Wang, J.H.[Jin-Hua],
Wang, W.Q.[Wei-Qiang],
Xu, G.M.[Guang-Mei],
Liu, H.Z.[Hong-Zhe],
End-to-End Exposure Fusion Using Convolutional Neural Network,
IEICE(E101-D), No. 2, February 2018, pp. 560-563.
WWW Link.
1802
BibRef
Fotiadou, K.,
Tsagkatakis, G.,
Tsakalides, P.,
Spectral Super Resolution of Hyperspectral Images via Coupled
Dictionary Learning,
GeoRS(57), No. 5, May 2019, pp. 2777-2797.
IEEE DOI
1905
geophysical image processing, geophysical techniques,
hyperspectral imaging, image enhancement, image resolution,
spectral super-resolution
BibRef
Zhao, Y.[Yang],
Wang, R.G.[Rong-Gang],
Jia, W.[Wei],
Zuo, W.M.[Wang-Meng],
Liu, X.P.[Xiao-Ping],
Gao, W.[Wen],
Deep Reconstruction of Least Significant Bits for Bit-Depth Expansion,
IP(28), No. 6, June 2019, pp. 2847-2859.
IEEE DOI
1905
Display low-bit image on high-bit monitor.
image colour analysis, image enhancement, image reconstruction,
deep reconstruction, bit-depth expansion, low bit-depth image,
convolutional neural network
BibRef
Ma, K.[Kede],
Li, H.[Hui],
Yong, H.W.[Hong-Wei],
Wang, Z.[Zhou],
Meng, D.Y.[De-Yu],
Zhang, L.[Lei],
Robust Multi-Exposure Image Fusion:
A Structural Patch Decomposition Approach,
IP(26), No. 5, May 2017, pp. 2519-2532.
IEEE DOI
1704
BibRef
Earlier: A1, A4, Only:
Multi-exposure image fusion: A patch-wise approach,
ICIP15(1717-1721)
IEEE DOI
1512
Cameras.
Multi-exposure fusion, image enhancement, perceptual image processing
BibRef
Li, H.[Hui],
Chan, T.N.[Tsz Nam],
Qi, X.B.[Xian-Biao],
Xie, W.Y.[Wu-Yuan],
Detail-Preserving Multi-Exposure Fusion With Edge-Preserving
Structural Patch Decomposition,
CirSysVideo(31), No. 11, November 2021, pp. 4293-4304.
IEEE DOI
2112
Image edge detection, Kernel, Dynamic range,
Computational efficiency, Task analysis, Visualization,
structural patch decomposition
BibRef
Li, H.[Hui],
Ma, K.[Kede],
Yong, H.W.[Hong-Wei],
Zhang, L.[Lei],
Fast Multi-Scale Structural Patch Decomposition for Multi-Exposure
Image Fusion,
IP(29), 2020, pp. 5805-5816.
IEEE DOI
2005
Dynamic range, Visualization, Cameras, Heuristic algorithms,
Motion detection, Standards, Multi-exposure fusion,
computational photography
BibRef
Wang, B.Y.[Bao-Yuan],
Vesdapunt, N.[Noranart],
Sinha, U.[Utkarsh],
Zhang, L.[Lei],
Real-Time Burst Photo Selection Using a Light-Head Adversarial
Network,
IP(29), 2020, pp. 3065-3077.
IEEE DOI
2002
Real-time systems, Mobile handsets, Head, Computational modeling,
Cameras, Generative adversarial networks, Training,
generative adversarial network
BibRef
Ma, K.[Kede],
Duanmu, Z.F.[Zheng-Fang],
Zhu, H.W.[Han-Wei],
Fang, Y.M.[Yu-Ming],
Wang, Z.[Zhou],
Deep Guided Learning for Fast Multi-Exposure Image Fusion,
IP(29), 2020, pp. 2808-2819.
IEEE DOI
2001
Multi-exposure image fusion, convolutional neural networks,
guided filtering, computational photography
BibRef
Fotiadou, K.,
Tsagkatakis, G.,
Tsakalides, P.,
Snapshot High Dynamic Range Imaging via Sparse Representations and
Feature Learning,
MultMed(22), No. 3, March 2020, pp. 688-703.
