Li, Z.Z.[Zhi-Zhong],
Hoiem, D.[Derek],
Learning Without Forgetting,
PAMI(40), No. 12, December 2018, pp. 2935-2947.
IEEE DOI
1811
BibRef
Earlier:
ECCV16(IV: 614-629).
Springer DOI
1611
Keep the old results in NN, but learn new capability.
Feature extraction, Deep learning, Training data, Neural networks,
Convolutional neural networks, Knowledge engineering,
visual recognition.
BibRef
Li, Z.Z.[Zhi-Zhong],
Hoiem, D.[Derek],
Improving Confidence Estimates for Unfamiliar Examples,
CVPR20(2683-2692)
IEEE DOI
2008
Training, Calibration, Dogs, Uncertainty, Cats, Task analysis, Testing
BibRef
Schutera, M.[Mark],
Hafner, F.M.[Frank M.],
Abhau, J.[Jochen],
Hagenmeyer, V.[Veit],
Mikut, R.[Ralf],
Reischl, M.[Markus],
Cuepervision: self-supervised learning for continuous domain
adaptation without catastrophic forgetting,
IVC(106), 2021, pp. 104079.
Elsevier DOI
2102
Domain adaptation, Self-supervised learning,
Unsupervised learning, Continuous transfer learning, MNIST dataset
BibRef
Osman, I.[Islam],
Eltantawy, A.[Agwad],
Shehata, M.S.[Mohamed S.],
Task-based parameter isolation for foreground segmentation without
catastrophic forgetting using multi-scale region and edges fusion
network,
IVC(113), 2021, pp. 104248.
Elsevier DOI
2108
Foreground segmentation, Moving objects, Deep learning,
Continual learning, Parameter isolation
BibRef
Toohey, J.R.[Jack R.],
Raunak, M.S.,
Binkley, D.[David],
From Neuron Coverage to Steering Angle: Testing Autonomous Vehicles
Effectively,
Computer(54), No. 8, August 2021, pp. 77-85.
IEEE DOI
2108
Create new images to rtain an existing DNN, without forgetting.
Deep learning, Neurons, Autonomous vehicles, Testing
BibRef
Zhang, M.[Miao],
Li, H.Q.[Hui-Qi],
Pan, S.R.[Shi-Rui],
Chang, X.J.[Xiao-Jun],
Zhou, C.[Chuan],
Ge, Z.Y.[Zong-Yuan],
Su, S.[Steven],
One-Shot Neural Architecture Search: Maximising Diversity to Overcome
Catastrophic Forgetting,
PAMI(43), No. 9, September 2021, pp. 2921-2935.
IEEE DOI
2108
Training, Optimization, Neural networks,
Search methods, Australia, Germanium, AutoML,
novelty search
BibRef
Lao, Q.C.[Qi-Cheng],
Mortazavi, M.[Mehrzad],
Tahaei, M.[Marzieh],
Dutil, F.[Francis],
Fevens, T.[Thomas],
Havaei, M.[Mohammad],
FoCL: Feature-oriented continual learning for generative models,
PR(120), 2021, pp. 108127.
Elsevier DOI
2109
Catastrophic forgetting, Continual learning, Generative models,
Feature matching, Generative replay, Pseudo-rehearsal
BibRef
Peng, C.[Can],
Zhao, K.[Kun],
Maksoud, S.[Sam],
Li, M.[Meng],
Lovell, B.C.[Brian C.],
SID: Incremental learning for anchor-free object detection via
Selective and Inter-related Distillation,
CVIU(210), 2021, pp. 103229.
Elsevier DOI
2109
Deal with deep network failing on old task after new data --
catastrophic forgetting.
Incremental learning, Object detection, Knowledge distillation
BibRef
Wang, M.[Meng],
Guo, Z.B.[Zheng-Bing],
Li, H.F.[Hua-Feng],
A dynamic routing CapsNet based on increment prototype clustering for
overcoming catastrophic forgetting,
IET-CV(16), No. 1, 2022, pp. 83-97.
