. 11, November 2019, pp. 8879-8889.
IEEE DOI
1911
Laser radar, Cameras, Image reconstruction, Aircraft navigation,
Aircraft, Surface reconstruction, Bundle adjustment,
remote sensing
BibRef
Gong, Z.[Zheng],
Lin, H.J.[Hao-Jia],
Zhang, D.D.[De-Dong],
Luo, Z.P.[Zhi-Peng],
Zelek, J.[John],
Chen, Y.P.[Yi-Ping],
Nurunnabi, A.[Abdul],
Wang, C.[Cheng],
Li, J.[Jonathan],
A Frustum-based probabilistic framework for 3D object detection by
fusion of LiDAR and camera data,
PandRS(159), 2020, pp. 90-100.
Elsevier DOI
1912
3D object detection, CNN, Deep learning, LiDAR point clouds, MLS, SLAM
BibRef
Park, K.[Kihong],
Kim, S.[Seungryong],
Sohn, K.H.[Kwang-Hoon],
High-Precision Depth Estimation Using Uncalibrated LiDAR and Stereo
Fusion,
ITS(21), No. 1, January 2020, pp. 321-335.
IEEE DOI
2001
Laser radar, Calibration,
Robot sensing systems, Cameras, Estimation, Interpolation,
3D reconstruction
BibRef
Liu, J.,
Zhang, L.,
Wang, Z.,
Wang, R.,
A New Fusion Algorithm for Depth Images Based on Virtual Views,
GeoRS(58), No. 2, February 2020, pp. 1171-1181.
IEEE DOI
2001
Image fusion, Optical imaging, Cameras,
Surface reconstruction, Fuses, Redundancy, Depth image,
virtual view
BibRef
Hang, R.,
Li, Z.,
Ghamisi, P.,
Hong, D.,
Xia, G.,
Liu, Q.,
Classification of Hyperspectral and LiDAR Data Using Coupled CNNs,
GeoRS(58), No. 7, July 2020, pp. 4939-4950.
IEEE DOI
2006
Hyperspectral imaging, Laser radar, Feature extraction, Fuses,
Data models, Convolutional neural networks (CNNs),
parameter sharing
BibRef
Gong, B.[Biao],
Yan, C.G.[Cheng-Gang],
Bai, J.J.[Jun-Jie],
Zou, C.Q.[Chang-Qing],
Gao, Y.[Yue],
Hamming Embedding Sensitivity Guided Fusion Network for 3D Shape
Representation,
IP(29), 2020, pp. 8381-8390.
IEEE DOI
2008
Feature extraction, Shape, Data mining,
Task analysis, Sensitivity, Convolution, 3D Multimodal fusion, mesh,
hamming space
BibRef
Zhao, X.,
Tao, R.,
Li, W.,
Li, H.C.,
Du, Q.,
Liao, W.,
Philips, W.,
Joint Classification of Hyperspectral and LiDAR Data Using
Hierarchical Random Walk and Deep CNN Architecture,
GeoRS(58), No. 10, October 2020, pp. 7355-7370.
IEEE DOI
2009
Feature extraction, Laser radar, Hyperspectral imaging,
Convolution, Probability distribution,
hierarchical random walk
BibRef
Gao, X.,
Shen, S.,
Zhu, L.,
Shi, T.,
Wang, Z.,
Hu, Z.,
Complete Scene Reconstruction by Merging Images and Laser Scans,
CirSysVideo(30), No. 10, October 2020, pp. 3688-3701.
IEEE DOI
2010
Image reconstruction, Pipelines, Laser modes,
Merging, Planning,
image synthesis and matching
BibRef
Wang, X.Y.[Xuan-Yin],
Lin, T.P.[Tian-Pei],
Jiang, X.S.[Xue-Song],
Xiang, K.[Ke],
Pan, F.[Feng],
Reliable fusion of ToF and stereo data based on joint depth filter,
JVCIR(74), 2021, pp. 103006.
Elsevier DOI
2101
ToF, Stereo vision, Data fusion, 3D block matching, Seed-growing
BibRef
Jia, S.[Sen],
Zhan, Z.W.[Zhang-Wei],
Zhang, M.[Meng],
Xu, M.[Meng],
Huang, Q.[Qiang],
Zhou, J.[Jun],
Jia, X.P.[Xiu-Ping],
Multiple Feature-Based Superpixel-Level Decision Fusion for
Hyperspectral and LiDAR Data Classification,
GeoRS(59), No. 2, February 2021, pp. 1437-1452.
IEEE DOI
2101
Laser radar, Feature extraction, Hyperspectral imaging, Sensors,
Data mining, Feature extraction, feature fusion, superpixel segmentation
BibRef
Jia, S.[Sen],
Zhang, M.[Meng],
Xian, J.J.[Jun-Jian],
Zhuang, J.Y.[Jia-Yue],
Huang, Q.[Qiang],
Superpixel-Based Feature Extraction and Fusion Method for
Hyperspectral and LiDAR Classification,
ICPR18(764-769)
IEEE DOI
1812
Feature extraction, Hyperspectral imaging, Laser radar,
Wavelet domain, Entropy, Image segmentation
BibRef
Megahed, Y.[Yasmine],
Shaker, A.[Ahmed],
Yan, W.Y.[Wai Yeung],
Fusion of Airborne LiDAR Point Clouds and Aerial Images for
Heterogeneous Land-Use Urban Mapping,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Chen, B.,
Shi, S.,
Sun, J.,
Chen, B.,
Guo, K.,
Du, L.,
Yang, J.,
Xu, Q.,
Song, S.,
Gong, W.,
Using HSI Color Space to Improve the Multispectral Lidar
Classification Error Caused by Measurement Geometry,
GeoRS(59), No. 4, April 2021, pp. 3567-3579.
IEEE DOI
2104
Image color analysis, Laser radar, Radiometry, Calibration, Ceramics,
Geometry, Imaging, Hue-saturation-intensity (HSI) color space,
target classification
BibRef
Fekry, R.[Reda],
Yao, W.[Wei],
Cao, L.[Lin],
Shen, X.[Xin],
Marker-Less UAV-LiDAR Strip Alignment in Plantation Forests Based on
Topological Persistence Analysis of Clustered Canopy Cover,
IJGI(10), No. 5, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Bai, L.[Ling],
Li, Y.G.[Yin-Guo],
Cen, M.[Ming],
Hu, F.C.[Fang-Chao],
3D Instance Segmentation and Object Detection Framework Based on the
Fusion of Lidar Remote Sensing and Optical Image Sensing,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Li, Y.[Yong],
Luo, Y.Z.[Yin-Zheng],
Gu, X.[Xia],
Chen, D.[Dong],
Gao, F.[Fang],
Shuang, F.[Feng],
Point Cloud Classification Algorithm Based on the Fusion of the Local
Binary Pattern Features and Structural Features of Voxels,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zhu, Z.[Zifa],
Ma, Y.[Yuebo],
Zhao, R.[Rujin],
Liu, E.[Enhai],
Zeng, S.[Sikang],
Yi, J.H.[Jin-Hui],
Ding, J.[Jian],
Improve the Estimation of Monocular Vision 6-DOF Pose Based on the
Fusion of Camera and Laser Rangefinder,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Fu, H.[Hao],
Xue, H.Z.[Han-Zhang],
Hu, X.C.[Xiao-Chang],
Liu, B.[Bokai],
LiDAR Data Enrichment by Fusing Spatial and Temporal Adjacent Frames,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zhu, B.[Bai],
Ye, Y.X.[Yuan-Xin],
Zhou, L.[Liang],
Li, Z.L.[Zhi-Lin],
Yin, G.F.[Gao-Fei],
Robust registration of aerial images and LiDAR data using spatial
constraints and Gabor structural features,
PandRS(181), 2021, pp. 129-147.
Elsevier DOI
2110
Co-registration, Aerial images, LiDAR, Spatial constraints,
Gabor structural features, SDFG
BibRef
Zhao, J.H.[Jiang-Hong],
Wang, Y.R.[Yin-Rui],
Cao, Y.[Yuee],
Guo, M.[Ming],
Huang, X.F.[Xian-Feng],
Zhang, R.J.[Rui-Ju],
Dou, X.T.[Xin-Tong],
Niu, X.Y.[Xin-Yu],
Cui, Y.Y.[Yuan-Yuan],
Wang, J.[Jun],
The Fusion Strategy of 2D and 3D Information Based on Deep Learning:
A Review,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Yao, C.J.[Chun-Jing],
Ma, H.C.[Hong-Chao],
Luo, W.J.[Wen-Jun],
Ma, H.[Haichi],
A Precisely One-Step Registration Methodology for Optical Imagery and
LiDAR Data Using Virtual Point Primitives,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Chen, Y.M.[Yan-Ming],
Liu, X.Q.[Xiao-Qiang],
Xiao, Y.J.[Yi-Jia],
Zhao, Q.Q.[Qi-Qi],
Wan, S.[Sida],
Three-Dimensional Urban Land Cover Classification by Prior-Level
Fusion of LiDAR Point Cloud and Optical Imagery,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Zhang, Y.J.[Yong-Jun],
Zou, S.Y.[Si-Yuan],
Liu, X.[Xinyi],
Huang, X.[Xu],
Wan, Y.[Yi],
Yao, Y.X.[Yong-Xiang],
LiDAR-guided stereo matching with a spatial consistency constraint,
PandRS(183), 2022, pp. 164-177.
