GPS Tropospheric Delay, Troposhperic Effects

Chapter Contents (Back)
See also GPS, GNSS Ionospheric Effects, Ionospheric Delay.
See also SAR, Generation, Image Construction, Reconstruction.
See also GPS, GNSS Network, Transmission Issues, Data, Quality, Direct Use.
See also GNSS applied to Atmospheric, Water Vapor, Precipitable Water Vapor, PWV.
See also Atmospheric, Water Vapor, Precipitable Water Vapor, PWV.

Fernandes, M.J.[M. Joana], Nunes, A.L.[Alexandra L.], Lázaro, C.[Clara],
Analysis and Inter-Calibration of Wet Path Delay Datasets to Compute the Wet Tropospheric Correction for CryoSat-2 over Ocean,
RS(5), No. 10, 2013, pp. 4977-5005.
DOI Link 1311

Fernandes, M.J.[Maria Joana], Lázaro, C.[Clara],
Independent Assessment of Sentinel-3A Wet Tropospheric Correction over the Open and Coastal Ocean,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link 1804

Fernandes, M.J.[M. Joana], Lázaro, C.[Clara], Nunes, A.L.[Alexandra L.], Scharroo, R.[Remko],
Atmospheric Corrections for Altimetry Studies over Inland Water,
RS(6), No. 6, 2014, pp. 4952-4997.
DOI Link 1407

Fernandes, M.J.[M. Joana], Lázaro, C.[Clara],
GPD+ Wet Tropospheric Corrections for CryoSat-2 and GFO Altimetry Missions,
RS(8), No. 10, 2016, pp. 851.
DOI Link 1609

Yu, Z.[Ze], Li, Z.[Zhou], Wang, S.[Shusen],
An Imaging Compensation Algorithm for Correcting the Impact of Tropospheric Delay on Spaceborne High-Resolution SAR,
GeoRS(53), No. 9, September 2015, pp. 4825-4836.
Atmospheric modeling BibRef

Yu, Z.[Ze], Wang, S.[Shusen], Li, Z.[Zhou],
An Imaging Compensation Algorithm for Spaceborne High-Resolution SAR Based on a Continuous Tangent Motion Model,
RS(8), No. 3, 2016, pp. 223.
DOI Link 1604

Houlié, N., Funning, G.J., Bürgmann, R.,
Use of a GPS-Derived Troposphere Model to Improve InSAR Deformation Estimates in the San Gabriel Valley, California,
GeoRS(54), No. 9, September 2016, pp. 5365-5374.
Global Positioning System BibRef

Huang, L.K.[Liang-Ke], Xie, S.F.[Shao-Feng], Liu, L.L.[Li-Long], Li, J.Y.[Jun-Yu], Chen, J.[Jun], Kang, C.L.[Chuan-Li],
SSIEGNOS: A New Asian Single Site Tropospheric Correction Model,
IJGI(6), No. 1, 2017, pp. xx-yy.
DOI Link 1702

Lu, C.X.[Cui-Xian], Chen, X.H.[Xing-Han], Liu, G.[Gen], Dick, G.[Galina], Wickert, J.[Jens], Jiang, X.Y.[Xin-Yuan], Zheng, K.[Kai], Schuh, H.[Harald],
Real-Time Tropospheric Delays Retrieved from Multi-GNSS Observations and IGS Real-Time Product Streams,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link 1802

See also Multi-GNSS Meteorology: Real-Time Retrieving of Atmospheric Water Vapor from BeiDou, Galileo, GLONASS, and GPS Observations. BibRef

Zhu, B.Y.[Bang-Yan], Li, J.C.[Jian-Cheng], Tang, W.[Wei],
Correcting InSAR Topographically Correlated Tropospheric Delays Using a Power Law Model Based on ERA-Interim Reanalysis,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link 1708

Lu, C.[Cuixian], Li, X.[Xin], Cheng, J.[Junlong], Dick, G.[Galina], Ge, M.[Maorong], Wickert, J.[Jens], Schuh, H.[Harald],
Real-Time Tropospheric Delay Retrieval from Multi-GNSS PPP Ambiguity Resolution: Validation with Final Troposphere Products and a Numerical Weather Model,
RS(10), No. 3, 2018, pp. xx-yy.
DOI Link 1804

Zhao, Q.Z.[Qing-Zhi], Yao, Y.B.[Yi-Bin], Cao, X.Y.[Xin-Yun], Zhou, F.[Feng], Xia, P.F.[Peng-Fei],
An Optimal Tropospheric Tomography Method Based on the Multi-GNSS Observations,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804