DOI Link
2202
capsule network, catastrophic forgetting, continual learning,
dynamic routing, prototype clustering
BibRef
Marconato, E.[Emanuele],
Bontempo, G.[Gianpaolo],
Teso, S.[Stefano],
Ficarra, E.[Elisa],
Calderara, S.[Simone],
Passerini, A.[Andrea],
Catastrophic Forgetting in Continual Concept Bottleneck Models,
CL4REAL22(539-547).
Springer DOI
2208
BibRef
Baik, S.[Sungyong],
Oh, J.[Junghoon],
Hong, S.[Seokil],
Lee, K.M.[Kyoung Mu],
Learning to Forget for Meta-Learning via Task-and-Layer-Wise
Attenuation,
PAMI(44), No. 11, November 2022, pp. 7718-7730.
IEEE DOI
2210
Task analysis, Optimization, Adaptation models, Attenuation,
Knowledge engineering, Visualization, Neural networks,
visual tracking
BibRef
Boschini, M.[Matteo],
Buzzega, P.[Pietro],
Bonicelli, L.[Lorenzo],
Porrello, A.[Angelo],
Calderara, S.[Simone],
Continual semi-supervised learning through contrastive interpolation
consistency,
PRL(162), 2022, pp. 9-14.
Elsevier DOI
2210
Continual learning, Deep learning, Semi-supervised learning,
Weak supervision, Catastrophic forgetting
BibRef
Huang, F.X.[Fu-Xian],
Li, W.C.[Wei-Chao],
Lin, Y.[Yining],
Ji, N.[Naye],
Li, S.J.[Shi-Jian],
Li, X.[Xi],
Memory-efficient distribution-guided experience sampling for policy
consolidation,
PRL(164), 2022, pp. 126-131.
Elsevier DOI
2212
Learn new skills in sequence without forgetting old skills.
Reinforcement learning, Policy consolidation,
Distribution-guided sampling, Memory efficiency, Distributional neural network
BibRef
Ma, R.[Rui],
Wu, Q.B.[Qing-Bo],
Ngan, K.N.[King Ngi],
Li, H.L.[Hong-Liang],
Meng, F.M.[Fan-Man],
Xu, L.F.[Lin-Feng],
Forgetting to Remember: A Scalable Incremental Learning Framework for
Cross-Task Blind Image Quality Assessment,
MultMed(25), 2023, pp. 8817-8827.
IEEE DOI
2312
BibRef
Benko, B.[Beatrix],
Example forgetting and rehearsal in continual learning,
PRL(179), 2024, pp. 65-72.
Elsevier DOI
2403
Continual learning, Catastrophic forgetting, Rehearsal exemplar selection
BibRef
Qu, Y.Y.[You-Yang],
Yuan, X.[Xin],
Ding, M.[Ming],
Ni, W.[Wei],
Rakotoarivelo, T.[Thierry],
Smith, D.[David],
Learn to Unlearn: Insights Into Machine Unlearning,
Computer(57), No. 3, March 2024, pp. 79-90.
IEEE DOI
2403
Privacy, Reviews, Machine learning, Resilience
BibRef
Zhou, D.[DaiLiang],
Song, Y.[YongHong],
PNSP: Overcoming catastrophic forgetting using Primary Null Space
Projection in continual learning,
PRL(179), 2024, pp. 137-143.
Elsevier DOI
2403
Continual learning, Catastrophic forgetting, Null space,
Low-rank approximation, Feature alignment
BibRef
Hassan, M.A.[Mohamed Abubakr],
Lee, C.G.[Chi-Guhn],
Forget to Learn (F2L): Circumventing plasticity-stability trade-off
in continuous unsupervised domain adaptation,
PR(159), 2025, pp. 111139.
Elsevier DOI
2412
Plasticity-stability dilemma, Continuous unsupervised domain adaptation,
Forgetting
BibRef
Zhang, J.[Jihai],
Lan, X.[Xiang],
Qu, X.Y.[Xiao-Ye],
Cheng, Y.[Yu],
Feng, M.L.[Meng-Ling],
Hooi, B.[Bryan],
Learning the Unlearned: Mitigating Feature Suppression in Contrastive
Learning,
ECCV24(LXXXIII: 35-52).