Elsevier DOI
2201
LiDAR, Stereo matching, Semi-global matching, AD-Census,
Multi-modal data fusion, Spatial consistency constraint
BibRef
Cui, Y.D.[Yao-Dong],
Chen, R.[Ren],
Chu, W.B.[Wen-Bo],
Chen, L.[Long],
Tian, D.X.[Da-Xin],
Li, Y.[Ying],
Cao, D.[Dongpu],
Deep Learning for Image and Point Cloud Fusion in Autonomous Driving:
A Review,
ITS(23), No. 2, February 2022, pp. 722-739.
IEEE DOI
2202
Feature extraction, Deep learning, Laser radar, Convolution,
Semantics, Geometry, Camera-LiDAR fusion, sensor fusion,
deep learning
BibRef
Ling, X.[Xiao],
Qin, R.[Rongjun],
A graph-matching approach for cross-view registration of over-view
and street-view based point clouds,
PandRS(185), 2022, pp. 2-15.
Elsevier DOI
2202
Cross-view registration, Global optimization, Multi-view satellite image
BibRef
Chen, J.[Jiyi],
Tang, X.M.[Xin-Ming],
Xue, Y.[Yucai],
Li, G.Y.[Guo-Yuan],
Zhou, X.Q.[Xiao-Qing],
Hu, L.[Liuru],
Zhang, S.T.[Shuai-Tai],
Registration and Combined Adjustment for the Laser Altimetry Data and
High-Resolution Optical Stereo Images of the GF-7 Satellite,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Liu, C.R.[Chang-Ru],
Cui, X.[Ximin],
Guo, L.[Li],
Wu, L.[Ling],
Tang, X.M.[Xin-Ming],
Liu, S.H.[Shu-Han],
Yuan, D.[Debao],
Wang, X.[Xia],
Satellite Laser Altimetry Data-Supported High-Accuracy Mapping of
GF-7 Stereo Images,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Tang, X.M.[Xin-Ming],
Zhou, P.[Ping],
Guo, L.[Li],
Pan, H.B.[Hong-Bo],
Integrating Stereo Images and Laser Altimetry Points Derived from the
Same Satellite for High-Accuracy Stereo Mapping,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Tu, B.[Bing],
Zhu, Y.[Yu],
Zhou, C.[Chengle],
Chen, S.Y.[Si-Yuan],
Plaza, A.[Antonio],
Optimized Spatial Gradient Transfer for Hyperspectral-LiDAR Data
Classification,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Loghin, A.M.[Ana-Maria],
Otepka-Schremmer, J.[Johannes],
Ressl, C.[Camillo],
Pfeifer, N.[Norbert],
Improvement of VHR Satellite Image Geometry with High Resolution
Elevation Models,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Deng, Y.[Yong],
Xiao, J.[Jimin],
Zhou, S.Z.Y.[Steven Zhi-Ying],
ToF and Stereo Data Fusion Using Dynamic Search Range Stereo Matching,
MultMed(24), 2022, pp. 2739-2751.
IEEE DOI
2206
Estimation, Reliability, Cameras, Data integration,
Feature extraction, Task analysis, Probabilistic logic, neural network
BibRef
Norton, C.L.[Cynthia L.],
Hartfield, K.[Kyle],
Collins, C.D.H.[Chandra D. Holifield],
van Leeuwen, W.J.D.[Willem J. D.],
Metz, L.J.[Loretta J.],
Multi-Temporal LiDAR and Hyperspectral Data Fusion for Classification
of Semi-Arid Woody Cover Species,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Xu, X.B.[Xia-Bin],
Zhang, L.[Lei],
Yang, J.[Jian],
Cao, C.F.[Chen-Fei],
Wang, W.[Wen],
Ran, Y.Y.[Ying-Ying],
Tan, Z.Y.[Zhi-Ying],
Luo, M.Z.[Min-Zhou],
A Review of Multi-Sensor Fusion SLAM Systems Based on 3D LIDAR,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Berrio, J.S.[Julie Stephany],
Shan, M.[Mao],
Worrall, S.[Stewart],
Nebot, E.[Eduardo],
Camera-LIDAR Integration: Probabilistic Sensor Fusion for Semantic
Mapping,
ITS(23), No. 7, July 2022, pp. 7637-7652.
IEEE DOI
2207
Laser radar, Cameras, Uncertainty, Semantics, Probabilistic logic,
Sensor fusion, Sensor fusion, heuristic, uncertainty, semantic,
mapping
BibRef
Zhou, L.[Lin],
Geng, J.[Jie],
Jiang, W.[Wen],
Joint Classification of Hyperspectral and LiDAR Data Based on
Position-Channel Cooperative Attention Network,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Beltrán, J.[Jorge],
Guindel, C.[Carlos],
de la Escalera, A.[Arturo],
García, F.[Fernando],
Automatic Extrinsic Calibration Method for LiDAR and Camera Sensor
Setups,
ITS(23), No. 10, October 2022, pp. 17677-17689.
IEEE DOI
2210
Calibration, Laser radar, Robot sensing systems,
Performance evaluation, Machine vision, Automatic calibration,
stereo cameras
BibRef
Peng, Y.[Ying],
Qin, Y.[Yechen],
Tang, X.L.[Xiao-Lin],
Zhang, Z.Q.[Zhi-Qiang],
Deng, L.[Lei],
Survey on Image and Point-Cloud Fusion-Based Object Detection in
Autonomous Vehicles,
ITS(23), No. 12, December 2022, pp. 22772-22789.
IEEE DOI
2212
Survey, Point Cloud Fusion. Object detection, Feature extraction, Cameras, Autonomous vehicles,
Detectors, Laser radar, Deep learning, Autonomous vehicle,
point-cloud
BibRef
Chen, C.K.[Cheng-Kai],
Lan, J.H.[Jin-Hui],
Liu, H.T.[Hao-Ting],
Chen, S.[Shuai],
Wang, X.H.[Xiao-Han],
Automatic Calibration between Multi-Lines LiDAR and Visible Light
Camera Based on Edge Refinement and Virtual Mask Matching,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Yan, S.[Shen],
Zhang, M.[Maojun],
Peng, Y.[Yang],
Liu, Y.[Yu],
Tan, H.L.[Han-Lin],
AgentI2P: Optimizing Image-to-Point Cloud Registration via Behaviour
Cloning and Reinforcement Learning,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Zhu, A.[Angfan],
Xiao, Y.[Yang],
Liu, C.X.[Cheng-Xin],
Cao, Z.G.[Zhi-Guo],
Robust LiDAR-Camera Alignment With Modality Adapted Local-to-Global
Representation,
CirSysVideo(33), No. 1, January 2023, pp. 59-73.
IEEE DOI
2301
Cameras, Laser radar, Feature extraction, Representation learning,
Estimation, Transformers, Point cloud compression, vision transformer
BibRef
Zhu, A.[Angfan],
Xiao, Y.[Yang],
Liu, C.X.[Cheng-Xin],
Tan, M.K.[Ming-Kui],
Cao, Z.G.[Zhi-Guo],
Lightweight LiDAR-Camera Alignment With Homogeneous Local-Global
Aware Representation,
ITS(25), No. 11, November 2024, pp. 15922-15933.
IEEE DOI Code:
WWW Link.
2411
Laser radar, Cameras, Transformers, Convolutional neural networks,
Feature extraction, 6-DOF, Representation learning, transformer
BibRef
Zhang, M.[Maqun],
Gao, F.[Feng],
Zhang, T.[Tiange],
Gan, Y.[Yanhai],
Dong, J.Y.[Jun-Yu],
Yu, H.[Hui],
Attention Fusion of Transformer-Based and Scale-Based Method for
Hyperspectral and LiDAR Joint Classification,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Zhang, K.P.[Kun-Peng],
Liu, Y.H.[Yan-Heng],
Mei, F.[Fang],
Jin, J.Y.[Jing-Yi],
Wang, Y.M.[Yi-Ming],
Boost Correlation Features with 3D-MiIoU-Based Camera-LiDAR Fusion
for MODT in Autonomous Driving,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Wu, H.B.[Hai-Bin],
Dai, S.Y.[Shi-Yu],
Liu, C.Y.[Cheng-Yang],
Wang, A.[Aili],
Iwahori, Y.[Yuji],
A Novel Dual-Encoder Model for Hyperspectral and LiDAR Joint
Classification via Contrastive Learning,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Xu, X.L.[Xin-Li],
Dong, S.C.[Shao-Cong],
Xu, T.F.[Ting-Fa],
Ding, L.[Lihe],
Wang, J.[Jie],
Jiang, P.[Peng],
Song, L.Q.[Li-Qiang],
Li, J.A.[Jian-An],
FusionRCNN: LiDAR-Camera Fusion for Two-Stage 3D Object Detection,
RS(15), No. 7, 2023, pp. 1839.
DOI Link
2304
BibRef
Zhang, M.M.[Meng-Meng],
Li, W.[Wei],
Zhang, Y.X.[Yu-Xiang],
Tao, R.[Ran],
Du, Q.[Qian],
Hyperspectral and LiDAR Data Classification Based on Structural
Optimization Transmission,
Cyber(53), No. 5, May 2023, pp. 3153-3164.
IEEE DOI
2305
Laser radar, Feature extraction, Optimization, Indexes,
Hyperspectral imaging, Collaboration, Task analysis,
pattern recognition remote sensing
BibRef
Xu, J.H.[Jun-Hao],
Yao, C.J.[Chun-Jing],
Ma, H.C.[Hong-Chao],
Qian, C.[Chen],
Wang, J.[Jie],
Automatic Point Cloud Colorization of Ground-Based LiDAR Data Using
Video Imagery without Position and Orientation System,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Song, H.[Huacui],
Yang, Y.[Yuanwei],
Gao, X.J.[Xian-Jun],
Zhang, M.[Maqun],
Li, S.H.[Shao-Hua],
Liu, B.[Bo],
Wang, Y.J.[Yan-Jun],
Kou, Y.[Yuan],
Joint Classification of Hyperspectral and LiDAR Data Using
Binary-Tree Transformer Network,
RS(15), No. 11, 2023, pp. 2706.