IEEE DOI
2003
Imaging, Dynamic range, Image reconstruction, Computer science,
Streaming media, Lighting, Optimization,
sparse representations
BibRef
Martel, J.N.P.[Julien N. P.],
Müller, L.K.[Lorenz K.],
Carey, S.J.[Stephen J.],
Dudek, P.[Piotr],
Wetzstein, G.[Gordon],
Neural Sensors: Learning Pixel Exposures for HDR Imaging and Video
Compressive Sensing With Programmable Sensors,
PAMI(42), No. 7, July 2020, pp. 1642-1653.
IEEE DOI
2006
Optical sensors, Image sensors, Image coding,
High-speed optical techniques, Optical imaging,
end-to-end optimization
BibRef
çogalan, U.,
Akyüz, A.O.,
Deep Joint Deinterlacing and Denoising for Single Shot Dual-ISO HDR
Reconstruction,
IP(29), 2020, pp. 7511-7524.
IEEE DOI
2007
Dual-ISO, HDR imaging, noise, deep learning
BibRef
Mostafavi, M.[Mohammad],
Wang, L.[Lin],
Yoon, K.J.[Kuk-Jin],
Learning to Reconstruct HDR Images from Events, with Applications to
Depth and Flow Prediction,
IJCV(129), No. 4, April 2021, pp. 900-920.
Springer DOI
2104
BibRef
Mostafavi, S.I.M.[S.I. Mohammad],
Nam, Y.[Yeongwoo],
Choi, J.H.[Jong-Hyun],
Yoon, K.J.[Kuk-Jin],
E2SRI: Learning to Super-Resolve Intensity Images From Events,
PAMI(44), No. 10, October 2022, pp. 6890-6909.
IEEE DOI
2209
BibRef
Earlier: A1, A3, A4, Only:
Learning to Super Resolve Intensity Images From Events,
CVPR20(2765-2773)
IEEE DOI
2008
Image reconstruction, Cameras, Videos, Spatial resolution,
Streaming media, Stacking, Optical imaging, Color events,
super-resolution.
Image resolution, Adaptive optics, Stacking
BibRef
Guo, H.,
Sheng, B.,
Li, P.,
Chen, C.L.P.,
Multiview High Dynamic Range Image Synthesis Using Fuzzy Broad
Learning System,
Cyber(51), No. 5, May 2021, pp. 2735-2747.
IEEE DOI
2104
Dynamic range, Learning systems, Optical imaging, Optical sensors,
Image color analysis, Cameras, Image synthesis,
multiview synthesis
BibRef
Lee, S.[Siyeong],
Jo, S.Y.[So Yeon],
An, G.H.[Gwon Hwan],
Kang, S.J.[Suk-Ju],
Learning to Generate Multi-Exposure Stacks With Cycle Consistency for
High Dynamic Range Imaging,
MultMed(23), 2021, pp. 2561-2574.
IEEE DOI
2109
Dynamic range, Neural networks, Image restoration, Distortion,
Training, Light sources, Brightness, High dynamic range imaging,
deep learning
BibRef
Yin, J.L.[Jia-Li],
Chen, B.H.[Bo-Hao],
Peng, Y.T.[Yan-Tsung],
Two Exposure Fusion Using Prior-Aware Generative Adversarial Network,
MultMed(24), 2022, pp. 2841-2851.
IEEE DOI
2206
Semantics, Decoding, Generative adversarial networks,
Dynamic range, Quantization (signal), Calibration, Image fusion, deep learning
BibRef
Liu, J.Y.[Jin-Yuan],
Shang, J.J.[Jing-Jie],
Liu, R.S.[Ri-Sheng],
Fan, X.[Xin],
Attention-Guided Global-Local Adversarial Learning for
Detail-Preserving Multi-Exposure Image Fusion,
CirSysVideo(32), No. 8, August 2022, pp. 5026-5040.
IEEE DOI
2208
Image edge detection, Task analysis, Image fusion,
Image color analysis, Feature extraction, Deep learning,
adversarial learning
BibRef
Huang, F.[Feng],
Lin, P.[Peng],
Cao, R.J.[Rong-Jin],
Zhou, B.[Bin],
Wu, X.Y.[Xian-Yu],
Dictionary Learning- and Total Variation-Based High-Light-Efficiency
Snapshot Multi-Aperture Spectral Imaging,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Wang, L.[Lin],
Yoon, K.J.[Kuk-Jin],
Deep Learning for HDR Imaging: State-of-the-Art and Future Trends,
PAMI(44), No. 12, December 2022, pp. 8874-8895.