Springer DOI
2412
BibRef
Zhang, Y.M.[Yi-Meng],
Jia, J.H.[Jing-Han],
Chen, X.[Xin],
Chen, A.[Aochuan],
Zhang, Y.H.[Yi-Hua],
Liu, J.C.[Jian-Cheng],
Ding, K.[Ke],
Liu, S.[Sijia],
To Generate or Not? Safety-driven Unlearned Diffusion Models Are Still
Easy to Generate Unsafe Images ... For Now,
ECCV24(LVII: 385-403).
Springer DOI
2412
BibRef
Cheng, J.L.[Jia-Li],
Amiri, H.[Hadi],
Multidelete for Multimodal Machine Unlearning,
ECCV24(XLI: 165-184).
Springer DOI
2412
BibRef
Bhatt, G.[Gaurav],
Ross, J.[James],
Sigal, L.[Leonid],
Preventing Catastrophic Forgetting Through Memory Networks in
Continuous Detection,
ECCV24(LXXXIV: 442-458).
Springer DOI
2412
BibRef
Medeiros, H.R.[Heitor Rapela],
Aminbeidokhti, M.[Masih],
Peña, F.A.G.[Fidel Alejandro Guerrero],
Latortue, D.[David],
Granger, E.[Eric],
Pedersoli, M.[Marco],
Modality Translation for Object Detection Adaptation Without Forgetting
Prior Knowledge,
ECCV24(LXXXIX: 51-68).
Springer DOI
2412
BibRef
Zheng, M.Y.[Meng-Yu],
Tang, Y.[Yehui],
Hao, Z.W.[Zhi-Wei],
Han, K.[Kai],
Wang, Y.H.[Yun-He],
Xu, C.[Chang],
Adapt Without Forgetting: Distill Proximity from Dual Teachers in
Vision-language Models,
ECCV24(LIV: 109-125).
Springer DOI
2412
BibRef
Fan, C.[Chongyu],
Liu, J.C.[Jian-Cheng],
Hero, A.[Alfred],
Liu, S.[Sijia],
Challenging Forgets: Unveiling the Worst-case Forget Sets in Machine
Unlearning,
ECCV24(XXI: 278-297).
Springer DOI
2412
BibRef
Zhang, W.X.[Wen-Xuan],
Janson, P.[Paul],
Aljundi, R.[Rahaf],
Elhoseiny, M.[Mohamed],
Overcoming Generic Knowledge Loss with Selective Parameter Update,
CVPR24(24046-24056)
IEEE DOI Code:
WWW Link.
2410
Accuracy, Codes, Knowledge based systems
BibRef
Choi, D.[Dasol],
Choi, S.[Soora],
Lee, E.[Eunsun],
Seo, J.[Jinwoo],
Na, D.B.[Dong-Bin],
Towards Efficient Machine Unlearning with Data Augmentation: Guided
Loss-Increasing (GLI) to Prevent the Catastrophic Model Utility Drop,
FaDE-TCV24(93-102)
IEEE DOI Code:
WWW Link.
2410
Measurement, Training, Source coding, Computational modeling, Data augmentation
BibRef
Seo, J.[Juwon],
Lee, S.H.[Sung-Hoon],
Lee, T.Y.[Tae-Young],
Moon, S.[Seungjun],
Park, G.M.[Gyeong-Moon],
Generative Unlearning for Any Identity,
CVPR24(9151-9161)
IEEE DOI Code:
WWW Link.
