7.3.7.3 Closest Point Algorithms, ICP, Iterative Closest Point

Chapter Contents (Back)
ICP. Iterative Closest Point. Distance Transform. Point Matching. Closest Point.

Clarkson, K.,
A Randomized Algorithm for Closest-Point Queries,
SIAM_JC(17), 1988, pp. 830-847. BibRef 8800

Tüceryan, M.[Mihran], Chorzempa, T.[Terrence],
Relative sensitivity of a family of closest-point graphs in computer vision applications,
PR(24), No. 5, 1991, pp. 361-373.
WWW Link. 0401
Study the properties of a set of four related closest-point graphs using Monte Carlo methods: (i) the Delaunay triangulation (DT) and its dual, Voronoi tessellation, (ii) the Gabriel graph (GG), (iii) the relative neighborhood graph (RNG), and (iv) the minimum spanning tree (MST). Delaunay triangulation is shown to be the least sensitive to such noisy conditions. BibRef

Mitra, P., Chaudhuri, B.B.,
Efficiently Computing the Closest Point to a Query Line,
PRL(19), No. 11, September 1998, pp. 1027-1035. 9811
BibRef

Kapoutsis, C.A., Vavoulidis, C.P., Pitas, I.,
Morphological Iterative Closest Point Algorithm,
IP(8), No. 11, November 1999, pp. 1644-1646.
IEEE DOI 9911
BibRef
Earlier: A2, A3 Only: CAIP97(416-423).
Springer DOI 9709
BibRef
Earlier:
Morphological techniques in the iterative closest point algorithm,
ICIP98(I: 808-812).
IEEE DOI 9810
BibRef

Sharp, G.C.[Gregory C.], Lee, S.W.[Sang W.], Wehe, D.K.[David K.],
ICP Registration Using Invariant Features,
PAMI(24), No. 1, January 2002, pp. 90-102.
IEEE DOI 0201
Surface Matching. ICP: Iterative Closest Point. Range image registration. See also Multiview Registration of 3D Scenes by Minimizing Error between Coordinate Frames. BibRef

Feldmar, J., Declerck, J., Malandain, G., Ayache, N.J.,
Extension of the ICP Algorithm to Nonrigid Intensity-Based Registration of 3D Volumes,
CVIU(66), No. 2, May 1997, pp. 193-206.
DOI Link 9705
Surface Matching. BibRef
Earlier: A1, A3, A2, A4: MMBIA96(REGISTRATION II). (Conference paper with non-rigid) BibRef

Lee, B.U.[Byung-Uk], Kim, C.M.[Chul-Min], Park, R.H.[Rae-Hong],
An Orientation Reliability Matrix for the Iterative Closest Point Algorithm,
PAMI(22), No. 10, October 2000, pp. 1205-1208.
IEEE DOI 0011
Evaluation. Reliability of matching depends on surface normals of the object. See also Method for Registration of 3-D Shapes, A. and See also Object Modeling by Registration of Multiple Range Images. BibRef

Gupta, S.[Sumit], Sengupta, K.[Kuntal], Kassim, A.A.[Ashraf A.],
Compression of Dynamic 3D Geometry Data Using Iterative Closest Point Algorithm,
CVIU(87), No. 1-3, July 2002, pp. 116-130.
WWW Link. 0301
motion compression for 3D geometric data. Match 3D vertices. BibRef

Mukhopadhyay, A.[Asish],
Using simplicial partitions to determine a closest point to a query line,
PRL(24), No. 12, August 2003, pp. 1915-1920.
WWW Link. 0304
BibRef

Liu, Y.H.[Yong-Huai],
Improving ICP with easy implementation for free-form surface matching,
PR(37), No. 2, February 2004, pp. 211-226.
WWW Link. 0311
BibRef

Kaneko, S.[Shun'ichi], Kondo, T.[Tomonori], Miyamoto, A.[Atsushi],
Robust matching of 3D contours using iterative closest point algorithm improved by M-estimation,
PR(36), No. 9, September 2003, pp. 2041-2047.
WWW Link. Matching, Regions. 0307
BibRef

Chetverikov, D.[Dmitry], Stepanov, D.[Dmitry], Krsek, P.[Pavel],
Robust Euclidean Alignment of 3D Point Sets: The Trimmed Iterative Closest Point Algorithm,
IVC(23), No. 3, 1 March 2005, pp. 299-309.
WWW Link. 0501
BibRef

Chetverikov, D.[Dmitry], Svirko, D., Stepanov, D.[Dmitry], Krsek, P.[Pavel],
The trimmed iterative closest point algorithm,
ICPR02(III: 545-548).
IEEE DOI 0211
BibRef

Du, S.Y.[Shao-Yi], Zheng, N.N.[Nan-Ning], Meng, G., Yuan, Z.,
Affine Registration of Point Sets Using ICP and ICA,
SPLetters(15), No. 1, 2008, pp. 689-692.
IEEE DOI 0811
BibRef

Dong, J.M.[Jian-Min], Cai, Z.M.[Zhong-Min], Du, S.Y.[Shao-Yi],
Improvement of affine iterative closest point algorithm for partial registration,
IET-CV(11), No. 2, March 2017, pp. 135-144.
DOI Link 1703
BibRef