DOI Link
2306
BibRef
Hanuš, J.[Jan],
Slezák, L.[Lukáš],
Fabiánek, T.[Tomáš],
Fajmon, L.[Lukáš],
Hanousek, T.[Tomáš],
Janoutová, R.[Ružena],
Kopkáne, D.[Daniel],
Novotný, J.[Jan],
Pavelka, K.[Karel],
Pikl, M.[Miroslav],
Zemek, F.[František],
Homolová, L.[Lucie],
Flying Laboratory of Imaging Systems: Fusion of Airborne
Hyperspectral and Laser Scanning for Ecosystem Research,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Cao, L.P.[Li-Peng],
He, Y.S.[Yan-Song],
Luo, Y.[Yugong],
Chen, J.[Jian],
Layered SOTIF Analysis and 3 sigma-Criterion-Based Adaptive EKF for
Lidar-Based Multi-Sensor Fusion Localization System on Foggy Days,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Chang, X.P.[Xue-Peng],
Pan, H.H.[Hui-Hui],
Sun, W.C.[Wei-Chao],
Gao, H.J.[Hui-Jun],
A Multi-Phase Camera-LiDAR Fusion Network for 3D Semantic
Segmentation With Weak Supervision,
CirSysVideo(33), No. 8, August 2023, pp. 3737-3746.
IEEE DOI
2308
Point cloud compression, Semantic segmentation, Laser radar,
Annotations, Semantics, Robustness, Autonomous driving,
weak supervision
BibRef
Klein, D.S.[Devi S.],
Lago, M.A.[Miguel A.],
Abbey, C.K.[Craig K.],
Eckstein, M.P.[Miguel P.],
A 2D Synthesized Image Improves the 3D Search for Foveated Visual
Systems,
MedImg(42), No. 8, August 2023, pp. 2176-2188.
IEEE DOI
2308
Visualization, Observers, Monitoring, Biomedical monitoring,
Solid modeling, Location awareness, Visual search, model observer, 2D-S
BibRef
Jonassen, V.O.[Vetle O.],
Kjørsvik, N.S.[Narve S.],
Gjevestad, J.G.O.[Jon Glenn Omholt],
Scalable hybrid adjustment of images and LiDAR point clouds,
PandRS(202), 2023, pp. 652-662.
Elsevier DOI
2308
LiDAR, Photogrammetry, Hybrid adjustment, Time segmentation,
Matching, Voxel
BibRef
Jonassen, V.O.[Vetle O.],
Kjørsvik, N.S.[Narve S.],
Blankenberg, L.E.[Leif Erik],
Gjevestad, J.G.O.[Jon Glenn Omholt],
Aerial Hybrid Adjustment of LiDAR Point Clouds, Frame Images, and
Linear Pushbroom Images,
RS(16), No. 17, 2024, pp. 3179.
DOI Link
2409
BibRef
Li, W.J.[Wen-Jie],
Liu, J.[Jia],
Hao, W.[Wei],
Liu, H.S.[Hai-Song],
Ren, D.[Dayong],
Wang, Y.Y.[Yan-Yan],
Chen, L.J.[Li-Jun],
Online deep Bingham network for probabilistic orientation estimation,
IET-CV(17), No. 6, 2023, pp. 663-675.
DOI Link
2310
pose etimation, probability, robot vision
BibRef
Liu, H.S.[Hai-Song],
Lu, T.[Tao],
Xu, Y.H.[Yi-Hui],
Liu, J.[Jia],
Wang, L.M.[Li-Min],
Learning Optical Flow and Scene Flow With Bidirectional Camera-LiDAR
Fusion,
PAMI(46), No. 4, April 2024, pp. 2378-2395.
IEEE DOI
2403
Optical flow, Artificial neural networks, Image motion analysis,
Pipelines, Laser radar, Multi-modal, camera-LiDAR fusion,
autonomous driving
BibRef
Liu, H.S.[Hai-Song],
Lu, T.[Tao],
Xu, Y.H.[Yi-Hui],
Liu, J.[Jia],
Li, W.J.[Wen-Jie],
Chen, L.J.[Li-Jun],
CamLiFlow: Bidirectional Camera-LiDAR Fusion for Joint Optical Flow
and Scene Flow Estimation,
CVPR22(5781-5791)
IEEE DOI
2210
Image motion analysis, Art, Fuses, Estimation, Feature extraction,
Low-level vision, 3D from multi-view and sensors,
Scene analysis and understanding
BibRef
Sato, S.[Shogo],
Yao, Y.[Yasuhiro],
Yoshida, T.[Taiga],
Ando, S.[Shingo],
Shimamura, J.[Jun],
Shadow Detection Based on Luminance-LiDAR Intensity Uncorrelation,
IEICE(E106-D), No. 9, September 2023, pp. 1556-1563.
WWW Link.
2310
BibRef
Dong, W.Q.[Wen-Qian],
Yang, T.[Teng],
Qu, J.[Jiahui],
Zhang, T.[Tian],
Xiao, S.[Song],
Li, Y.S.[Yun-Song],
Joint Contextual Representation Model-Informed Interpretable Network
With Dictionary Aligning for Hyperspectral and LiDAR Classification,
CirSysVideo(33), No. 11, November 2023, pp. 6804-6818.
IEEE DOI
2311
BibRef
Zhu, H.Q.[Han-Qi],
Deng, J.J.[Jia-Jun],
Zhang, Y.[Yu],
Ji, J.M.[Jian-Min],
Mao, Q.Y.[Qiu-Yu],
Li, H.Q.[Hou-Qiang],
Zhang, Y.Y.[Yan-Yong],
VPFNet: Improving 3D Object Detection With Virtual Point Based LiDAR
and Stereo Data Fusion,
MultMed(25), 2023, pp. 5291-5304.
IEEE DOI
2311
BibRef
Zhang, L.[Lei],
Li, X.[Xu],
Tang, K.[Kaichen],
Jiang, Y.Z.[Yun-Zhe],
Yang, L.[Liu],
Zhang, Y.G.[Yong-Gang],
Chen, X.[Xianyi],
FS-Net: LiDAR-Camera Fusion with Matched Scale for 3D Object
Detection in Autonomous Driving,
ITS(24), No. 11, November 2023, pp. 12154-12165.
IEEE DOI
2311
BibRef
Tu, D.[Diantao],
Cui, H.[Hainan],
Shen, S.H.[Shu-Han],
PanoVLM: Low-Cost and accurate panoramic vision and LiDAR fused
mapping,
PandRS(206), 2023, pp. 149-167.
Elsevier DOI Code:
WWW Link.
2312
Panoramic camera, Line feature matching,
Camera-liDAR joint optimization, Structure-from-Motion, Multi-view stereo
BibRef
Yu, Y.[Ying],
Fan, S.[Song],
Li, L.[Lei],
Wang, T.[Tao],
Li, L.[Li],
Automatic Targetless Monocular Camera and LiDAR External Parameter
Calibration Method for Mobile Robots,
RS(15), No. 23, 2023, pp. 5560.
DOI Link
2312
BibRef
Huang, J.[Jing],
Zhang, Y.H.[Ying-Hao],
Yang, F.[Fang],
Chai, L.[Li],
Attention-Guided Fusion and Classification for Hyperspectral and
LiDAR Data,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Xu, H.T.[Hai-Tao],
Zheng, T.[Tie],
Liu, Y.Z.[Yu-Zhe],
Zhang, Z.Y.[Zhi-Yuan],
Xue, C.B.[Chang-Bin],
Li, J.J.[Jiao-Jiao],
A Joint Convolutional Cross ViT Network for Hyperspectral and Light
Detection and Ranging Fusion Classification,
RS(16), No. 3, 2024, pp. 489.
DOI Link
2402
BibRef
Wang, M.H.[Min-Hui],
Sun, Y.X.[Ya-Xiu],
Xiang, J.H.[Jian-Hong],
Sun, R.[Rui],
Zhong, Y.[Yu],
Joint Classification of Hyperspectral and LiDAR Data Based on
Adaptive Gating Mechanism and Learnable Transformer,
RS(16), No. 6, 2024, pp. 1080.
DOI Link
2403
BibRef
Wang, H.Y.[Hao-Yu],
Cheng, Y.[Yuhu],
Liu, X.M.[Xiao-Min],
Wang, X.S.[Xue-Song],
Reinforcement Learning Based Markov Edge Decoupled Fusion Network for
Fusion Classification of Hyperspectral and LiDAR,
MultMed(26), 2024, pp. 7174-7187.
IEEE DOI
2405
Feature extraction, Laser radar, Task analysis, Topology,
Data mining, Data integration, Remote sensing, graph learning
BibRef
Zhang, H.[Han],
Ran, X.X.[Xiao-Xiao],
Zhou, W.[Wujie],
Self-Knowledge Distillation-Based Staged Extraction and Multiview
Collection Network for RGB-D Mirror Segmentation,
SPLetters(31), 2024, pp. 1029-1033.
IEEE DOI
2405
Feature extraction, Mirrors, Data mining, Semantic segmentation,
Convolution, Signal processing algorithms, Decoding,
self-knowledge distillation
BibRef
Han, Y.[Yu],
Salido-Monzú, D.[David],
Butt, J.A.[Jemil Avers],
Schweizer, S.[Sebastian],
Wieser, A.[Andreas],
A feature selection method for multimodal multispectral LiDAR sensing,
PandRS(212), 2024, pp. 42-57.