2410
Industries, Privacy, Extrapolation, Codes,
Generative adversarial networks, Generators, GAN
BibRef
Lim, G.[Guihong],
Hsu, H.[Hsiang],
Chen, C.F.R.[Chun-Fu Richard],
Marculescu, R.[Radu],
Fast-NTK: Parameter-Efficient Unlearning for Large-Scale Models,
FaDE-TCV24(227-234)
IEEE DOI
2410
Visualization, Computational modeling, Scalability,
Artificial neural networks, Machine learning
BibRef
Zhou, Y.H.[Yu-Hang],
Hua, Z.Y.[Zhong-Yun],
Defense without Forgetting: Continual Adversarial Defense with
Anisotropic & Isotropic Pseudo Replay,
CVPR24(24263-24272)
IEEE DOI
2410
Training, Manifolds, Upper bound, Atmospheric modeling, Semantics,
Anisotropic, adversarial attack and defense, continual learning
BibRef
Cao, X.Z.[Xin-Zi],
Zheng, X.[Xiawu],
Wang, G.[Guanhong],
Yu, W.J.[Wei-Jiang],
Shen, Y.[Yunhang],
Li, K.[Ke],
Lu, Y.T.[Yu-Tong],
Tian, Y.H.[Yong-Hong],
Solving the Catastrophic Forgetting Problem in Generalized Category
Discovery,
CVPR24(16880-16889)
IEEE DOI Code:
WWW Link.
2410
Accuracy, Image recognition, Codes, Predictive models, Entropy,
Generalized Category Discovery, Catastrophic Forgetting
BibRef
Li, Y.C.[Yi-Chen],
Li, Q.[Qunwei],
Wang, H.Z.[Hao-Zhao],
Li, R.X.[Rui-Xuan],
Zhong, W.L.[Wen-Liang],
Zhang, G.[Guannan],
Towards Efficient Replay in Federated Incremental Learning,
CVPR24(12820-12829)
IEEE DOI
2410
Incremental learning, Federated learning,
Federated Learning, Continual Learning, Data Heterogeneity,
Catastrophic Forgetting
BibRef
Hoang, T.[Tuan],
Rana, S.[Santu],
Gupta, S.I.[Sun-Il],
Venkatesh, S.[Svetha],
Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection,
WACV24(4807-4816)
IEEE DOI Code:
WWW Link.
2404
Training, Measurement, Learning systems, Data privacy, Training data,
Stochastic processes, Algorithms, Explainable, fair, accountable,
ethical computer vision
BibRef
Dukler, Y.[Yonatan],
Bowman, B.[Benjamin],
Achille, A.[Alessandro],
Golatkar, A.[Aditya],
Swaminathan, A.[Ashwin],
Soatto, S.[Stefano],
SAFE: Machine Unlearning With Shard Graphs,
ICCV23(17062-17072)
IEEE DOI
2401
BibRef
Liu, J.[Junxu],
Xue, M.S.[Ming-Sheng],
Lou, J.[Jian],
Zhang, X.Y.[Xiao-Yu],
Xiong, L.[Li],
Qin, Z.[Zhan],
MUter: Machine Unlearning on Adversarially Trained Models,
ICCV23(4869-4879)
IEEE DOI
2401
BibRef
Khattak, M.U.[Muhammad Uzair],
Wasim, S.T.[Syed Talal],
Naseer, M.[Muzammal],
Khan, S.[Salman],
Yang, M.H.[Ming-Hsuan],
Khan, F.S.[Fahad Shahbaz],
Self-regulating Prompts: Foundational Model Adaptation without
Forgetting,
ICCV23(15144-15154)
IEEE DOI Code:
WWW Link.
2401
BibRef
Chen, T.A.[Ting-An],
Yang, D.N.[De-Nian],
Chen, M.S.[Ming-Syan],
Overcoming Forgetting Catastrophe in Quantization-Aware Training,
ICCV23(17312-17321)
IEEE DOI
2401
BibRef
Kang, M.X.[Meng-Xue],
Zhang, J.P.[Jin-Peng],
Zhang, J.M.[Jin-Ming],
Wang, X.S.[Xia-Shuang],
Chen, Y.[Yang],
Ma, Z.[Zhe],
Huang, X.[Xuhui],
Alleviating Catastrophic Forgetting of Incremental Object Detection
via Within-Class and Between-Class Knowledge Distillation,
ICCV23(18848-18858)
IEEE DOI
2401
BibRef
Chen, M.[Min],
Gao, W.Z.[Wei-Zhuo],
Liu, G.[Gaoyang],
Peng, K.[Kai],
Wang, C.[Chen],
Boundary Unlearning: Rapid Forgetting of Deep Networks via Shifting
the Decision Boundary,
CVPR23(7766-7775)
IEEE DOI
2309
BibRef
Carrión, S.[Salvador],
Casacuberta, F.[Francisco],
Continual Vocabularies to Tackle the Catastrophic Forgetting Problem in
Machine Translation,
IbPRIA23(94-107).