IEEE DOI
2212
Imaging, Image reconstruction, Loss measurement, Cameras,
Deep learning, Visualization, Dynamic range,
convolutional neural networks (CNNs)
BibRef
Funahashi, I.[Isana],
Yoshida, T.[Taichi],
Zhang, X.[Xi],
Iwahashi, M.[Masahiro],
Image Adjustment for Multi-Exposure Images Based on Convolutional
Neural Networks,
IEICE(E105-D), No. 1, January 2022, pp. 123-133.
WWW Link.
2201
BibRef
Chen, J.[Jie],
Yang, Z.F.[Zai-Feng],
Chan, T.N.[Tsz Nam],
Li, H.[Hui],
Hou, J.H.[Jun-Hui],
Chau, L.P.[Lap-Pui],
Attention-Guided Progressive Neural Texture Fusion for High Dynamic
Range Image Restoration,
IP(31), 2022, pp. 2661-2672.
IEEE DOI
2204
Feature extraction, Image restoration, Dynamic range, Cameras,
Dynamics, Optical saturation, Optical imaging, visual attention
BibRef
Yang, Y.J.[Ying-Jie],
Wang, Y.F.[Yong-Fang],
Zhang, H.[Han],
DRBR-HDR: Dual-Branch recursive band reconstruction network for HDR
with large motions,
JVCIR(90), 2023, pp. 103713.
Elsevier DOI
2301
Inverse tone mapping, Band reconstruction, Global features,
High dynamic range images
BibRef
Li, J.W.[Jia-Wei],
Liu, J.[Jinyuan],
Zhou, S.[Shihua],
Zhang, Q.[Qiang],
Kasabov, N.K.[Nikola K.],
Learning a Coordinated Network for Detail-Refinement Multiexposure
Image Fusion,
CirSysVideo(33), No. 2, February 2023, pp. 713-727.
IEEE DOI
2302
Feature extraction, Task analysis, Image fusion, Image edge detection,
Image color analysis, Fuses, Deep learning, edge revision
BibRef
Marín-Vega, J.[Juan],
Sloth, M.[Michael],
Schneider-Kamp, P.[Peter],
Röttger, R.[Richard],
DRHDR: A Dual branch Residual Network for Multi-Bracket High Dynamic
Range Imaging,
NTIRE22(843-851)
IEEE DOI
2210
Conferences, Imaging, Dynamic range, Pattern recognition,
Complexity theory, Convolutional neural networks
BibRef
Yu, G.[Gaocheng],
Zhang, J.[Jin],
Ma, Z.[Zhe],
Wang, H.B.[Hong-Bin],
Efficient Progressive High Dynamic Range Image Restoration via
Attention and Alignment Network,
NTIRE22(1123-1130)
IEEE DOI
2210
Photography, Visualization, Image resolution, Image coding,
Neural networks, Feature extraction, Image restoration
BibRef
Vien, A.G.[An Gia],
Lee, C.[Chul],
Exposure-Aware Dynamic Weighted Learning for Single-Shot HDR Imaging,
ECCV22(VII:435-452).