Elsevier DOI Code:
WWW Link.
2406
Laser scanning, MM LiDAR, Material classification,
Multiclass group feature selection, Structural sparsity
BibRef
He, Z.T.[Zong-Tao],
Wang, L.[Liuyi],
Dang, R.H.[Rong-Hao],
Li, S.[Shu],
Yan, Q.Q.[Qing-Qing],
Liu, C.J.[Cheng-Ju],
Chen, Q.J.[Qi-Jun],
Learning Depth Representation From RGB-D Videos by Time-Aware
Contrastive Pre-Training,
CirSysVideo(34), No. 6, June 2024, pp. 4143-4158.
IEEE DOI
2406
Task analysis, Artificial intelligence, Videos, Training, Databases,
Visualization, Feature extraction, Depth representation, embodied AI
BibRef
Kim, T.L.[Taek-Lim],
Park, T.H.[Tae-Hyoung],
Reinforcement Learning and Genetic Algorithm-Based Network Module for
Camera-LiDAR Detection,
RS(16), No. 13, 2024, pp. 2287.
DOI Link
2407
BibRef
Chen, S.T.[Shu-Ting],
Su, Y.F.[Yan-Fei],
Lai, B.[Baiqi],
Cai, L.[Luwei],
Hong, C.X.[Cheng-Xi],
Li, L.[Li],
Qiu, X.L.[Xiu-Liang],
Jia, H.[Hong],
Liu, W.Q.[Wei-Quan],
2D3D-DescNet: Jointly Learning 2D and 3D Local Feature Descriptors
for Cross-Dimensional Matching,
RS(16), No. 13, 2024, pp. 2493.
DOI Link
2407
BibRef
Wang, J.[Jian],
Li, F.[Fan],
An, Y.[Yi],
Zhang, X.C.[Xu-Chong],
Sun, H.B.[Hong-Bin],
Toward Robust LiDAR-Camera Fusion in BEV Space via Mutual Deformable
Attention and Temporal Aggregation,
CirSysVideo(34), No. 7, July 2024, pp. 5753-5764.
IEEE DOI
2407
Laser radar, Cameras, Three-dimensional displays,
Feature extraction, Detectors, Sensors, Object detection, model robustness
BibRef
Li, Z.[Zirui],
Liu, R.[Runbang],
Sun, L.[Le],
Zheng, Y.H.[Yu-Hui],
Multi-Feature Cross Attention-Induced Transformer Network for
Hyperspectral and LiDAR Data Classification,
RS(16), No. 15, 2024, pp. 2775.
DOI Link
2408
BibRef
Liu, Z.[Zhao],
Fu, Z.L.[Zhong-Liang],
Li, G.[Gang],
Zhang, S.Y.[Sheng-Yuan],
A novel multi-model 3D object detection framework with adaptive
voxel-image feature fusion,
IET-CV(18), No. 5, 2024, pp. 640-651.
DOI Link
2408
image sensors, neural net architecture, object detection, sensor fusion
BibRef
Wang, A.[Aili],
Dai, S.Y.[Shi-Yu],
Wu, H.B.[Hai-Bin],
Iwahori, Y.[Yuji],
Multimodal Semantic Collaborative Classification for Hyperspectral
Images and LiDAR Data,
RS(16), No. 16, 2024, pp. 3082.
DOI Link
2408
BibRef
An, P.[Pei],
Hu, X.Z.[Xu-Zhong],
Ding, J.F.[Jun-Feng],
Zhang, J.[Jun],
Ma, J.[Jie],
Yang, Y.[You],
Liu, Q.[Qiong],
OL-Reg: Registration of Image and Sparse LiDAR Point Cloud With
Object-Level Dense Correspondences,
CirSysVideo(34), No. 8, August 2024, pp. 7523-7536.
IEEE DOI Code:
WWW Link.
2408
Point cloud compression, Laser radar, Cameras, Calibration, Odometry,
Circuits and systems, Light detection and ranging, image,
camera re-localization
BibRef
Zhang, J.Q.[Jia-Qing],
Lei, J.[Jie],
Xie, W.Y.[Wei-Ying],
Yang, G.[Geng],
Li, D.[Daixun],
Li, Y.S.[Yun-Song],
Multimodal Informative ViT: Information Aggregation and Distribution
for Hyperspectral and LiDAR Classification,
CirSysVideo(34), No. 8, August 2024, pp. 7643-7656.
IEEE DOI Code:
WWW Link.
2408
Feature extraction, Task analysis, Transformers,
Mutual information, Laser radar, Redundancy, Data mining,
self-distillation
BibRef
Pan, H.Z.[Hai-Zhu],
Li, X.[Xuan],
Ge, H.[Haimiao],
Wang, L.G.[Li-Guo],
Shi, C.P.[Cui-Ping],
A Hierarchical Coarse-Fine Adaptive Fusion Network for the Joint
Classification of Hyperspectral and LiDAR Data,
RS(16), No. 21, 2024, pp. 4029.
DOI Link
2411
BibRef
Wang, R.[Rui],
Ye, X.X.[Xiao-Xi],
Huang, Y.[Yao],
Ju, M.[Ming],
Xiang, W.[Wei],
GASSF-Net: Geometric Algebra Based Spectral-Spatial Hierarchical
Fusion Network for Hyperspectral and LiDAR Image Classification,
RS(16), No. 20, 2024, pp. 3825.
DOI Link
2411
BibRef
Li, S.[Sai],
Huang, S.[Shuo],
AFA-Mamba: Adaptive Feature Alignment with Global-Local Mamba for
Hyperspectral and LiDAR Data Classification,
RS(16), No. 21, 2024, pp. 4050.
DOI Link
2411
BibRef
Tao, T.[Tang],
Wang, G.[Guangrun],
Lao, Y.X.[Yi-Xing],
Chen, P.[Peng],
Liu, J.[Jie],
Lin, L.[Liang],
Yu, K.C.[Kai-Cheng],
Liang, X.D.[Xiao-Dan],
AlignMiF: Geometry-Aligned Multimodal Implicit Field for LiDAR-Camera
Joint Synthesis,
CVPR24(21230-21240)
IEEE DOI Code:
WWW Link.
2410
Geometry, Laser radar, Sensor phenomena and characterization,
Network architecture, Neural radiance field, Cameras, AlignMiF,
LiDAR-Camera Joint Synthesis
BibRef
Gunn, J.[James],
Lenyk, Z.[Zygmunt],
Sharma, A.[Anuj],
Donati, A.[Andrea],
Buburuzan, A.[Alexandru],
Redford, J.[John],
Mueller, R.[Romain],
Lift-Attend-Splat: Bird's-eye-view camera-lidar fusion using
transformers,
WAD24(4526-4536)
IEEE DOI
2410
Solid modeling, Laser radar, Attention mechanisms, Estimation,
Object detection, Cameras
BibRef
Wu, L.[Lemeng],
Wang, D.[Dilin],
Li, M.[Meng],
Xiong, Y.Y.[Yun-Yang],
Krishnamoorthi, R.[Raghuraman],
Liu, Q.[Qiang],
Chandra, V.[Vikas],
PathFusion: Path-Consistent Lidar-Camera Deep Feature Fusion,
3DV24(313-323)
IEEE DOI
2408
Point cloud compression, Laser radar, Semantics, Transforms, Cameras,
Feature extraction, 3D detection, feature fusion
BibRef
Zhang, Y.C.[Yu-Cheng],
Fukuda, M.[Masaki],
Ishii, Y.[Yasunori],
Ohshima, K.[Kyoko],
Yamashita, T.[Takayoshi],
PALF: Pre-Annotation and Camera-LiDAR Late Fusion for the Easy
Annotation of Point Clouds,
MVA23(1-5)
DOI Link
2403
Point cloud compression, Deep learning, Training, Backpropagation,
Image resolution, Annotations
BibRef
Li, M.[Minhao],
Qin, Z.[Zheng],
Gao, Z.[Zhirui],
Yi, R.[Renjiao],
Zhu, C.Y.[Chen-Yang],
Guo, Y.L.[Yu-Lan],
Xu, K.[Kai],
2D3D-MATR: 2D-3D Matching Transformer for Detection-free Registration
between Images and Point Clouds,
ICCV23(14082-14092)
IEEE DOI Code:
WWW Link.
2401
BibRef
Kim, M.[Minjung],
Koo, J.[Junseo],
Kim, G.[Gunhee],
EP2P-Loc: End-to-End 3D Point to 2D Pixel Localization for
Large-Scale Visual Localization,
ICCV23(21470-21480)
IEEE DOI
2401
BibRef
Qin, Y.[Yiran],
Wang, C.Q.[Chao-Qun],
Kang, Z.J.[Zi-Jian],
Ma, N.N.[Ning-Ning],
Li, Z.[Zhen],
Zhang, R.M.[Rui-Mao],
SupFusion: Supervised LiDAR-Camera Fusion for 3D Object Detection,
ICCV23(21957-21967)
IEEE DOI Code:
WWW Link.
2401
BibRef
Sbrolli, C.[Cristian],
Cudrano, P.[Paolo],
Matteucci, M.[Matteo],
CISPC: Embedding Images and Point Clouds in a Joint Concept Space by
Contrastive Learning,
CIAP23(II:468-476).