Xu, Y.[Ying], Wu, C.[Chen], Li, L.[Lei], Yan, L.[Lizi], Liu, M.[Min], Wang, S.[Shengli],
GPS/BDS Medium/Long-Range RTK Constrained with Tropospheric Delay Parameters from NWP Model,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link 1808

Cong, X.Y.[Xiao-Ying], Balss, U.[Ulrich], Gonzalez, F.R.[Fernando Rodriguez], Eineder, M.[Michael],
Mitigation of Tropospheric Delay in SAR and InSAR Using NWP Data: Its Validation and Application Examples,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811

Liu, W.X.[Wen-Xuan], Lou, Y.D.[Yi-Dong], Zhang, W.X.[Wei-Xing], Huang, J.F.[Jin-Fang], Zhou, Y.Z.[Yao-Zong], Zhang, H.S.[Hao-Shan],
On the Study of Influences of Different Factors on the Rapid Tropospheric Tomography,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907

Prats-Iraola, P.[Pau], Lopez-Dekker, P.[Paco], de Zan, F.[Francesco], Yagüe-Martínez, N.[Néstor], Zonno, M.[Mariantonietta], Rodriguez-Cassola, M.[Marc],
Performance of 3-D Surface Deformation Estimation for Simultaneous Squinted SAR Acquisitions,
GeoRS(56), No. 4, April 2018, pp. 2147-2158.
Atmospheric measurements, Extraterrestrial measurements, Geometry, Satellites, Strain, Synthetic aperture radar, troposphere BibRef

Li, W., Yuan, Y., Ou, J., He, Y.,
IGGtrop_SH and IGGtrop_rH: Two Improved Empirical Tropospheric Delay Models Based on Vertical Reduction Functions,
GeoRS(56), No. 9, September 2018, pp. 5276-5288.
Delays, Atmospheric modeling, Global navigation satellite system, Spatial resolution, Data models, Solid modeling, zenith tropospheric delay (ZTD) correction model BibRef

Zhang, Z.[Zhiyu], Guo, F.[Fei], Zhang, X.H.[Xiao-Hong],
The Effects of Higher-Order Ionospheric Terms on GPS Tropospheric Delay and Gradient Estimates,
RS(10), No. 10, 2018, pp. xx-yy.
DOI Link 1811

Hordyniec, P.[Pawel], Kaplon, J.[Jan], Rohm, W.[Witold], Kryza, M.[Maciej],
Residuals of Tropospheric Delays from GNSS Data and Ray-Tracing as a Potential Indicator of Rain and Clouds,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link 1901

Douša, J.[Jan], Václavovic, P.[Pavel], Zhao, L.[Lewen], Kacmarík, M.[Michal],
New Adaptable All-in-One Strategy for Estimating Advanced Tropospheric Parameters and Using Real-Time Orbits and Clocks,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804

Vieira, T., Fernandes, M.J., Lázaro, C.,
Independent Assessment of On-Board Microwave Radiometer Measurements in Coastal Zones Using Tropospheric Delays From GNSS,
GeoRS(57), No. 3, March 2019, pp. 1804-1816.
oceanographic techniques, radiometry, satellite navigation, troposphere, altimeter missions, coastal zones, ZTDs, zenith tropospheric delay (ZTD) BibRef

Zus, F.[Florian], Douša, J.[Jan], Kacmarík, M.[Michal], Václavovic, P.[Pavel], Balidakis, K.[Kyriakos], Dick, G.[Galina], Wickert, J.[Jens],
Improving GNSS Zenith Wet Delay Interpolation by Utilizing Tropospheric Gradients: Experiments with a Dense Station Network in Central Europe in the Warm Season,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link 1903

Yao, Y.B.[Yi-Bin], Xu, X.Y.[Xing-Yu], Xu, C.Q.[Chao-Qian], Peng, W.J.[Wen-Jie], Wan, Y.Y.[Yang-Yang],
Establishment of a Real-Time Local Tropospheric Fusion Model,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link 1906
Tropospheric delay is the major error in GNSS. BibRef

Sun, Z.Y.[Zhang-Yu], Zhang, B.[Bao], Yao, Y.[Yibin],
A Global Model for Estimating Tropospheric Delay and Weighted Mean Temperature Developed with Atmospheric Reanalysis Data from 1979 to 2017,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link 1909

Wilgan, K.[Karina], Siddique, M.A.[Muhammad Adnan], Strozzi, T.[Tazio], Geiger, A.[Alain], Frey, O.[Othmar],
Comparison of Tropospheric Path Delay Estimates from GNSS and Space-Borne SAR Interferometry in Alpine Conditions,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link 1908

Dong, X.C.[Xi-Chao], Hu, J.Q.[Jia-Qi], Hu, C.[Cheng], Long, T.[Teng], Li, Y.H.[Yuan-Hao], Tian, Y.[Ye],
Modeling and Quantitative Analysis of Tropospheric Impact on Inclined Geosynchronous SAR Imaging,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link 1904

