Lu, S.,
Szeto, A.,
Improving Edge Measurement on Noisy Images by
Hierarchical Neural Networks,
PRL(12), 1991, pp. 155-164.
BibRef
9100
Lu, S.W.[Si-Wei],
Szeto, A.[Anthony],
Hierarchical Artificial Neural Networks for Edge Enhancement,
PR(26), No. 8, August 1993, pp. 1149-1163.
Elsevier DOI
BibRef
9308
Srinivasan, V.,
Bhatia, P.,
Ong, S.H.,
Edge-Detection Using a Neural-Network,
PR(27), No. 12, December 1994, pp. 1653-1662.
Elsevier DOI
BibRef
9412
Wong, H.S.[Hau-San],
Caelli, T.M.[Terry M.],
Guan, L.[Ling],
A model-based neural network for edge characterization,
PR(33), No. 3, March 2000, pp. 427-444.
Elsevier DOI
0001
BibRef
Suzuki, K.[Kenji],
Horiba, I.[Isao],
Sugie, N.[Noboru],
Neural edge enhancer for supervised edge enhancement from noisy images,
PAMI(25), No. 12, December 2003, pp. 1582-1596.
IEEE Abstract.
0401
Apply NN learning to edges.
BibRef
Lu, S.W.[Si-Wei],
Wang, Z.Q.[Zi-Qing],
Shen, J.[Jun],
Neuro-fuzzy synergism to the intelligent system for edge detection and
enhancement,
PR(36No. 10, October 2003, pp. 2395-2409.
Elsevier DOI
0308
Neural net for edges.
BibRef
González Velasco, H.M.[Horacio M.],
García Orellana, C.J.[Carlos J.],
Macías Macías, M.[Miguel],
López Aligué, F.J.[F. Javier],
Acevedo Sotoca, M.I.[M. Isabel],
Neural-networks-based edges selector for boundary extraction problems,
IVC(22), No. 13, 1 November 2004, pp. 1129-1135.
Elsevier DOI
0410
Remove background edges before generating the boundary representation.
BibRef
Farabet, C.[Clement],
Couprie, C.[Camille],
Najman, L.[Laurent],
Le Cun, Y.L.[Yann L.],
Learning Hierarchical Features for Scene Labeling,
PAMI(35), No. 8, 2013, pp. 1915-1929.
IEEE DOI
1307
Image edge detection; Convolutional networks;
deep learning; scene parsing
BibRef
Pan, B.[Bin],
Shi, Z.W.[Zhen-Wei],
Xu, X.[Xia],
Hierarchical Guidance Filtering-Based Ensemble Classification for
Hyperspectral Images,
GeoRS(55), No. 7, July 2017, pp. 4177-4189.
IEEE DOI
1706
Data mining, Feature extraction, Hyperspectral imaging,
Image edge detection, Support vector machines, Training,
Ensemble learning, hierarchical guidance filtering (HGF),
hyperspectral, image, (HSI), classification
BibRef
Stevens, J.R.,
Resmini, R.G.,
Messinger, D.W.,
Spectral-Density-Based Graph Construction Techniques for
Hyperspectral Image Analysis,
GeoRS(55), No. 10, October 2017, pp. 5966-5983.
IEEE DOI
1710
data mining, edge detection,
graph theory, hyperspectral imaging,
remote sensing, HSI, data mining, density-based edge allocation,
density-weighted graph construction,
derived manifold coordinates, graph theory,
BibRef
Kang, X.D.[Xu-Dong],
Xiang, X.,
Li, S.T.[Shu-Tao],
Benediktsson, J.A.[Jón Atli],
PCA-Based Edge-Preserving Features for Hyperspectral Image
Classification,
GeoRS(55), No. 12, December 2017, pp. 7140-7151.
IEEE DOI
1712
Feature extraction, Hyperspectral imaging, Image edge detection,
Principal component analysis, Support vector machines,
support vector machine (SVM)
BibRef
Cui, B.[Binge],
Xie, X.Y.[Xiao-Yun],
Ma, X.D.[Xiu-Dan],
Ren, G.B.[Guang-Bo],
Ma, Y.[Yi],
Superpixel-Based Extended Random Walker for Hyperspectral Image
Classification,
GeoRS(56), No. 6, June 2018, pp. 3233-3243.
IEEE DOI
1806
Hyperspectral imaging, Image edge detection, Image segmentation,
Kernel, Shape, Support vector machines,
weighted graph
BibRef
Cui, B.[Binge],
Xie, X.Y.[Xiao-Yun],
Hao, S.Y.[Si-Yuan],
Cui, J.[Jiandi],
Lu, Y.[Yan],
Semi-Supervised Classification of Hyperspectral Images Based on
Extended Label Propagation and Rolling Guidance Filtering,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Wen, C.B.[Chang-Bao],
Liu, P.L.[Peng-Li],
Ma, W.B.[Wen-Bo],
Jian, Z.R.[Zhi-Rong],
Lv, C.H.[Chang-Heng],
Hong, J.T.[Ji-Tong],
Shi, X.W.[Xiao-Wen],
Edge detection with feature re-extraction deep convolutional neural
network,
JVCIR(57), 2018, pp. 84-90.