Springer DOI
2211
BibRef
Chen, G.Y.[Guan-Ying],
Chen, C.F.[Chao-Feng],
Guo, S.[Shi],
Liang, Z.T.[Zhe-Tong],
Wong, K.Y.K.[Kwan-Yee K.],
Zhang, L.[Lei],
HDR Video Reconstruction:
A Coarse-to-fine Network and A Real-world Benchmark Dataset,
ICCV21(2482-2491)
IEEE DOI
2203
Deep learning, Training, Codes, Benchmark testing, Dynamic range,
Reconstruction algorithms, Computational photography,
Low-level and physics-based vision
BibRef
Ting, J.W.[Jui-Wen],
Wu, X.S.[Xue-Song],
Hu, K.K.[Kang-Kang],
Zhang, H.[Hong],
Deep Snapshot HDR Reconstruction Based on the Polarization Camera,
ICIP21(1769-1773)
IEEE DOI
2201
Training, Reconstruction algorithms, Dynamic range, Cameras,
Hardware, System-on-chip, Image restoration, HDR, polarization, deep learning
BibRef
Mattur, S.A.[Shashaank A.],
Larabi, M.C.[Mohamed-Chaker],
Deep High Dynamic Range Imaging Using Differently Exposed Stereo
Images,
ICIP21(2888-2892)
IEEE DOI
2201
Training, Visualization, Merging, Deep architecture, Dynamic range,
Feature extraction, HDR imaging, image fusion,
encoder-decoder deep architecture
BibRef
Eilertsen, G.[Gabriel],
Hajisharif, S.[Saghi],
Hanji, P.[Param],
Tsirikoglou, A.[Apostolia],
Mantiuk, R.K.[Rafal K.],
Unger, J.[Jonas],
How to cheat with metrics in single-image HDR reconstruction,
LCI21(3981-3990)
IEEE DOI
2112
Measurement, Deep learning, Image quality, Visualization, Protocols,
Sensitivity, Pipelines
BibRef
Zou, Y.H.[Yun-Hao],
Zheng, Y.Q.[Yin-Qiang],
Takatani, T.[Tsuyoshi],
Fu, Y.[Ying],
Learning to Reconstruct High Speed and High Dynamic Range Videos from
Events,
CVPR21(2024-2033)
IEEE DOI
2111
Training, Recurrent neural networks, Reconstruction algorithms,
Dynamic range, Streaming media, Cameras, Feature extraction
BibRef
Afifi, M.[Mahmoud],
Derpanis, K.G.[Konstantinos G.],
Ommer, B.[Björn],
Brown, M.S.[Michael S.],
Learning Multi-Scale Photo Exposure Correction,
CVPR21(9153-9163)
IEEE DOI
2111
Deep learning, Visualization,
Image color analysis, Cameras, Pattern recognition, Image enhancement
BibRef
Onzon, E.[Emmanuel],
Mannan, F.[Fahim],
Heide, F.[Felix],
Neural Auto-Exposure for High-Dynamic Range Object Detection,
CVPR21(7706-7716)
IEEE DOI
2111
Image sensors, Training, Pipelines,
Object detection, Computer architecture, Dynamic range
BibRef
Sharif, S.M.A.,
Naqvi, R.A.[Rizwan Ali],
Biswas, M.[Mithun],
Kim, S.J.[Sung-Jun],
A Two-stage Deep Network for High Dynamic Range Image Reconstruction,
NTIRE21(550-559)
IEEE DOI
2109
Learning systems, Visualization, Noise reduction, Dynamic range,
Reconstruction algorithms, Cameras, Hardware
BibRef
Akhil, K.A.,
Jiji, C.V.,
Single image HDR synthesis using a Densely Connected Dilated ConvNet,
NTIRE21(526-531)
IEEE DOI
2109
Photography, Visualization, Quantization (signal), Convolution,
Dynamic range, Pattern recognition, Convolutional neural networks
BibRef
Han, F.,
Wang, J.,
Xiong, R.,
Zhu, Q.,
Yin, B.,
HDR Image Compression with Convolutional Autoencoder,
VCIP20(25-28)
IEEE DOI
2102
Image reconstruction, Image coding, Transform coding, Decoding,
Convolutional codes, Standards, Neural networks
BibRef
Wang, Z.,
Zhang, J.,
Lin, M.,
Wang, J.,
Luo, P.,
Ren, J.,
Learning a Reinforced Agent for Flexible Exposure Bracketing
Selection,
CVPR20(1817-1825)
IEEE DOI
2008
Semantics, Dynamic range, Lighting, Cameras, Feature extraction,
Learning (artificial intelligence), Neural networks
BibRef
Sun, Q.,
Tseng, E.,
Fu, Q.,
Heidrich, W.,
Heide, F.,
Learning Rank-1 Diffractive Optics for Single-Shot High Dynamic Range