Xu, H.P.[Hua-Ping], Luo, Y.[Yao], Yang, B.[Bo], Li, Z.H.[Zhao-Hong], Liu, W.[Wei],
Tropospheric Delay Correction Based on a Three-Dimensional Joint Model for InSAR,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link 1911

Liang, H., Zhang, L., Ding, X., Lu, Z., Li, X.,
Toward Mitigating Stratified Tropospheric Delays in Multitemporal InSAR: A Quadtree Aided Joint Model,
GeoRS(57), No. 1, January 2019, pp. 291-303.
Delays, Strain, Atmospheric modeling, Synthetic aperture radar, Atmospheric measurements, tropospheric delays (TDs) BibRef

Li, D.X.[De-Xin], Zhu, X.X.[Xiao-Xiang], Dong, Z.[Zhen], Yu, A.X.[An-Xi], Zhang, Y.S.[Yong-Sheng],
Background Tropospheric Delay in Geosynchronous Synthetic Aperture Radar,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009

Qiu, C.[Cong], Wang, X.M.[Xiao-Ming], Li, Z.[Zishen], Zhang, S.[Shaotian], Li, H.[Haobo], Zhang, J.[Jinglei], Yuan, H.[Hong],
The Performance of Different Mapping Functions and Gradient Models in the Determination of Slant Tropospheric Delay,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link 2001

Jiang, C.H.[Chun-Hua], Xu, T.H.[Tian-He], Wang, S.M.[Shuai-Min], Nie, W.F.[Wen-Feng], Sun, Z.Z.[Zhang-Zhen],
Evaluation of Zenith Tropospheric Delay Derived from ERA5 Data over China Using GNSS Observations,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link 2003

Krietemeyer, A.[Andreas], van der Marel, H.[Hans], van de Giesen, N.[Nick], ten Veldhuis, M.C.[Marie-Claire],
High Quality Zenith Tropospheric Delay Estimation Using a Low-Cost Dual-Frequency Receiver and Relative Antenna Calibration,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link 2005

Chen, B.Y.[Bi-Yan], Dai, W.J.[Wu-Jiao], Xia, P.F.[Peng-Fei], Ao, M.S.[Min-Si], Tan, J.S.[Jing-Shu],
Reconstruction of Wet Refractivity Field Using an Improved Parameterized Tropospheric Tomographic Technique,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009

Zhang, J.L.[Jing-Lei], Wang, X.M.[Xiao-Ming], Li, Z.S.[Zi-Shen], Li, S.H.[Shu-Hui], Qiu, C.[Cong], Li, H.[Haobo], Zhang, S.T.[Shao-Tian], Li, L.[Li],
The Impact of Different Ocean Tide Loading Models on GNSS Estimated Zenith Tropospheric Delay Using Precise Point Positioning Technique,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009

Zhang, F., Barriot, J.P., Xu, G., Hopuare, M.,
Modeling the Slant Wet Delays From One GPS Receiver as a Series Expansion With Respect to Time and Space: Theory and an Example of Application for the Tahiti Island,
GeoRS(58), No. 11, November 2020, pp. 7520-7532.
Global Positioning System, Delays, Global navigation satellite system, Receivers, Atmosphere, zenith wet delays (ZWDs) BibRef

Xia, P.F.[Peng-Fei], Xia, J.C.[Jing-Chao], Ye, S.[Shirong], Xu, C.J.[Cai-Jun],
A New Method for Estimating Tropospheric Zenith Wet-Component Delay of GNSS Signals from Surface Meteorology Data,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link 2011

Yang, L.[Liu], Gao, J.X.[Jing-Xiang], Zhu, D.[Dantong], Zheng, N.[Nanshan], Li, Z.[Zengke],
Improved Zenith Tropospheric Delay Modeling Using the Piecewise Model of Atmospheric Refractivity,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link 2012

Astudillo, J.M.[Jorge Mendez], Lau, L.[Lawrence], Tang, Y.T.[Yu-Ting], Moore, T.[Terry],
A Novel Approach for the Determination of the Height of the Tropopause from Ground-Based GNSS Observations,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link 2001

Yang, F.[Fei], Guo, J.M.[Ji-Ming], Zhang, C.[Chaoyang], Li, Y.[Yitao], Li, J.[Jun],
A Regional Zenith Tropospheric Delay (ZTD) Model Based on GPT3 and ANN,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link 2103

Li, S.[Song], Xu, T.[Tianhe], Jiang, N.[Nan], Yang, H.[Honglei], Wang, S.[Shuaimin], Zhang, Z.[Zhen],
Regional Zenith Tropospheric Delay Modeling Based on Least Squares Support Vector Machine Using GNSS and ERA5 Data,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link 2103