Springer DOI
2307
BibRef
Kalb, T.[Tobias],
Beyerer, J.[Jürgen],
Causes of Catastrophic Forgetting in Class-incremental Semantic
Segmentation,
ACCV22(VII:361-377).
Springer DOI
2307
BibRef
Qu, Z.N.[Zhong-Nan],
Liu, C.[Cong],
Thiele, L.[Lothar],
Deep Partial Updating:
Towards Communication Efficient Updating for On-Device Inference,
ECCV22(XI:137-153).
Springer DOI
2211
BibRef
Ye, J.W.[Jing-Wen],
Fu, Y.F.[Yi-Fang],
Song, J.[Jie],
Yang, X.Y.[Xing-Yi],
Liu, S.[Songhua],
Jin, X.[Xin],
Song, M.L.[Ming-Li],
Wang, X.C.[Xin-Chao],
Learning with Recoverable Forgetting,
ECCV22(XI:87-103).
Springer DOI
2211
BibRef
Singh, P.[Pravendra],
Mazumder, P.[Pratik],
Karim, M.A.[Mohammed Asad],
Attaining Class-Level Forgetting in Pretrained Model Using Few Samples,
ECCV22(XIII:433-448).
Springer DOI
2211
BibRef
Wang, Z.Y.[Zhen-Yi],
Shen, L.[Li],
Fang, L.[Le],
Suo, Q.L.[Qiu-Ling],
Zhan, D.L.[Dong-Lin],
Duan, T.[Tiehang],
Gao, M.C.[Ming-Chen],
Meta-Learning with Less Forgetting on Large-Scale Non-Stationary Task
Distributions,
ECCV22(XX:221-238).
Springer DOI
2211
BibRef
Boschini, M.[Matteo],
Bonicelli, L.[Lorenzo],
Porrello, A.[Angelo],
Bellitto, G.[Giovanni],
Pennisi, M.[Matteo],
Palazzo, S.[Simone],
Spampinato, C.[Concetto],
Calderara, S.[Simone],
Transfer Without Forgetting,
ECCV22(XXIII:692-709).
Springer DOI
2211
BibRef
Liang, M.F.[Ming-Fu],
Zhou, J.H.[Jia-Huan],
Wei, W.[Wei],
Wu, Y.[Ying],
Balancing Between Forgetting and Acquisition in Incremental
Subpopulation Learning,
ECCV22(XXVI:364-380).
Springer DOI
2211
BibRef
Mehta, R.[Ronak],
Pal, S.[Sourav],
Singh, V.[Vikas],
Ravi, S.N.[Sathya N.],
Deep Unlearning via Randomized Conditionally Independent Hessians,
CVPR22(10412-10421)
IEEE DOI
2210
Training, Law, Computational modeling, Face recognition, Semantics,
Legislation, Predictive models, Transparency, fairness, Statistical methods
BibRef
Feng, T.[Tao],
Wang, M.[Mang],
Yuan, H.J.[Hang-Jie],
Overcoming Catastrophic Forgetting in Incremental Object Detection
via Elastic Response Distillation,
CVPR22(9417-9426)
IEEE DOI
2210
Location awareness, Training, Codes, Object detection, Detectors,
Feature extraction, retrieval, categorization, Recognition: detection
BibRef
Kim, J.[Junyaup],
Woo, S.S.[Simon S.],
Efficient Two-stage Model Retraining for Machine Unlearning,
HCIS22(4360-4368)
IEEE DOI
2210
Deep learning, Training, Computational modeling,
Data models
BibRef
Ferdinand, Q.[Quentin],
Clement, B.[Benoit],
Oliveau, Q.[Quentin],
Chenadec, G.L.[Gilles Le],
Papadakis, P.[Panagiotis],
Attenuating Catastrophic Forgetting by Joint Contrastive and
Incremental Learning,
CLVision22(3781-3788)
IEEE DOI
2210
Learning systems, Training, Deep learning, Adaptation models,
Conferences, Computational modeling
BibRef
Jain, H.[Himalaya],
Vu, T.H.[Tuan-Hung],
Pérez, P.[Patrick],
