Bruzzone, L.,
Cossu, R.,
A multiple-cascade-classifier system for a robust and partially
unsupervised updating of land-cover maps,
GeoRS(40), No. 9, September 2002, pp. 1984-1996.
IEEE Top Reference.
0212
BibRef
Bruzzone, L.,
Cossu, R.,
Vernazza, G.,
Detection of land-cover transitions by combining multidate classifiers,
PRL(25), No. 13, 1 October 2004, pp. 1491-1500.
Elsevier DOI
0410
Find changes.
BibRef
Bruzzone, L.[Lorenzo],
Marconcini, M.[Mattia],
Toward the Automatic Updating of Land-Cover Maps by a Domain-Adaptation
SVM Classifier and a Circular Validation Strategy,
GeoRS(47), No. 4, April 2009, pp. 1108-1122.
IEEE DOI
0903
BibRef
Bruzzone, L.[Lorenzo],
Marconcini, M.[Mattia],
Domain Adaptation Problems:
A DASVM Classification Technique and a Circular Validation Strategy,
PAMI(32), No. 5, May 2010, pp. 770-787.
IEEE DOI
1003
Training data available only for a related domain. Domain Adaption SVM.
BibRef
Persello, C.,
Bruzzone, L.,
A Novel Protocol for Accuracy Assessment in Classification of Very High
Resolution Images,
GeoRS(48), No. 3, March 2010, pp. 1232-1244.
IEEE DOI
1003
BibRef
Demir, B.,
Persello, C.,
Bruzzone, L.,
Batch-Mode Active-Learning Methods for the Interactive Classification
of Remote Sensing Images,
GeoRS(49), No. 3, March 2011, pp. 1014-1031.
IEEE DOI
1103
BibRef
Demir, B.,
Bruzzone, L.,
A Novel Active Learning Method in Relevance Feedback for
Content-Based Remote Sensing Image Retrieval,
GeoRS(53), No. 5, May 2015, pp. 2323-2334.
IEEE DOI
1502
feedback
BibRef
Demir, B.,
Bruzzone, L.,
Hashing-Based Scalable Remote Sensing Image Search and Retrieval in
Large Archives,
GeoRS(54), No. 2, February 2016, pp. 892-904.
IEEE DOI
1601
Hamming distance
BibRef
Persello, C.,
Bruzzone, L.,
Active Learning for Domain Adaptation in the Supervised Classification
of Remote Sensing Images,
GeoRS(50), No. 11, November 2012, pp. 4468-4483.
IEEE DOI
1210
BibRef
Niazmardi, S.,
Demir, B.,
Bruzzone, L.,
Safari, A.,
Homayouni, S.,
Multiple Kernel Learning for Remote Sensing Image Classification,
GeoRS(56), No. 3, March 2018, pp. 1425-1443.
IEEE DOI
1804
image classification, image fusion,
learning (artificial intelligence), remote sensing,
remote sensing (RS)
BibRef
Persello, C.,
Bruzzone, L.,
Active and Semisupervised Learning for the Classification of Remote
Sensing Images,
GeoRS(52), No. 11, November 2014, pp. 6937-6956.
IEEE DOI
1407
Context
BibRef
Persello, C.,
Bruzzone, L.,
Kernel-Based Domain-Invariant Feature Selection in Hyperspectral
Images for Transfer Learning,
GeoRS(54), No. 5, May 2016, pp. 2615-2626.
IEEE DOI
1604
geophysical techniques
See also Novel Context-Sensitive Semisupervised SVM Classifier Robust to Mislabeled Training Samples, A.
BibRef
Demir, B.[Begum],
Bovolo, F.[Francesca],
Bruzzone, L.[Lorenzo],
Detection of Land-Cover Transitions in Multitemporal Remote Sensing
Images With Active-Learning-Based Compound Classification,
GeoRS(50), No. 5, May 2012, pp. 1930-1941.
IEEE DOI
1202
BibRef
Bruzzone, L.,
Bovolo, F.,
A Novel Framework for the Design of Change-Detection Systems for
Very-High-Resolution Remote Sensing Images,
PIEEE(100), No. 3, March 2013, pp. 609-630.
IEEE DOI
1303
BibRef
Demir, B.[Begum],
Bovolo, F.[Francesca],
Bruzzone, L.[Lorenzo],
Updating Land-Cover Maps by Classification of Image Time Series:
A Novel Change-Detection-Driven Transfer Learning Approach,
GeoRS(51), No. 1, January 2013, pp. 300-312.
IEEE DOI
1301
BibRef
Earlier:
Active-learning based cascade classification of multitemporal images
for updating land-cover maps,
MultiTemp11(57-60).
IEEE DOI
1109
See also Split-Based Approach to Unsupervised Change Detection in Large-Size Multitemporal Images: Application to Tsunami-Damage Assessment, A.