Yang, L.[Ling], Wang, J.[Jinfang], Li, H.[Haojun], Balz, T.[Timo],
Global Assessment of the GNSS Single Point Positioning Biases Produced by the Residual Tropospheric Delay,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link 2104

Wang, Y.[Yong], Jayachandran, P.T.[Periyadan T.], Themens, D.R.[David R.], McCaffrey, A.M.[Anthony M.], Zhang, Q.H.[Qing-He], David, S.[Shiva], Chadwick, R.[Richard],
A Case Study of Polar Cap Sporadic-E Layer Associated with TEC Variations,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link 2104

Al-Khaldi, M.M.[Mohammad M.], Johnson, J.T.[Joel T.], Gleason, S.[Scott], Loria, E.[Eric], O'Brien, A.J.[Andrew J.], Yi, Y.[Yuchan],
An Algorithm for Detecting Coherence in Cyclone Global Navigation Satellite System Mission Level-1 Delay-Doppler Maps,
GeoRS(59), No. 5, May 2021, pp. 4454-4463.
Sea measurements, Sea surface, Coherence, Delays, Rough surfaces, Surface roughness, Surface topography, Bistatic radar systems, rough surface scattering BibRef

Xian, T.[Tao], Lu, G.P.[Gao-Peng], Zhang, H.B.[Hong-Bo], Wang, Y.P.[Yong-Ping], Xiong, S.[Shaolin], Yi, Q.[Qibin], Yang, J.[Jing], Lyu, F.[Fanchao],
Implications of GNSS-Inferred Tropopause Altitude Associated with Terrestrial Gamma-ray Flashes,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link 2105

Roukounakis, N.[Nikolaos], Katsanos, D.[Dimitris], Briole, P.[Pierre], Elias, P.[Panagiotis], Kioutsioukis, I.[Ioannis], Argiriou, A.A.[Athanassios A.], Retalis, A.[Adrianos],
Use of GNSS Tropospheric Delay Measurements for the Parameterization and Validation of WRF High-Resolution Re-Analysis over the Western Gulf of Corinth, Greece: The PaTrop Experiment,
RS(13), No. 10, 2021, pp. xx-yy.
DOI Link 2105

Zhang, D.[Di], Guo, J.M.[Ji-Ming], Fang, T.[Tianye], Wei, N.[Na], Mei, W.[Wensheng], Zhou, L.[Lv], Yang, F.[Fei], Zhao, Y.[Yinzhi],
TMF: A GNSS Tropospheric Mapping Function for the Asymmetrical Neutral Atmosphere,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link 2107

Cao, L.Y.[Li-Ying], Zhang, B.[Bao], Li, J.Y.[Jun-Yu], Yao, Y.B.[Yi-Bin], Liu, L.L.[Li-Long], Ran, Q.[Qishun], Xiong, Z.H.[Zhao-Hui],
A Regional Model for Predicting Tropospheric Delay and Weighted Mean Temperature in China Based on GRAPES_MESO Forecasting Products,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link 2107

Pu, Y.[Yakun], Song, M.[Min], Yuan, Y.[Yunbin],
Modified Interpolation Method of Multi-Reference Station Tropospheric Delay Considering the Influence of Height Difference,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link 2108

Guo, L.J.[Li-Jie], Huang, L.K.[Liang-Ke], Li, J.Y.[Jun-Yu], Liu, L.L.[Li-Long], Huang, L.[Ling], Fu, B.[Bolin], Xie, S.F.[Shao-Feng], He, H.C.[Hong-Chang], Ren, C.[Chao],
A Comprehensive Evaluation of Key Tropospheric Parameters from ERA5 and MERRA-2 Reanalysis Products Using Radiosonde Data and GNSS Measurements,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link 2108

Zhang, Z.Y.[Zhen-Yi], Lou, Y.D.[Yi-Dong], Zhang, W.X.[Wei-Xing], Wang, H.[Hua], Zhou, Y.Z.[Yao-Zong], Bai, J.[Jingna],
On the Assessment GPS-Based WRFDA for InSAR Atmospheric Correction: A Case Study in Pearl River Delta Region of China,
RS(13), No. 16, 2021, pp. xx-yy.
DOI Link 2109

Sharifi, A., Hosseingholizadeh, M.,
Reduction of Insar DEM Tropospheric Noise With GPS Observations,
DOI Link 1912

Chapter on Active Vision, Camera Calibration, Mobile Robots, Navigation, Road Following continues in
Localization, RFID Tags .

Last update:Sep 19, 2021 at 21:11:01