Cord, M.[Matthieu],
CSG0: Continual Urban Scene Generation with Zero Forgetting,
CLVision22(3678-3686)
IEEE DOI
2210
Training, Visualization, Costs, Semantics, Memory management,
Generative adversarial networks
BibRef
Meng, Q.[Qiang],
Zhang, C.X.[Chi-Xiang],
Xu, X.Q.[Xiao-Qiang],
Zhou, F.[Feng],
Learning Compatible Embeddings,
ICCV21(9919-9928)
IEEE DOI
2203
Training, Degradation, Visualization, Costs, Codes, Image retrieval,
Representation learning, Faces, Recognition and classification
BibRef
Binici, K.[Kuluhan],
Pham, N.T.[Nam Trung],
Mitra, T.[Tulika],
Leman, K.[Karianto],
Preventing Catastrophic Forgetting and Distribution Mismatch in
Knowledge Distillation via Synthetic Data,
WACV22(3625-3633)
IEEE DOI
2202
Deep learning, Energy consumption,
Computational modeling, Neural networks, Memory management,
Image and Video Synthesis
BibRef
Benkert, R.[Ryan],
Aribido, O.J.[Oluwaseun Joseph],
AlRegib, G.[Ghassan],
Explaining Deep Models Through Forgettable Learning Dynamics,
ICIP21(3692-3696)
IEEE DOI
2201
Training, Deep learning, Image segmentation, Semantics,
Predictive models, Data models, Example Forgetting,
Semantic Segmentation
BibRef
Roy, S.[Soumya],
Sau, B.B.[Bharat Bhusan],
Can Selfless Learning improve accuracy of a single classification
task?,
WACV21(4043-4051)
IEEE DOI
2106
solve the problem of catastrophic forgetting in continual learning.
Training, Neurons, Task analysis
BibRef
Mundt, M.[Martin],
Pliushch, I.[Iuliia],
Ramesh, V.[Visvanathan],
Neural Architecture Search of Deep Priors: Towards Continual Learning
without Catastrophic Interference,
CLVision21(3518-3527)
IEEE DOI
2109
Training, Neural networks,
Interference
BibRef
Katakol, S.[Sudeep],
Herranz, L.[Luis],
Yang, F.[Fei],
Mrak, M.[Marta],
DANICE: Domain adaptation without forgetting in neural image
compression,
CLIC21(1921-1925)
IEEE DOI
2109
Video coding, Image coding, Codecs, Transfer learning, Interference
BibRef
Kurmi, V.K.[Vinod K.],
Patro, B.N.[Badri N.],
Subramanian, V.K.[Venkatesh K.],
Namboodiri, V.P.[Vinay P.],
Do not Forget to Attend to Uncertainty while Mitigating Catastrophic
Forgetting,
WACV21(736-745)
IEEE DOI
2106
Deep learning, Uncertainty,
Computational modeling, Estimation, Data models
BibRef
Nguyen, G.[Giang],
Chen, S.[Shuan],
Jun, T.J.[Tae Joon],
Kim, D.[Daeyoung],
Explaining How Deep Neural Networks Forget by Deep Visualization,
EDL-AI20(162-173).
Springer DOI
2103
BibRef
Patra, A.[Arijit],
Chakraborti, T.[Tapabrata],
Learn More, Forget Less: Cues from Human Brain,
ACCV20(IV:187-202).
Springer DOI
2103
BibRef
Liu, Y.[Yu],
Parisot, S.[Sarah],
Slabaugh, G.[Gregory],
Jia, X.[Xu],
Leonardis, A.[Ales],
Tuytelaars, T.[Tinne],
More Classifiers, Less Forgetting: A Generic Multi-classifier Paradigm
for Incremental Learning,
ECCV20(XXVI:699-716).