Elsevier DOI
1812
Edge detection, Feature re-extract,
Deep convolutional neural network, Generalization ability
BibRef
Xie, S.N.[Sai-Ning],
Tu, Z.W.[Zhuo-Wen],
Holistically-Nested Edge Detection,
IJCV(125), No. 1-3, December 2018, pp. 3-18.
Springer DOI
1711
BibRef
Earlier:
ICCV15(1395-1403)
IEEE DOI
1602
Award, Marr Prize, HM. Detectors. multi-scale.
Edges from a neural model. Holistic training and multi-level learning.
See also Brief Analysis of the Holistically-Nested Edge Detector, A.
BibRef
He, Y.,
Ni, L.M.,
A Novel Scheme Based on the Diffusion to Edge Detection,
IP(28), No. 4, April 2019, pp. 1613-1624.
IEEE DOI
1901
computational complexity, edge detection,
learning (artificial intelligence), neural nets, edge detection,
Bessel potential
BibRef
Andrade-Loarca, H.[Hector],
Kutyniok, G.[Gitta],
Öktem, O.[Ozan],
Petersen, P.C.[Philipp C.],
Extraction of Digital Wavefront Sets Using Applied Harmonic Analysis
and Deep Neural Networks,
SIIMS(12), No. 4, 2019, pp. 1936-1966.
DOI Link
1912
BibRef
Duan, P.,
Kang, X.D.[Xu-Dong],
Li, S.T.[Shu-Tao],
Ghamisi, P.,
Benediktsson, J.A.[Jón Atli],
Fusion of Multiple Edge-Preserving Operations for Hyperspectral Image
Classification,
GeoRS(57), No. 12, December 2019, pp. 10336-10349.
IEEE DOI
1912
Image edge detection, Smoothing methods, Feature extraction,
Support vector machines, Transforms, Hyperspectral imaging,
image classification
BibRef
Yu, B.,
Zhou, L.,
Wang, L.,
Shi, Y.,
Fripp, J.,
Bourgeat, P.,
Ea-GANs: Edge-Aware Generative Adversarial Networks for
Cross-Modality MR Image Synthesis,
MedImg(38), No. 7, July 2019, pp. 1750-1762.
IEEE DOI
1907
Image edge detection, Image generation,
Generative adversarial networks, Generators, Imaging, brain
BibRef
Zhu, F.D.[Fei-Da],
Fang, C.W.[Chao-Wei],
Ma, K.K.[Kai-Kuang],
PNEN: Pyramid Non-Local Enhanced Networks,
IP(29), 2020, pp. 8831-8841.
IEEE DOI
2009
Image resolution, Correlation, Task analysis, Smoothing methods,
Neural networks, Image edge detection, Image restoration,
deep convolutional neural networks
BibRef
Fan, Q.N.[Qing-Nan],
Chen, D.D.[Dong-Dong],
Yuan, L.[Lu],
Hua, G.[Gang],
Yu, N.H.[Neng-Hai],
Chen, B.Q.[Bao-Quan],
A General Decoupled Learning Framework for Parameterized Image
Operators,
PAMI(43), No. 1, January 2021, pp. 33-47.
IEEE DOI
2012
Convolution, Task analysis, Image resolution, Acceleration,
Image edge detection, Runtime, Fans,
smoothing
BibRef
Xiong, C.[Chao],
Li, W.[Wen],
Liu, Y.[Yun],
Wang, M.H.[Ming-Hui],
Multi-Dimensional Edge Features Graph Neural Network on Few-Shot
Image Classification,
SPLetters(28), 2021, pp. 573-577.
IEEE DOI
2104
Training, Task analysis, Feature extraction, Image edge detection,
Convolution, Graph neural networks, Benchmark testing, image classification
BibRef
Feng, Z.X.[Zhi-Xi],
Yang, S.Y.[Shu-Yuan],
Wang, M.[Min],
Jiao, L.C.[Li-Chen],
Learning Dual Geometric Low-Rank Structure for Semisupervised
Hyperspectral Image Classification,
Cyber(51), No. 1, January 2021, pp. 346-358.
IEEE DOI
2012
Hyperspectral imaging, Laplace equations, Training,
Image edge detection, Support vector machines, Cybernetics,
support vector machine
BibRef
Song, L.L.[Liang-Liang],
Feng, Z.X.[Zhi-Xi],
Yang, S.Y.[Shu-Yuan],
Zhang, X.Y.[Xin-Yu],
Jiao, L.C.[Li-Cheng],
Self-Supervised Assisted Semi-Supervised Residual Network for
Hyperspectral Image Classification,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Wan, S.[Sheng],
Gong, C.[Chen],
Zhong, P.[Ping],
Du, B.[Bo],
Zhang, L.F.[Le-Fei],
Yang, J.[Jian],
Multiscale Dynamic Graph Convolutional Network for Hyperspectral
Image Classification,
GeoRS(58), No. 5, May 2020, pp. 3162-3177.