BibRef
Demir, B.[Begum],
Bovolo, F.[Francesca],
Bruzzone, L.[Lorenzo],
Classification of Time Series of Multispectral Images with
Limited Training Data,
IP(22), No. 8, 2013, pp. 3219-3233.
IEEE DOI statistical distributions; time series; limited training data;
supervised classifier; active learning; automatic classification;
cascade classification; land-cover maps; transfer learning
1307
BibRef
Sudheer, K.,
Gowda, P.,
Chaubey, I.,
Howell, T.,
Artificial Neural Network Approach for Mapping Contrasting Tillage
Practices,
RS(2), No. 2, February 2010, pp. 579-590.
DOI Link
1203
BibRef
Lyu, H.[Haobo],
Lu, H.[Hui],
Mou, L.C.[Li-Chao],
Learning a Transferable Change Rule from a Recurrent Neural Network
for Land Cover Change Detection,
RS(8), No. 6, 2016, pp. 506.
DOI Link
1608
BibRef
Ji, S.P.[Shun-Ping],
Zhang, C.[Chi],
Xu, A.J.[An-Jian],
Shi, Y.[Yun],
Duan, Y.L.[Yu-Lin],
3D Convolutional Neural Networks for Crop Classification with
Multi-Temporal Remote Sensing Images,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Zhu, R.J.[Ruo-Jin],
Yu, D.[Dawen],
Ji, S.P.[Shun-Ping],
Lu, M.[Meng],
Matching RGB and Infrared Remote Sensing Images with
Densely-Connected Convolutional Neural Networks,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Kong, Y.L.[Yun-Long],
Huang, Q.Q.[Qing-Qing],
Wang, C.Y.[Cheng-Yi],
Chen, J.B.[Jing-Bo],
Chen, J.S.[Jian-Sheng],
He, D.X.[Dong-Xu],
Long Short-Term Memory Neural Networks for Online Disturbance
Detection in Satellite Image Time Series,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Rußwurm, M.[Marc],
Körner, M.[Marco],
Pelletier, C.[Charlotte],
Webb, G.I.[Geoffrey I.],
Petitjean, F.[François],
Lee, J.[Junghee],
Han, D.[Daehyeon],
Shin, M.[Minso],
Im, J.[Jungho],
Lee, J.[Junghye],
Quackenbush, L.J.[Lindi J.],
Wang, B.[Biao],
Choi, J.[Jaewan],
Choi, S.[Seokeun],
Lee, S.[Soungki],
Wu, P.[Penghai],
Gao, Y.[Yan],
Song, A.[Ahram],
Choi, J.[Jaewan],
Kim, Y.[Yeseul],
Park, N.W.[No-Wook],
Lee, K.D.[Kyung-Do],
Salmon, B.P.,
Holloway, D.S.,
Kleynhans, W.,
Olivier, J.C.,
Wessels, K.J.,
Interdonato, R.[Roberto],
Ienco, D.[Dino],
Gaetano, R.[Raffaele],
Ose, K.[Kenji],
Zhang, P.,
Gong, M.,
Zhang, H.,
Liu, J.,
Ban, Y.,
Huang, L.J.[Li-Jun],
An, R.[Ru],
Zhao, S.Y.[Sheng-Yin],
Jiang, T.[Tong],
Hu, H.[Hao],
Dong, H.H.[Hui-Hui],
Ma, W.P.[Wen-Ping],
Wu, Y.[Yue],
Zhang, J.[Jun],
Jiao, L.C.[Li-Cheng],
Rußwurm, M.[Marc],
Körner, M.[Marco],
Seydi, S.T.[Seyd Teymoor],
Hasanlou, M.[Mahdi],
Amani, M.[Meisam],
Yang, S.T.[Shu-Ting],
Gu, L.J.[Ling-Jia],
Li, X.F.[Xiao-Feng],
Jiang, T.[Tao],
Ren, R.Z.[Rui-Zhi],
Sefrin, O.[Oliver],
Riese, F.M.[Felix M.],
Keller, S.[Sina],
Msellmi, B.[Bouthayna],
Picone, D.[Daniele],
Ben Rabah, Z.[Zouhaier],
Mura, M.D.[Mauro Dalla],
Farah, I.R.[Imed Riadh],
Yasrab, R.[Robail],
Zhang, J.C.[Jin-Cheng],
Smyth, P.[Polina],
Pound, M.P.[Michael P.],
Hu, T.X.[Tong-Xi],
Myers Toman, E.[Elizabeth],
Chen, G.[Gang],
Shao, G.[Gang],
Zhou, Y.Y.[Yu-Yu],
Li, Y.[Yang],
Zhao, K.G.[Kai-Guang],
Feng, Y.[Yinan],
Yang, X.[Xin],
Hu, L.[Lei],
Zhang, Y.M.[Yong-Mei],
Li, Y.Q.[Yun-Qing],
Kavhu, B.[Blessing],
Mashimbye, Z.E.[Zama Eric],
Luvuno, L.[Linda],
Song, K.Q.[Kai-Qiang],
Cui, F.Z.[Feng-Zhi],
Jiang, J.[Jie],
Cui, F.Z.[Feng-Zhi],
Jiang, J.[Jie],
Wang, X.H.[Xiang-Hai],
Cheng, W.[Wei],
Feng, Y.N.[Yi-Ning],
Song, R.X.[Ruo-Xi],
Zhang, Z.Y.[Zhao-Yang],