Springer DOI
2312
BibRef
Singh, A.D.[Akash Deep],
Ba, Y.H.[Yun-Hao],
Sarker, A.[Ankur],
Zhang, H.[Howard],
Kadambi, A.[Achuta],
Soatto, S.[Stefano],
Srivastava, M.[Mani],
Wong, A.[Alex],
Depth Estimation from Camera Image and mmWave Radar Point Cloud,
CVPR23(9275-9285)
IEEE DOI
2309
BibRef
Zendel, O.[Oliver],
Huemer, J.[Johannes],
Murschitz, M.[Markus],
Dominguez, G.F.[Gustavo Fernandez],
Lobe, A.[Amadeus],
Joint Camera and LiDAR Risk Analysis,
WAD23(88-97)
IEEE DOI
2309
BibRef
Chen, X.Y.[Xuan-Yao],
Zhang, T.Y.[Tian-Yuan],
Wang, Y.[Yue],
Wang, Y.L.[Yi-Lun],
Zhao, H.[Hang],
FUTR3D: A Unified Sensor Fusion Framework for 3D Detection,
WAD23(172-181)
IEEE DOI
2309
BibRef
Jiao, Y.[Yang],
Jie, Z.Q.[Ze-Qun],
Chen, S.X.[Shao-Xiang],
Chen, J.J.[Jing-Jing],
Ma, L.[Lin],
Jiang, Y.G.[Yu-Gang],
MSMDFusion: Fusing LiDAR and Camera at Multiple Scales with
Multi-Depth Seeds for 3D Object Detection,
CVPR23(21643-21652)
IEEE DOI
2309
BibRef
Yu, K.C.[Kai-Cheng],
Tao, T.[Tang],
Xie, H.W.[Hong-Wei],
Lin, Z.W.[Zhi-Wei],
Liang, T.T.[Ting-Ting],
Wang, B.[Bing],
Chen, P.[Peng],
Hao, D.[Dayang],
Wang, Y.T.[Yong-Tao],
Liang, X.D.[Xiao-Dan],
Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection,
E2EAD23(3188-3198)
IEEE DOI
2309
BibRef
Yin, H.X.[Han-Xi],
Deng, L.[Lei],
Chen, Z.X.[Zhi-Xiang],
Chen, B.[Baohua],
Sun, T.[Ting],
Xie, Y.S.[Yu-Seng],
Xiao, J.W.[Jun-Wei],
Fu, Y.[Yeyu],
Deng, S.X.[Shui-Xin],
Li, X.[Xiu],
LSMD-Net: Lidar-stereo Fusion with Mixture Density Network for Depth
Sensing,
ACCV22(I:89-105).
Springer DOI
2307
BibRef
Li, Y.J.[Yi-Jin],
Liu, X.Y.[Xin-Yang],
Dong, W.Q.[Wen-Qi],
Zhou, H.[Han],
Bao, H.J.[Hu-Jun],
Zhang, G.F.[Guo-Feng],
Zhang, Y.[Yinda],
Cui, Z.P.[Zhao-Peng],
DELTAR: Depth Estimation from a Light-Weight ToF Sensor and RGB Image,
ECCV22(I:619-636).
Springer DOI
2211
BibRef
Peng, L.[Liang],
Liu, F.[Fei],
Yu, Z.X.[Zheng-Xu],
Yan, S.[Senbo],
Deng, D.[Dan],
Yang, Z.[Zheng],
Liu, H.F.[Hai-Feng],
Cai, D.[Deng],
Lidar Point Cloud Guided Monocular 3D Object Detection,
ECCV22(I:123-139).
Springer DOI
2211
BibRef
Bensaïd, D.[David],
Bracha, A.[Amit],
Kimmel, R.[Ron],
Partial Shape Similarity by Multi-Metric Hamiltonian Spectra Matching,
SSVM23(717-729).
Springer DOI
2307
BibRef
Rotstein, N.[Noam],
Bracha, A.[Amit],
Kimmel, R.[Ron],
Multimodal Colored Point Cloud to Image Alignment,
CVPR22(6646-6656)
IEEE DOI
2210
Point cloud compression, Solid modeling, Image color analysis,
Supervised learning, Pose estimation, Pipelines,
RGBD sensors and analytics
BibRef
Li, Y.W.[Ying-Wei],
Yu, A.W.[Adams Wei],
Meng, T.J.[Tian-Jian],
Caine, B.[Ben],
Ngiam, J.[Jiquan],
Peng, D.[Daiyi],
Shen, J.Y.[Jun-Yang],
Lu, Y.F.[Yi-Feng],
Zhou, D.[Denny],
Le, Q.V.[Quoc V.],
Yuille, A.L.[Alan L.],
Tan, M.X.[Ming-Xing],
DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object
Detection,
CVPR22(17161-17170)
IEEE DOI
2210
Solid modeling, Laser radar, Object detection, Cameras,
Feature extraction, Data models,
3D from multi-view and sensors
BibRef
Bai, X.Y.[Xu-Yang],
Hu, Z.[Zeyu],
Zhu, X.G.[Xin-Ge],
Huang, Q.Q.[Qing-Qiu],
Chen, Y.L.[Yi-Lun],
Fu, H.[Hangbo],
Tai, C.L.[Chiew-Lan],
TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with
Transformers,
CVPR22(1080-1089)
IEEE DOI
2210
Point cloud compression, Laser radar, Sensor fusion, Transformers,
Robustness, Sensors, Recognition: detection, categorization,
Navigation and autonomous driving
BibRef
Du, P.F.[Peng-Fei],
Gao, Y.[Yali],
Li, X.Y.[Xiao-Yong],
Bi-attention Modal Separation Network for Multimodal Video Fusion,
MMMod22(I:585-598).
Springer DOI
2203
BibRef
Jung, H.J.[Hyun-Jun],
Brasch, N.[Nikolas],
Leonardis, A.[Aleš],
Navab, N.[Nassir],
Busam, B.[Benjamin],
Wild ToFu: Improving Range and Quality of Indirect Time-of-Flight
Depth with RGB Fusion in Challenging Environments,
3DV21(239-248)
IEEE DOI
2201
Time-frequency analysis, Image resolution, Pipelines, Imaging,
Estimation, Sensor fusion, ToF, Time of Flight, Depth, Fusion
BibRef
Kalinowski, P.,
Both, F.,
Luhmann, T.,
Warnke, U.,
Data Fusion of Historical Photographs with Modern 3d Data for An
Archaeological Excavation - Concept and First Results,
ISPRS21(B2-2021: 571-576).
DOI Link
2201
BibRef
Dursun, I.,
Varlik, A.,
Integration of Data Obtained By Photogrammetric Methods Such As A
Terrestrial Laser Scanner and UAV System and Use in 3d City Models:
The Case of KÖycegiz Campus,
SmartCityApp21(187-192).
DOI Link
2201
BibRef
Castillo, E.S.[E. Sanchez],
Griffiths, D.,
Boehm, J.,
Semantic Segmentation of Terrestrial Lidar Data Using Co-registered RGB
Data,
ISPRS21(B2-2021: 223-229).
DOI Link
2201
BibRef
Bose, R.[Rupak],
Pande, S.[Shivam],
Banerjee, B.[Biplab],
Two Headed Dragons: Multimodal Fusion and Cross Modal Transactions,
ICIP21(2893-2897)
IEEE DOI
2201
Laser radar, Image processing, Data integration, Data models,
Data mining, Character recognition, Hyperspectral, LiDAR,
cross-modal inferences
BibRef
Ciubotariu, G.[George],
Tomescu, V.I.[Vlad-Ioan],
Czibula, G.[Gabriela],
Enhancing the Performance of Image Classification Through Features
Automatically Learned from Depth-Maps,
CVS21(68-81).
Springer DOI
2109
BibRef
Mahmoud, A.[Anas],
Waslander, S.L.[Steven L.],
Sequential Fusion via Bounding Box and Motion PointPainting for 3D
Objection Detection,
CRV21(9-16)
IEEE DOI
2108
Fusion RGB and Lidar.
Image segmentation, Laser radar,
Motion segmentation, Semantics, Detectors, Streaming media,
temporal aggregation
BibRef
Su, Y.N.[Ying-Na],
Ding, Y.Q.[Ya-Qing],
Yang, J.[Jian],
Kong, H.[Hui],
A two-step approach to Lidar-Camera calibration,
ICPR21(6834-6841)
IEEE DOI
2105
Laser radar, Closed-form solutions,
Robot kinematics, Robot vision systems, Cameras, Calibration
BibRef
Peng, B.,
Yu, Z.,
Lei, J.,
Song, J.,
Attention-Guided Fusion Network of Point Cloud and Multiple Views for
3D Shape Recognition,
VCIP20(185-188)
IEEE DOI
2102
Shape, Feature extraction, Fuses,
Solid modeling, Task analysis, Correlation, 3D Shape, Multi-View
BibRef
Megahed, Y.,
Yan, W.Y.,
Shaker, A.,
Semi-automatic Approach for Optical and Lidar Data Integration Using
Phase Congruency Model At Multiple Resolutions,
ISPRS20(B3:611-618).
DOI Link
2012
BibRef
Mohla, S.,
Pande, S.,
Banerjee, B.,
Chaudhuri, S.,
FusAtNet: Dual Attention based SpectroSpatial Multimodal Fusion
Network for Hyperspectral and LiDAR Classification,
PBVS20(416-425)
IEEE DOI
2008
Feature extraction, Laser radar, Task analysis,
Hyperspectral sensors, Sensors, Machine learning
BibRef
Siddiqui, T.A.,
Madhok, R.,
O'Toole, M.,
An Extensible Multi-Sensor Fusion Framework for 3D Imaging,
AutoDrive20(4344-4353)
IEEE DOI
2008
Laser radar, Cameras, Photonics,
Noise measurement, Task analysis
BibRef
Leite, P.N.[Pedro Nuno],
Silva, R.J.[Renato Jorge],
Campos, D.F.[Daniel Filipe],
Pinto, A.M.[Andry Maykol],
Dense Disparity Maps from RGB and Sparse Depth Information Using Deep
Regression Models,
ICIAR20(I:379-392).