Imaging,
CVPR20(1383-1393)
IEEE DOI
2008
Optical sensors, Optical imaging, Optical saturation,
Image reconstruction, Encoding
BibRef
Baek, S.H.[Seung-Hwan],
Ikoma, H.[Hayato],
Jeon, D.S.[Daniel S.],
Li, Y.Q.[Yu-Qi],
Heidrich, W.[Wolfgang],
Wetzstein, G.[Gordon],
Kim, M.H.[Min H.],
Single-shot Hyperspectral-Depth Imaging with Learned Diffractive
Optics,
ICCV21(2631-2640)
IEEE DOI
2203
Integrated optics, Optical diffraction, Costs, Buildings, Imaging,
Prototypes, Computational photography,
BibRef
Metzler, C.A.,
Ikoma, H.,
Peng, Y.,
Wetzstein, G.,
Deep Optics for Single-Shot High-Dynamic-Range Imaging,
CVPR20(1372-1382)
IEEE DOI
2008
Optical imaging, Optical sensors, Optical saturation,
Optical device fabrication, Cameras, Lenses
BibRef
Liu, Y.,
Lai, W.,
Chen, Y.,
Kao, Y.,
Yang, M.,
Chuang, Y.,
Huang, J.,
Single-Image HDR Reconstruction by Learning to Reverse the Camera
Pipeline,
CVPR20(1648-1657)
IEEE DOI
2008
Pipelines, Image reconstruction, Cameras, Quantization (signal),
Dynamic range, Training, Image sensors
BibRef
Kinoshita, Y.,
Kiya, H.,
Convolutional Neural Networks Considering Local and Global Features
for Image Enhancement,
ICIP19(2110-2114)
IEEE DOI
1910
Image enhancement, High dynamic range images, Deep learning,
Convolutional neural networks
BibRef
Rosh, K.S.G.[K.S. Green],
Biswas, A.[Anmol],
Patel, M.S.[Mandakinee Singh],
Prasad, B.H.P.[B.H. Pawan],
Deep Multi-Stage Learning for HDR With Large Object Motions,
ICIP19(4714-4718)
IEEE DOI
1910
HDR, Deep Learning, Multi Exposure Fusion, Exposure Alignment
BibRef
Yan, Q.,
Gong, D.,
Zhang, P.,
Shi, Q.,
Sun, J.,
Reid, I.,
Zhang, Y.,
Multi-Scale Dense Networks for Deep High Dynamic Range Imaging,
WACV19(41-50)
IEEE DOI
1904
convolutional neural nets,
image motion analysis, image reconstruction, image segmentation,
Cameras
BibRef
Byun, J.Y.[Jun-Young],
Shim, K.[Kyujin],
Kim, C.[Changick],
BitNet: Learning-Based Bit-Depth Expansion,
ACCV18(II:67-82).
Springer DOI
1906
BibRef
Li, Y.W.[Ya-Wei],
Tsiminaki, V.[Vagia],
Timofte, R.[Radu],
Pollefeys, M.[Marc],
Van Gool, L.J.[Luc J.],
3D Appearance Super-Resolution With Deep Learning,
CVPR19(9663-9672).
IEEE DOI
2002
BibRef
Ignatov, A.[Andrey],
Sycheva, A.[Anastasia],
Timofte, R.[Radu],
Tseng, Y.[Yu],
Xu, Y.S.[Yu-Syuan],
Yu, P.H.[Po-Hsiang],
Chiang, C.M.[Cheng-Ming],
Kuo, H.K.[Hsien-Kai],
Chen, M.H.[Min-Hung],
Cheng, C.M.[Chia-Ming],
Van Gool, L.J.[Luc J.],
Microisp: Processing 32mp Photos on Mobile Devices with Deep Learning,
AIM22(729-746).
Springer DOI
2304
BibRef
Ignatov, A.,
Van Gool, L.J.,
Timofte, R.,
Replacing Mobile Camera ISP with a Single Deep Learning Model,
NTIRE20(2275-2285)
IEEE DOI
2008
Cameras, Task analysis, Image color analysis, Machine learning,
Smart phones, Image restoration, Image resolution
BibRef
Ignatov, A.,
Kobyshev, N.,
Timofte, R.,
Vanhoey, K.,
Van Gool, L.J.,
DSLR-Quality Photos on Mobile Devices with Deep Convolutional
Networks,
ICCV17(3297-3305)
IEEE DOI
1802
cameras, image colour analysis, image enhancement, image texture,
learning (artificial intelligence), mean square error methods, Training
BibRef
Zhang, J.,
Lalonde, J.F.,
Learning High Dynamic Range from Outdoor Panoramas,
ICCV17(4529-4538)
IEEE DOI
1802
cameras, image capture, image reconstruction, image sensors,
learning (artificial intelligence), regression analysis,
BibRef
Chapter on Motion Analysis -- Low-Level, Image Level Analysis, Mosaic Generation, Super Resolution, Shape from Motion continues in
High Dynamic Range Ghosting, DeGhosting .