Jing, W.X.[Wen-Xuan],
Li, H.F.[Hai-Feng],
Tao, C.[Chao],
Zhang, Y.S.[Yun-Sheng],
Cao, S.Y.[Shu-Yi],
Tang, Y.[Yubin],
Yan, E.[Enping],
Jiang, J.W.[Jia-Wei],
Mo, D.[Dengkui],
Xue, Z.X.[Zhi-Xiang],
Yang, G.[Guopeng],
Yu, X.[Xuchu],
Yu, A.[Anzhu],
Guo, Y.[Yinggang],
Liu, B.[Bing],
Zhou, J.A.[Jian-An],
Zhang, Z.Y.[Zhong-Yu],
Liu, S.J.[Shu-Jun],
Qin, Y.X.[Ying-Xiang],
Wang, H.J.[Hua-Jun],
Kalita, I.[Indrajit],
Karatsiolis, S.[Savvas],
Kamilaris, A.[Andreas],
Déprez, A.,
Puissant, A.,
Malet, J.P.,
Michéa, D.,
Sainte Fare Garnot, V.[Vivien],
Landrieu, L.[Loic],
Sainte Fare Garnot, V.[Vivien],
Landrieu, L.[Loic],
Giordano, S.,
Chehata, N.,
Jing, S.,
Chao, T.,
Kamdem de Teyou, G.,
Tarabalka, Y.,
Manighetti, I.,
Almar, R.,
Tripodi, S.,
Babaeian Diva, A.,
Bigdeli, B.,
Pahlavani, P.,
Grivei, A.C.,
Radoi, A.,
Datcu, M.,
El Amin, A.M.[Arabi Mohammed],
Liu, Q.J.[Qing-Jie],
Wang, Y.H.[Yun-Hong],
Burchfield, E.[Emily],
Nay, J.J.[John J.],
Gilligan, J.[Jonathan],
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Multi-Temporal Land Cover Classification with Sequential Recurrent
Encoders,
IJGI(7), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Earlier:
DOI Link
1805
BibRef
Temporal Convolutional Neural Network for the Classification of
Satellite Image Time Series,
RS(11), No. 5, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Different Spectral Domain Transformation for Land Cover
Classification Using Convolutional Neural Networks with
Multi-Temporal Satellite Imagery,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Image Fusion-Based Land Cover Change Detection Using Multi-Temporal
High-Resolution Satellite Images,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Fully Convolutional Networks with Multiscale 3D Filters and Transfer
Learning for Change Detection in High Spatial Resolution Satellite
Images,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Self-Learning Based Land-Cover Classification Using Sequential Class
Patterns from Past Land-Cover Maps,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Applying Model Parameters as a Driving Force to a Deterministic
Nonlinear System to Detect Land Cover Change,
GeoRS(55), No. 12, December 2017, pp. 7165-7176.
IEEE DOI
1712
Feature extraction, Force, Learning systems, MODIS, Remote sensing,
Satellites, Time series analysis, Nonlinear detection,
time series
BibRef
DuPLO: A DUal view Point deep Learning architecture for time series
classificatiOn,
PandRS(149), 2019, pp. 91-104.
Elsevier DOI
1903
Satellite image time series, Deep learning,
Land cover classification, Sentinel-2
BibRef
Unsupervised Difference Representation Learning for Detecting
Multiple Types of Changes in Multitemporal Remote Sensing Images,
GeoRS(57), No. 4, April 2019, pp. 2277-2289.
IEEE DOI
1904
Gaussian distribution, geophysical image processing,
image classification, image resolution, neural nets,
remote sensing
BibRef
A Deep Learning-Based Robust Change Detection Approach for Very High
Resolution Remotely Sensed Images with Multiple Features,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Self-Supervised Representation Learning for Remote Sensing Image
Change Detection Based on Temporal Prediction,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Self-attention for raw optical Satellite Time Series Classification,
PandRS(169), 2020, pp. 421-435.