Springer DOI
2007
BibRef
Nicastro, A.,
Clark, R.,
Leutenegger, S.,
X-Section: Cross-Section Prediction for Enhanced RGB-D Fusion,
ICCV19(1517-1526)
IEEE DOI
2004
cameras, convolutional neural nets, image fusion,
image reconstruction, learning (artificial intelligence), Pipelines
BibRef
Qiu, J.X.[Jia-Xiong],
Cui, Z.P.[Zhao-Peng],
Zhang, Y.[Yinda],
Zhang, X.[Xingdi],
Liu, S.C.[Shuai-Cheng],
Zeng, B.[Bing],
Pollefeys, M.[Marc],
DeepLiDAR: Deep Surface Normal Guided Depth Prediction for Outdoor
Scene From Sparse LiDAR Data and Single Color Image,
CVPR19(3308-3317).
IEEE DOI
2002
BibRef
Cheng, X.L.[Xue-Lian],
Zhong, Y.[Yiran],
Dai, Y.C.[Yu-Chao],
Ji, P.[Pan],
Li, H.D.[Hong-Dong],
Noise-Aware Unsupervised Deep Lidar-Stereo Fusion,
CVPR19(6332-6341).
IEEE DOI
2002
BibRef
Eslami, M.,
Saadatseresht, M.,
A Novel Tie Point Based Strategy for Point Cloud and Imagery Data Fine
Registration,
SMPR19(331-334).
DOI Link
1912
BibRef
Shaw, L.,
Helmholz, P.,
Belton, D.,
Addy, N.,
Comparison of UAV Lidar and Imagery for Beach Monitoring,
UAV-g19(589-596).
DOI Link
1912
BibRef
Davidson, L.,
Mills, J.P.,
Haynes, I.,
Augarde, C.,
Bryan, P.,
Douglas, M.,
Airborne to UAS Lidar: An Analysis of UAS Lidar Ground Control Targets,
UAV-g19(255-262).
DOI Link
1912
BibRef
Kozonek, N.,
Zeller, N.,
Bock, H.,
Pfeifle, M.,
On The Fusion of Camera and Lidar for 3d Object Detection And
Classification,
PIA19(149-156).
DOI Link
1912
BibRef
Daneshtalab, S.,
Rastiveis, H.,
Hosseiny, B.,
Cnn-based Feature-level Fusion of Very High Resolution Aerial Imagery
And Lidar Data,
SMPR19(279-284).
DOI Link
1912
BibRef
Kalantar, B.,
Ueda, N.,
Al-Najjar, H.A.H.,
Moayedi, H.,
Halin, A.A.,
Mansor, S.,
UAV and Lidar Image Registration: a Surf-based Approach for Ground
Control Points Selection,
UAV-g19(413-418).
DOI Link
1912
BibRef
Rambach, J.[Jason],
Lesur, P.[Paul],
Pagani, A.[Alain],
Stricker, D.[Didier],
SlamCraft: Dense Planar RGB Monocular SLAM,
MVA19(1-6)
DOI Link
1911
Planar regions from RGB, fuse with point cloud.
augmented reality, convolutional neural nets, mobile robots,
neurocontrollers, robot vision, sensors, SLAM (robots), SlamCraft,
Estimation
BibRef
Mccormac, J.,
Clark, R.,
Bloesch, M.,
Davison, A.,
Leutenegger, S.,
Fusion++: Volumetric Object-Level SLAM,
3DV18(32-41)
IEEE DOI
1812
cameras, closed loop systems, convolution, feedforward neural nets,
graph theory, image colour analysis, image fusion,
Object detection
BibRef
Liang, M.[Ming],
Yang, B.[Bin],
Chen, Y.[Yun],
Hu, R.[Rui],
Urtasun, R.[Raquel],
Multi-Task Multi-Sensor Fusion for 3D Object Detection,
CVPR19(7337-7345).
IEEE DOI
2002
BibRef
Sammartano, G.,
Spanò, A.,
Teppati Losè, L.,
A Fusion-based Workflow for Turning SLAM Point Clouds and Fisheye Data
Into Texture-enhanced 3d Models,
LC3D19(295-302).
DOI Link
1912
BibRef
Liang, M.[Ming],
Yang, B.[Bin],
Wang, S.L.[Shen-Long],
Urtasun, R.[Raquel],
Deep Continuous Fusion for Multi-sensor 3D Object Detection,
ECCV18(XVI: 663-678).
Springer DOI
1810
BibRef
Zhang, W.,
Huang, H.,
Schmitz, M.,
Sun, X.,
Wang, H.,
Mayer, H.,
A Multi-resolution Fusion Model Incorporating Color And Elevation For
Semantic Segmentation,
Hannover17(513-517).
DOI Link
1805
BibRef
Mitishita, E.,
Costa, F.,
Martins, M.,
Study of the Integration of Lidar And Photogrammetric Datasets By In
Situ Camera Calibration And Integrated Sensor Orientation,
Hannover17(647-652).
DOI Link
1805
BibRef
Burtin, G.[Gabriel],
Bonnin, P.[Patrick],
Malartre, F.[Florent],
Vision Based Lidar Segmentation for Scan Matching and Camera Fusion,
ACIVS17(627-638).
Springer DOI
1712
BibRef
Kim, J.U.[Jung-Un],
Min, J.H.[Ji-Hong],
Kang, H.B.[Hang-Bong],
3D Object Detection Method Using LiDAR Information in Multiple Frames,
CIAP17(I:276-286).
Springer DOI
1711
BibRef
Gee, T.,
James, J.,
van der Mark, W.,
Strozzi, A.G.,
Delmas, P.,
Gimel'farb, G.L.[Georgy L.],
Estimating extrinsic parameters between a stereo rig and a
multi-layer lidar using plane matching and circle feature extraction,
MVA17(21-24)
DOI Link
1708
Calibration, Cameras, Feature extraction, Laser radar,
Transforms
BibRef
Hoegner, L.,
Tuttas, S.,
Xu, Y.,
Eder, K.,
Stilla, U.,
Evaluation Of Methods For Coregistration And Fusion Of Rpas-based 3d
Point Clouds And Thermal Infrared Images,
ISPRS16(B3: 241-246).
DOI Link
1610
BibRef
Rahimi, A.,
Harati, A.,
CGSR features: Toward RGB-D image matching using color gradient
description of geometrically stable regions,
IPRIA15(1-6)
IEEE DOI
1603
feature extraction
BibRef
Bruno, F.,
Lagudi, A.,
Ritacco, G.,
Muzzupappa, M.,
Guida, R.,
Opto-Acoustic Data Fusion for Supporting the Guidance of Remotely
Operated Underwater Vehicles (ROVs),
Underwater15(47-53).
DOI Link
1508
BibRef
Choi, W.,
Kim, C.,
Kim, Y.,
A Study for Efficient Methods of System Calibration between Optical and
Range Sensors,
IWIDF15(7-12).
DOI Link
1508
BibRef
Du, Q.,
Xie, D.,
Sun, Y.,
An automatic high precision registration method between large area
aerial images and aerial light detection and ranging data,
IWIDF15(17-21).
DOI Link
1508
BibRef
Guerry, J.[Joris],
Boulch, A.[Alexandre],
Le Saux, B.[Bertrand],
Moras, J.[Julien],
Plyer, A.[Aurélien],
Filliat, D.[David],
SnapNet-R: Consistent 3D Multi-view Semantic Labeling for Robotics,
3DSemantics17(669-678)
IEEE DOI
1802
Labeling, Robot sensing systems, Semantics,
Training,
BibRef
Crombez, N.,
Caron, G.,
Mouaddib, E.,
3D Point Cloud Model Colorization by Dense Registration of Digital
Images,
3D-Arch15(123-130).
DOI Link
1504
BibRef
Vidal, E.[Esteban],
Piotto, N.[Nicola],
Cordara, G.[Giovanni],
Burgos, F.M.[Francisco Moran],
Automatic video to point cloud registration in a
structure-from-motion framework,
ICIP15(2646-2650)
IEEE DOI
1512
3D Reconstruction; Point Cloud Alignment; SfM; Video Registration
BibRef
Caron, L.C.[Louis-Charles],
Filliat, D.[David],
Gepperth, A.[Alexander],
Neural Network Fusion of Color, Depth and Location for Object Instance
Recognition on a Mobile Robot,
ACVR14(791-805).
Springer DOI
1504
BibRef
Tamas, L.[Levente],
Frohlich, R.[Robert],
Kato, Z.[Zoltan],
Relative Pose Estimation and Fusion of Omnidirectional and Lidar
Cameras,
CVRoads14(640-651).
Springer DOI
1504
BibRef
Kato, Z.[Zoltan],
Tamas, L.[Levente],
Relative Pose Estimation and Fusion of 2D Spectral and 3D Lidar Images,
CCIW15(33-42).
Springer DOI
1504
BibRef
Mundhenk, T.N.[T. Nathan],
Kim, K.[Kyungnam],
Owechko, Y.[Yuri],
Frame Rate Fusion and Upsampling of EO/LIDAR Data for Multiple
Platforms,
FusionOutdoor14(762-769)
IEEE DOI
1409
Backfill; Eo; Fusion; Lidar; Ladybug; Upsample; frame-rate; panoramic
BibRef
Pang, G.[Guan],
Qiu, R.Q.[Rong-Qi],
Huang, J.[Jing],
You, S.[Suya],
Neumann, U.[Ulrich],
Automatic 3D industrial point cloud modeling and recognition,
MVA15(22-25)
IEEE DOI
1507
Data models
BibRef
Fang, Y.[Yong],
Cappelle, C.[Cindy],
Ruichek, Y.[Yassine],
Extrinsic Calibration between 2D Laser Range Finder and Fisheye Camera,
ISVC14(II: 925-935).