Springer DOI
2011
BibRef
Hayes, T.L.[Tyler L.],
Kafle, K.[Kushal],
Shrestha, R.[Robik],
Acharya, M.[Manoj],
Kanan, C.[Christopher],
Remind Your Neural Network to Prevent Catastrophic Forgetting,
ECCV20(VIII:466-483).
Springer DOI
2011
BibRef
Golatkar, A.[Aditya],
Achille, A.[Alessandro],
Soatto, S.[Stefano],
Forgetting Outside the Box: Scrubbing Deep Networks of Information
Accessible from Input-output Observations,
ECCV20(XXIX: 383-398).
Springer DOI
2010
BibRef
Baik, S.,
Hong, S.,
Lee, K.M.,
Learning to Forget for Meta-Learning,
CVPR20(2376-2384)
IEEE DOI
2008
Task analysis, Attenuation, Adaptation models, Optimization,
Training, Neural networks, Loss measurement
BibRef
Zhang, Z.,
Lathuilière, S.,
Ricci, E.,
Sebe, N.,
Yan, Y.,
Yang, J.,
Online Depth Learning Against Forgetting in Monocular Videos,
CVPR20(4493-4502)
IEEE DOI
2008
Adaptation models, Videos, Estimation, Task analysis, Robustness,
Machine learning, Training
BibRef
Davidson, G.,
Mozer, M.C.,
Sequential Mastery of Multiple Visual Tasks: Networks Naturally Learn
to Learn and Forget to Forget,
CVPR20(9279-9290)
IEEE DOI
2008
Task analysis, Training, Visualization, Standards, Neural networks,
Color, Interference
BibRef
Masarczyk, W.,
Tautkute, I.,
Reducing catastrophic forgetting with learning on synthetic data,
CLVision20(1019-1024)
IEEE DOI
2008
Task analysis, Optimization, Generators, Data models,
Neural networks, Training, Computer architecture
BibRef
Golatkar, A.,
Achille, A.,
Soatto, S.,
Eternal Sunshine of the Spotless Net: Selective Forgetting in Deep
Networks,
CVPR20(9301-9309)
IEEE DOI
2008
Training, Neural networks, Data models, Stochastic processes,
Task analysis, Training data
BibRef
Lee, K.,
Lee, K.,
Shin, J.,
Lee, H.,
Overcoming Catastrophic Forgetting With Unlabeled Data in the Wild,
ICCV19(312-321)
IEEE DOI
2004
Code, Neural Networks.
WWW Link. image sampling, learning (artificial intelligence), neural nets,
distillation loss, global distillation, learning strategy,
Neural networks
BibRef
Nwe, T.L.[Tin Lay],
Nataraj, B.[Balaji],
Xie, S.D.[Shu-Dong],
Li, Y.Q.[Yi-Qun],
Lin, D.Y.[Dong-Yun],
Sheng, D.[Dong],
Discriminative Features for Incremental Learning Classifier,
ICIP19(1990-1994)
IEEE DOI
1910
Incremental learning, Context Aware Advertisement,
Few-short incremental learning, Discriminative features,
Catastrophic forgetting
BibRef
Shmelkov, K.,
Schmid, C.,
Alahari, K.,
Incremental Learning of Object Detectors without Catastrophic
Forgetting,
ICCV17(3420-3429)
IEEE DOI
1802
learning (artificial intelligence), neural nets,
object detection, COCO datasets, PASCAL VOC 2007, annotations,
Training data
BibRef
Liu, X.L.[Xia-Lei],
Masana, M.,
Herranz, L.,
van de Weijer, J.[Joost],
López, A.M.,
Bagdanov, A.D.[Andrew D.],
Rotate your Networks: Better Weight Consolidation and Less
Catastrophic Forgetting,
ICPR18(2262-2268)
IEEE DOI
1812
Task analysis, Training, Training data, Neural networks, Data models,
Standards
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Implicit Neural Networks, Implicit Neural Representation .