Du, S.Y.[Shao-Yi], Zheng, N.N.[Nan-Ning], Ying, S.H.[Shi-Hui], Liu, J.Y.[Jian-Yi],
Affine iterative closest point algorithm for point set registration,
PRL(31), No. 9, 1 July 2010, pp. 791-799.
Elsevier DOI 1004
Affine point set registration; Iterative closest point algorithm; Lie group; Singular value decomposition; Independent component analysis BibRef

Zhu, J.[Jihua], Du, S.Y.[Shao-Yi], Yuan, Z., Liu, Y., Ma, L.,
Robust affine iterative closest point algorithm with bidirectional distance,
IET-CV(6), No. 3, 2012, pp. 252-261.
DOI Link 1205
BibRef

Li, C.[Ce], Xue, J.R.[Jian-Ru], Zheng, N.N.[Nan-Ning], Du, S.Y.[Shao-Yi], Zhu, J.[Jihua], Tian, Z.Q.[Zhi-Qiang],
Fast and robust isotropic scaling iterative closest point algorithm,
ICIP11(1485-1488).
IEEE DOI 1201
BibRef

Du, S.Y.[Shao-Yi], Zheng, N.N.[Nan-Ning], Ying, S.H.[Shi-Hui], You, Q.[Qubo], Wu, Y.[Yang],
AN Extension of the ICP Algorithm Considering Scale Factor,
ICIP07(V: 193-196).
IEEE DOI 0709
BibRef

Maier-Hein, L.[Lena], Franz, A.M.[Alfred Michael], dos Santos, T.R.[Thiago R.], Schmidt, M.[Mirko], Fangerau, M.[Markus], Meinzer, H.P.[Hans-Peter], Fitzpatrick, J.M.[J. Michael],
Convergent Iterative Closest-Point Algorithm to Accomodate Anisotropic and Inhomogenous Localization Error,
PAMI(34), No. 8, August 2012, pp. 1520-1532.
IEEE DOI 1206
Iteratively update the transform given current matches. Extend for partially overlapping surfaces, optimize. BibRef


Hontani, H.[Hidekata], Matsuno, T.[Takamiti], Sawada, Y.[Yoshihide],
Robust nonrigid ICP using outlier-sparsity regularization,
CVPR12(174-181).
IEEE DOI 1208
BibRef

Synave, R., Desbarats, P., Gueorguieva, S.,
Automated Trimmed Iterative Closest Point Algorithm,
ISVC07(II: 489-498).
Springer DOI 0711
BibRef

Wang, K.D.[Ke-Dong], Yan, L.[Lei], Deng, W.[Wei], Zhang, J.H.[Jun-Hong],
Research on Iterative Closest Contour Point for Underwater Terrain-Aided Navigation,
SSPR06(252-260).
Springer DOI 0608
BibRef

Amor, B.B.[Boulbaba Ben], Ardabilian, M.[Mohsen], Chen, L.M.[Li-Ming],
New Experiments on ICP-Based 3D Face Recognition and Authentication,
ICPR06(III: 1195-1199).
IEEE DOI 0609
BibRef

Low, K.L.[Kok-Lim], Lastra, A.,
Reliable and rapidly-converging ICP algorithm using multiresolution smoothing,
3DIM03(171-178).
IEEE DOI 0311
BibRef

Blais, F., Picard, M., Godin, G.,
Recursive model optimization using ICP and free moving 3D data acquisition,
3DIM03(251-258).
IEEE DOI 0311
BibRef

Langis, C., Greenspan, M., Godin, G.,
The parallel iterative closest point algorithm,
3DIM01(195-202).
IEEE DOI 0106
BibRef

Greenspan, M., Godin, G.,
A nearest neighbor method for efficient ICP,
3DIM01(161-168).
IEEE DOI 0106
BibRef

Gelfand, N., Ikemoto, L., Rusinkiewicz, S., Levoy, M.,
Geometrically stable sampling for the ICP algorithm,
3DIM03(260-267).
IEEE DOI 0311
BibRef

Rusinkiewicz, S., Levoy, M.,
Efficient variants of the ICP algorithm,
3DIM01(145-152).
IEEE DOI 0106
BibRef

Jost, T., Hugli, H.,
A multi-resolution ICP with heuristic closest point search for fast and robust 3D registration of range images,
3DIM03(427-433).
IEEE DOI 0311
Surface Matching. BibRef

Zinssee, P., Schmidt, J., Niemann, H.,
A refined ICP algorithm for robust 3-d correspondence estimation,
ICIP03(II: 695-698).
IEEE DOI 0312
BibRef

Granger, S.[Sebastien], Pennec, X.[Xavier], Roche, A.[Alexis],
Rigid Point-Surface Registration using Oriented Points and an EM Variant of ICP for Computer Guided Oral Implantology,
INRIARR-4169, April 2001.
HTML Version. 0211
BibRef

Murino, V., Ronchetti, L., Castellani, U., Fusiello, A.,
Reconstruction of complex environments by robust pre-aligned ICP,
3DIM01(187-194).
IEEE DOI 0106
BibRef

Krebs, B., Sieverding, P., Korn, B.,
A Fuzzy ICP Algorithm for 3D Free Form Object Recognition,
ICPR96(I: 539-543).
IEEE DOI 9608
(Technical Univ. Braunschweig, D) BibRef

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Fast, Parallel, Multiresolution Techniques for the Computation of Skeletons .


Last update:Dec 7, 2017 at 17:23:10