Springer DOI
1501
BibRef
Earlier:
Road Detection Using Fisheye Camera and Laser Range Finder,
ICISP14(495-502).
Springer DOI
1406
BibRef
Guan, W.[Wei],
You, S.[Suya],
Pang, G.[Guan],
Estimation of camera pose with respect to terrestrial LiDAR data,
WACV13(391-398).
IEEE DOI
1303
BibRef
Pang, G.[Guan],
Neumann, U.,
Training-Based Object Recognition in Cluttered 3D Point Clouds,
3DV13(87-94)
IEEE DOI
1311
BibRef
And:
The Gixel array descriptor (GAD) for multimodal image matching,
WACV13(497-504).
IEEE DOI
1303
image segmentation
BibRef
Bellmore, C.[Colin],
Ptucha, R.[Raymond],
Savakis, A.E.[Andreas E.],
Fusion of depth and color for an improved active shape model,
ICIP13(330-334)
IEEE DOI
1402
Accuracy
BibRef
Coltin, B.[Brian],
Nefian, A.[Ara],
LIDAR to image coregistration on orbital data,
ICIP13(775-779)
IEEE DOI
1402
Cameras
BibRef
Jutzi, B.,
Weinmann, M.,
Meidow, J.,
Improved UAV-Borne 3D Mapping by Fusing Optical and Laserscanner Data,
UAV-g13(223-228).
DOI Link
1311
BibRef
Bigdeli, B.,
Samadzadegan, F.,
Reinartz, P.,
Classifier Fusion of Hyperspectral and Lidar Remote Sensing Data for
Improvement of Land Cover Classifcation,
SMPR13(97-102).
DOI Link
1311
BibRef
Bennis, A.,
Bombardier, V.,
Thiriet, P.,
Brie, D.,
Contours Based Approach for Thermal Image and Terrestrial Point Cloud
Registration,
CIPA13(97-101).
DOI Link
1311
BibRef
Fioraio, N.[Nicola],
Cerri, G.[Gregorio],
Towards Semantic KinectFusion,
CIAP13(II:299-308).
Springer DOI
1309
BibRef
Jain, V.[Vishal],
Miller, A.C.[Andrew C.],
Mundy, J.L.[Joseph L.],
A Multi-sensor Fusion Framework in 3-D,
PBVS13(314-319)
IEEE DOI
1309
3-d model
BibRef
Zhang, Z.,
Yang, M.Y.,
Zhou, M.,
Multi-Source Hierarchical Conditional Random Field Model for Feature
Fusion of Remote Sensing Images and LIDAR Data,
Hannover13(389-392).
DOI Link
1308
BibRef
Ottonelli, S.[Simona],
Spagnolo, P.[Paolo],
Mazzeo, P.L.[Pier Luigi],
Leo, M.[Marco],
Foreground Segmentation by Combining Color and Depth Images,
IbPRIA13(699-706).
Springer DOI
1307
BibRef
Mirante, E.[Emanuele],
Georgiev, M.[Mihail],
Gotchev, A.[Atanas],
A fast image segmentation algorithm using color and depth map,
3DTV11(1-4).
IEEE DOI
1105
BibRef
Park, S.U.[Sang Un],
Chung, M.J.[Myung Jin],
3D world modeling using 3D laser scanner and omni-direction camera,
FCV13(285-288).
IEEE DOI
1304
BibRef
Choi, O.[Ouk],
Lee, S.K.[Seung-Kyu],
Fusion of Time-of-Flight and Stereo for Disambiguation of Depth
Measurements,
ACCV12(IV:640-653).
Springer DOI
1304
BibRef
van Baar, J.[Jeroen],
Beardsley, P.[Paul],
Pollefeys, M.[Marc],
Gross, M.[Markus],
Sensor Fusion for Depth Estimation, including TOF and Thermal Sensors,
3DIMPVT12(472-478).
IEEE DOI
1212
BibRef
Garcia, F.[Frederic],
Aouada, D.[Djamila],
Abdella, H.K.[Hashim Kemal],
Solignac, T.[Thomas],
Mirbach, B.[Bruno],
Ottersten, B.[Björn],
Depth Enhancement by Fusion for Passive and Active Sensing,
QU3ST12(III: 506-515).
Springer DOI
1210
BibRef
Fouhey, D.F.[David F.],
Collet, A.[Alvaro],
Hebert, M.[Martial],
Srinivasa, S.[Siddhartha],
Object Recognition Robust to Imperfect Depth Data,
CDC4CV12(II: 83-92).
Springer DOI
1210
BibRef
Bayramogllu, N.[Neslihan],
Heikkilä, J.[Janne],
Pietikäinen, M.[Matti],
Combining Textural and Geometrical Descriptors for Scene Recognition,
CDC4CV12(II: 32-41).
Springer DOI
1210
BibRef
Gomez, J.D.[Juan D.],
Bologna, G.[Guido],
Pun, T.[Thierry],
Real-Time Image Registration of RGB Webcams and Colorless 3D
Time-of-Flight Cameras,
ECCVDemos12(III: 589-592).
Springer DOI
1210
BibRef
Palmer, R.,
West, G.,
Tan, T.,
Using Depth to Extend Randomised Hough Forests for Object Detection
and Localisation,
DICTA13(1-8)
IEEE DOI
1402
BibRef
Earlier:
Scale Proportionate Histograms of Oriented Gradients for Object
Detection in Co-Registered Visual and Range Data,
DICTA12(1-8).
IEEE DOI
1303
Hough transforms
BibRef
Palmer, R.,
Borck, M.,
West, G.,
Tan, T.,
Intensity and Range Image Based Features for Object Detection In Mobile
Mapping Data,
ISPRS12(XXXIX-B3:315-320).
DOI Link
1209
BibRef
Hastedt, H.,
Luhmann, T.,
Investigations on a Combined RGB/Time-of-flight Approach for Close
Range Applications,
ISPRS12(XXXIX-B5:333-338).
DOI Link
1209
BibRef
Moussa, W.,
Abdel-Wahab, M.,
Fritsch, D.[Dieter],
An Automatic Procedure for Combining Digital Images and Laser Scanner
Data,
ISPRS12(XXXIX-B5:229-234).
DOI Link
1209
BibRef
Zhan, Q.,
Liang, Y.,
Wei, C.,
Xiao, Y.,
Ground Object Recognition Using Combined High Resolution Airborne
Images and DSM,
ISPRS12(XXXIX-B3:573-577).
DOI Link
1209
BibRef
Lari, Z.,
Habib, A.,
Alternative Methodologies for The Estimation of Local Point Density
Index: Moving Towards Adaptive Lidar Data Processing,
ISPRS12(XXXIX-B3:127-132).
DOI Link
1209
eigenvalues on 3D neighborhoods of color+lidar data.
BibRef
Liao, C.T.,
Huang, H.H.,
Classification By Using Multispectral Point Cloud Data,
ISPRS12(XXXIX-B3:137-141).
DOI Link
1209
BibRef
Kochi, N.,
Kitamura, K.,
Sasaki, T.,
Kaneko, S.,
3D Modeling of Architecture by Edge-Matching and Integrating the Point
Clouds of Laser Scanner and Those of Digital Camera,
ISPRS12(XXXIX-B5:279-284).
DOI Link
1209
BibRef
Nakano, K.,
Chikatsu, H.,
On Object Extraction Using Airborne Laser Scanner Data And Digital
Images for 3D Modelling,
ISPRS12(XXXIX-B3:53-58).
DOI Link
1209
BibRef
Mitishita, E.,
Debiasi, P.,
Hainosz, F.,
Centeno, J.,
Calibration Of Low Cost Digital Camera Using Data From Simultaneous
Lidar And Photogrammetric Surveys,
ISPRS12(XXXIX-B1:133-138).
DOI Link
1209
BibRef
Gašparovic, M.,
Malaric, I.,
Increase Of Readability And Accuracy Of 3d Models Using Fusion Of Close
Range Photogrammetry And Laser Scanning,
ISPRS12(XXXIX-B5:93-98).
DOI Link
1209
BibRef
Guo, W.,
Du, T.,
Zhu, X.,
Hu, T.,
Kinect-Based Real-Time RGB-D Image Fusion Method,
ISPRS12(XXXIX-B3:275-279).
DOI Link
1209
BibRef
Maczkowski, G.[Grzegorz],
Sitnik, R.[Robert],
Krzestowski, J.[Jakub],
Data Acquisition Enhancement in Shape and Multispectral Color
Measurements of 3D Objects,
ICISP12(27-35).
Springer DOI
1208
BibRef
Bar-Hillel, A.[Aharon],
Hanukaev, D.[Dmitri],
Levi, D.[Dan],
Fusing visual and range imaging for object class recognition,
ICCV11(65-72).
IEEE DOI
1201
BibRef
Inomata, R.[Ryo],
Terabayashi, K.[Kenji],
Umeda, K.[Kazunori],
Godin, G.[Guy],
Registration of 3D Geometric Model and Color Images Using SIFT and
Range Intensity Images,
ISVC11(I: 325-336).
Springer DOI
1109
BibRef
Umeda, K.[Kazunori],
Godin, G.[Guy],
Rioux, M.[Marc],
Registration of range and color images using gradient constraints and
range intensity images,
ICPR04(III: 12-15).