Elsevier DOI
2011
Self-attention, Transformer, Time series classification,
Multitemporal Earth observation, Crop type mapping, Deep learning
BibRef
A New End-to-End Multi-Dimensional CNN Framework for Land Cover/Land
Use Change Detection in Multi-Source Remote Sensing Datasets,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Crop Classification Method Based on Optimal Feature Selection and
Hybrid CNN-RF Networks for Multi-Temporal Remote Sensing Imagery,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Deep Learning for Land Cover Change Detection,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Sub-Pixel Mapping Model Based on Total Variation Regularization and
Learned Spatial Dictionary,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Predicting Plant Growth from Time-Series Data Using Deep Learning,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Mapping fine-scale human disturbances in a working landscape with
Landsat time series on Google Earth Engine,
PandRS(176), 2021, pp. 250-261.
Elsevier DOI
2106
Google Earth Engine, Working landscape, Ensemble learning,
Change detection, Hydraulic fracturing, BEAST, Sub-pixel
BibRef
MRA-SNet: Siamese Networks of Multiscale Residual and Attention for
Change Detection in High-Resolution Remote Sensing Images,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Climate-Based Regionalization and Inclusion of Spectral Indices for
Enhancing Transboundary Land-Use/Cover Classification Using Deep
Learning and Machine Learning,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
An Efficient Lightweight Neural Network for Remote Sensing Image
Change Detection,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Shuffle-CDNet: A Lightweight Network for Change Detection of
Bitemporal Remote-Sensing Images,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
TSCNet: Topological Structure Coupling Network for Change Detection
of Heterogeneous Remote Sensing Images,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
GFCNet: Contrastive Learning Network with Geography Feature Space
Joint Negative Sample Correction for Land Cover Classification,
RS(15), No. 20, 2023, pp. 5056.
DOI Link
2310
BibRef
Bridging Domains and Resolutions:
Deep Learning-Based Land Cover Mapping without Matched Labels,
RS(16), No. 8, 2024, pp. 1449.
DOI Link
2405
BibRef
Multimodal self-supervised learning for remote sensing data land
cover classification,
PR(157), 2025, pp. 110959.
Elsevier DOI
2409
Remote sensing image, Unsupervised pre-training,
Multimodal self-supervised, Feature learning
BibRef
MATNet: Multilevel attention-based transformers for change detection
in remote sensing images,
IVC(151), 2024, pp. 105294.
Elsevier DOI
2411
Change detection, Attention mechanism,
High-resolution (HR) optical image, Transformers
BibRef
Mall, U.[Utkarsh],
Hariharan, B.[Bharath],
Bala, K.[Kavita],
Change-Aware Sampling and Contrastive Learning for Satellite Images,
CVPR23(5261-5270)
IEEE DOI
2309
BibRef
Land Use Change Detection Using Deep Siamese Neural Networks and Weakly
Supervised Learning,
CAIP21(II:24-35).
Springer DOI
2112
BibRef
Imclass: A User-tailored Machine Learning Image Classification Chain
For Change Detection Or Landcover Mapping,
ISPRS20(B3:677-683).
DOI Link
2012
BibRef
Panoptic Segmentation of Satellite Image Time Series with
Convolutional Temporal Attention Networks,
ICCV21(4852-4861)
IEEE DOI
2203
Economics, Image segmentation, Satellites, Time series analysis,
Semantics, Feature extraction, Vision applications and systems,
Vision + other modalities
BibRef
Satellite Image Time Series Classification With Pixel-Set Encoders
and Temporal Self-Attention,
CVPR20(12322-12331)
IEEE DOI
2008
Satellites, Agriculture, Time series analysis, Feature extraction,
Machine learning
BibRef
Time Series Land Cover Classification Based on Semi-supervised
Convolutional Long Short-term Memory Neural Networks,
ISPRS20(B2:1521-1528).
DOI Link
2012
BibRef
Deep Neural Networks for Automatic Extraction of Features In Time
Series Optical Satellite Images,
ISPRS20(B2:1529-1535).
DOI Link
2012
BibRef
Agricultural Land Change Detecting and Forecasting Using Combination Of
Feedforward Multilayer Neural Network, Cellular Automata and Markov
Chain Models,
SMPR19(153-158).
DOI Link
1912
BibRef
Land cover change detection in Satellite Image Time Series using an
active learning method,
MultiTemp17(1-4)
IEEE DOI
1712
geophysical image processing, land cover,
support vector machines, terrain mapping, time series,
Support vector machines
BibRef
Zoom out CNNs features for optical remote sensing change detection,
ICIVC17(812-817)
IEEE DOI
1708
Fish, Image segmentation, Optical imaging, Optical sensors,
change detection, convolutional neural network, deep learning,
remote sensing
BibRef
Application Of Machine Learning To The Prediction Of Vegetation Health,
ISPRS16(B2: 465-469).
DOI Link
1610
BibRef
Changes using Landsat Images .
Last update:Jan 20, 2025 at 11:36:25