IEEE DOI
0409
BibRef
Muhlbauer, Q.,
Kuhnlenz, K.[Kolja],
Buss, M.[Martin],
Fusing laser and vision data with a genetic ICP algorithm,
ICARCV08(1844-1849).
IEEE DOI
1109
BibRef
Mitishita, E.[Edson],
Martins, M.[Marlo],
Centeno, J.[Jorge],
Hainosz, F.[Fabiano],
Aerotriangulation Supported By Camera Station Position Determined Via
Physical Integration Of Lidar And SLR Digital Camera,
Laser11(xx-yy).
DOI Link
1109
BibRef
Zhang, Y.S.[Ying-Song],
Kingsbury, N.G.[Nick G.],
Restoration of images and 3D data to higher resolution by deconvolution
with sparsity regularization,
ICIP10(1685-1688).
IEEE DOI
1009
BibRef
Li-Chee-Ming, J.[Julien],
Armenakis, C.[Costas],
Fusion of optical and terrestrial laser scanner data,
CGC10(156).
PDF File.
1006
BibRef
Kim, Y.M.[Young Min],
Theobalt, C.[Christian],
Diebel, J.[James],
Kosecka, J.[Jana],
Miscusik, B.[Branislav],
Thrun, S.[Sebastian],
Multi-view image and ToF sensor fusion for dense 3D reconstruction,
3DIM09(1542-1549).
IEEE DOI
0910
BibRef
Junior, J.S.[Jurandir Santos],
Bellon, O.R.P.[Olga R.P.],
Silva, L.[Luciano],
Vrubel, A.[Alexandre],
Improving 3D Reconstruction for Digital Art Preservation,
CIAP11(I: 374-383).
Springer DOI
1109
BibRef
Andrade, B.T.[Beatriz T.],
Bellon, O.R.P.[Olga R. P.],
Silva, L.[Luciano],
Vrubel, A.[Alexandre],
Enhancing color texture quality of 3D models for digital preservation
of indigenous ceramic artworks,
DigArt09(980-987).
IEEE DOI
0910
Laser scanner color is not good.
BibRef
Ma, Y.Q.[Yun-Qian],
Wang, Z.[Zheng],
Bazakos, M.,
Au, W.[Wing],
3D scene modeling using sensor fusion with laser range finder and image
sensor,
AIPR05(224-229).
IEEE DOI
0510
BibRef
Vassilaki, D.I.[Dimitra I.],
Ioannidis, C.C.[Charalambos C.],
Stamos, A.A.[Athanasios A.],
Enhanced first approximation for ICP-based global matching of free-form
curves in side-looking radar geometry,
PCVIA10(A:85).
PDF File.
1009
BibRef
Earlier:
Registration of Unrectified Optical and SAR imagery over Mountainous
Areas through Automatic Free-form Features Global Matching,
HighRes09(xx-yy).
PDF File.
0906
See also Georeference of TerraSAR-X Images using Networks of Ground Control Linear Features.
BibRef
Brook, A.,
Ben-Dor, E.,
Richter, R.,
Fusion of Hyperspectral Images and LIDAR data for Civil Engineering
Structure Monitoring,
HighRes09(xx-yy).
PDF File.
0906
BibRef
Gould, S.[Stephen],
Baumstarck, P.[Paul],
Quigley, M.[Morgan],
Ng, A.[Andrew],
Koller, D.[Daphne],
Integrating Visual and Range Data for Robotic Object Detection,
M2SFA208(xx-yy).
0810
BibRef
Mao, J.H.,
Zeng, Q.H.,
Liu, X.F.,
Lai, J.Z.,
Filtering LIDAR Points by Fusion of Intensity Measures and Aerial
Images,
ISPRS08(B3b: 25 ff).
PDF File.
0807
BibRef
Zheng, G.Y.[Guo-Yan],
Unifying Energy Minimization and Mutual Information Maximization for
Robust 2D/3D Registration of X-Ray and CT Images,
DAGM07(547-557).
Springer DOI
0709
BibRef
Waggershauser, A.,
Combining Full Spherical Depth and HDR Images to
Implement a Virtual Camera,
PanoPhot05(xx-yy).
PDF File.
0502
BibRef
Krotosky, S.,
Trivedi, M.,
Registration of Multimodal Stereo Images Using Disparity Voting from
Correspondence Windows,
AVSBS06(91-91).
IEEE DOI
0611
BibRef
Buckley, S.[Simon],
Schwarz, E.[Ernesto],
Terlaky, V.[Viktor],
Howell, J.A.[John A.],
Arnott, B.[Bill],
Terrestrial Laser Scanning Combined with Photogrammetry for Digital
Outcrop Modeling,
Laser09(75).
0909
BibRef
Buckley, S.,
Howell, J.A.,
Enge, H.D.,
Leren, B.L.S.,
Kurz, T.H.,
Integration of terrestrial laserscanning, digital photogrammetry and
geostatistical methods for high-resolution modelling of geological
outcrops,
IEVM06(xx-yy).
PDF File.
0609
BibRef
Heikkinen, J.[Jussi],
Haggrén, H.[Henrik],
Augmented 3D vision system for object reconstruction,
IEVM06(126-130).
PDF File.
0609
Fusion of image and laser scanner.
Panoramic images.
BibRef
Przybilla, H.J.,
Fusion of terrestrial laserscanning and digital photogrammetry,
IEVM06(xx-yy).
PDF File.
0609
BibRef
Reulke, R.,
Combination of distance data with high resolution images,
IEVM06(xx-yy).
PDF File.
0609
BibRef
Ressl, C.[Camillo],
Haring, A.[Alexander],
Briese, C.[Christian],
Rottensteiner, F.[Franz],
A Concept For Adaptive Mono-Plotting Using Images and
Laserscanner Data,
PCV06(xx-yy).
PDF File.
0609
BibRef
Kressler, F.,
Steinnocher, K.,
Image data and LiDAR:
An ideal combination matched by object-oriented analysis,
OBIA06(xx-yy).
PDF File.
0607
BibRef
Dias, P.,
Sequeira, V.,
Vaz, F.,
Goncalves, J.G.M.,
Combining intensity and range images for 3D modelling,
ICIP03(I: 417-420).
IEEE DOI
0312
BibRef
Dias, P.,
Sequeira, V.,
Vaz, F.,
Goncalves, J.G.M.,
Registration and fusion of intensity and range data for 3D modelling of
real world scenes,
3DIM03(418-425).
IEEE DOI
0311
BibRef
Zöllei, L.,
Grimson, W.E.L.,
Norbash, A.,
Wells, III, W.M.[William M.],
2D-3D Rigid Registration of X-Ray Fluoroscopy and CT Images Using
Mutual Information and Sparsely Sampled Histogram Estimators,
CVPR01(II:696-703).
IEEE DOI
0110
BibRef
Zöllei, L.[Lilla],
2D-3D Rigid-Body Registration of X-Ray Fluoroscopy and CT Images,
MIT AI-TR-2002-001, August 2001.
WWW Link.
0205
BibRef
Yezzi, A.J.,
Zöllei, L.,
Kapur, T.,
A Variational Framework for Joint Segmentation and Registration,
MMBIA01(xx-yy).
0110
BibRef
Hashimoto, M.,
Sumi, K.,
3-D Object Recognition Based on Integration of Range Image and
Gray-scale Image,
BMVC01(Poster Session 1).
HTML Version. Mitsubishi Electric Corporation
0110
BibRef
Dias, P.,
Sequeira, V.,
Gonçalves, J.,
Vaz, F.,
Fusion of Intensity and Range Data for Improved 3d Models,
ICIP01(III: 1107-1110).
IEEE DOI
0108
BibRef
Brown, L.,
Registration of Planar Film Radiographs with Computed Tomography,
MMBIA96(REGISTRATION I)
BibRef
9600
Lopez, A.M.[Antonio M.],
Lloret, D.[David],
Serrat, J.[Joan],
Creaseness Measures for CT and MR Image Registration,
CVPR98(694-699).
IEEE DOI
BibRef
9800
Mostafa, M.G.H.[Mostafa G.H.],
Yamany, S.M.[Sameh M.],
Farag, A.A.[Aly A.],
Integrating Shape from Shading and Range Data Using Neural Networks,
CVPR99(II: 15-20).
IEEE DOI Fusion.
BibRef
9900
And:
Integrating Stereo and Shape from Shading,
ICIP99(III:130-134).
IEEE DOI
BibRef
Jasiobedzki, P.,
Fusing and Guiding Range Measurements with Colour Video Images,
3DIM97(13 - Applications)
9702
BibRef
Maeder, A.J.,
Jones, M.R.,
Multiresolution shape matching for image fusion,
ICIP94(I: 701-704).
IEEE DOI
9411
BibRef
Torp, A.H.,
Olstad, B.,
Multispectral analysis of object surfaces extracted from volumetric
data sets,
ICIP94(II: 46-50).
IEEE DOI
9411
BibRef
Huseby, R.B.,
Hogasen, G.T.,
Storvik, G.,
Aas, K.,
Combining range and intensity data with a hidden Markov model,
ICPR92(II:128-131).
IEEE DOI
9208
BibRef
Grandjean, P.[Pierrick],
3-D Modeling of Indoor Scenes by Fusion of Noisy Range and
Stereo Data,
CRA89(681-687).
BibRef
8900
Grandjean, P.,
Perception Multisensorielle et Interpretation de Scenes,
Ph.D.LAAS - Universite Paul Sabatier de Toulouse, 1991.
BibRef
9100
Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
Image and Sensor Fusion for Cartography and Aerial Images, Satellite Images, Remote Sensing .