IEEE DOI
2005
Hyperspectral imaging, Convolution, Feature extraction, Kernel,
Support vector machines, Training, Dynamic graph,
multiscale information
BibRef
Wan, S.[Sheng],
Gong, C.[Chen],
Zhong, P.[Ping],
Pan, S.R.[Shi-Rui],
Li, G.Y.[Guang-Yu],
Yang, J.[Jian],
Hyperspectral Image Classification With Context-Aware Dynamic Graph
Convolutional Network,
GeoRS(59), No. 1, January 2021, pp. 597-612.
IEEE DOI
2012
Image edge detection, Feature extraction, Hyperspectral imaging,
Nonhomogeneous media, Data mining,
hyperspectral image~(HIS) classification
BibRef
Wan, S.[Sheng],
Pan, S.R.[Shi-Rui],
Zhong, S.W.[Sheng-Wei],
Yang, J.[Jie],
Yang, J.[Jian],
Zhan, Y.B.[Yi-Bing],
Gong, C.[Chen],
Multi-level graph learning network for hyperspectral image
classification,
PR(129), 2022, pp. 108705.
Elsevier DOI
2206
Graph convolutional network, Graph-based machine learning,
Hyperspectral image classification, Remote sensing, Graph structural learning
BibRef
Liu, C.G.[Chen-Guang],
Tupin, F.[Florence],
Gousseau, Y.[Yann],
Training CNNs on speckled optical dataset for edge detection in SAR
images,
PandRS(170), 2020, pp. 88-102.
Elsevier DOI
2011
Edge detection, 1-look SAR image, Optical dataset, CNNs,
Hand-crafted layer, GRHED
BibRef
Suzuki, S.[Satoshi],
Takeda, S.[Shoichiro],
Takagi, M.[Motohiro],
Tanida, R.[Ryuichi],
Kimata, H.[Hideaki],
Shouno, H.[Hayaru],
Deep Feature Compression Using Spatio-Temporal Arrangement Toward
Collaborative Intelligent World,
CirSysVideo(32), No. 6, June 2022, pp. 3934-3946.
IEEE DOI
2206
BibRef
Earlier: A1, A3, A2, A4, A5, Only:
Deep Feature Compression With Spatio-Temporal Arranging for
Collaborative Intelligence,
ICIP20(3099-3103)
IEEE DOI
2011
Image coding, Correlation, Image edge detection, Video compression,
Cloud computing, Quantization (signal),
ordering search algorithm.
Collaborative intelligence, spatio-temporal arranging
BibRef
Grompone von Gioi, R.[Rafael],
Randall, G.[Gregory],
A Brief Analysis of the Holistically-Nested Edge Detector,
IPOL(12), 2022, pp. 369-377.
DOI Link
2210
See also Holistically-Nested Edge Detection.
BibRef
Grompone von Gioi, R.[Rafael],
Randall, G.[Gregory],
A Brief Analysis of the Dense Extreme Inception Network for Edge
Detection,
IPOL(12), 2022, pp. 389-403.
DOI Link
2210
See also Dense Extreme Inception Network: Towards a Robust CNN Model for Edge Detection.
BibRef
Elharrouss, O.[Omar],
Hmamouche, Y.[Youssef],
Idrissi, A.K.[Assia Kamal],
El Khamlichi, B.[Btissam],
El Fallah-Seghrouchni, A.[Amal],
Refined edge detection with cascaded and high-resolution
convolutional network,
PR(138), 2023, pp. 109361.
Elsevier DOI
2303
Edge detection, Convolutional neural networks, Deep learning,
Scale-representation, Backbone
BibRef
Soria, X.[Xavier],
Sappa, A.[Angel],
Humanante, P.[Patricio],
Akbarinia, A.[Arash],
Dense extreme inception network for edge detection,
PR(139), 2023, pp. 109461.
Elsevier DOI
2304
Edge detection, Deep learning, CNN, Contour detection,
Boundary detection, Segmentation
BibRef
Xian, R.H.[Rong-Hao],
Xiong, X.[Xin],
Peng, H.[Hong],
Wang, J.[Jun],
de Arellano Marrero, A.R.[Antonio Ramírez],
Yang, Q.[Qian],
Feature fusion method based on spiking neural convolutional network
for edge detection,
PR(147), 2024, pp. 110112.
Elsevier DOI Code:
WWW Link.
2312
Edge detection, Feature fusion,
Nonlinear spiking neural P systems, NSNP-type neuron model
BibRef
Zhang, X.[Xiao],
Lin, C.[Chuan],
Li, F.Z.[Fu-Zhang],
Cao, Y.J.[Yi-Jun],
Li, Y.J.[Yong-Jie],
LVP-net: A deep network of learning visual pathway for edge detection,
IVC(147), 2024, pp. 105078.
Elsevier DOI
2406
Edge detection, Enhancer, Color-opponency, Visual pathway,
Convolutional neural networks
BibRef
Wibisono, J.K.,
Hang, H.M.,
Traditional Method Inspired Deep Neural Network For Edge Detection,
ICIP20(678-682)
IEEE DOI
2011
Image edge detection, Feature extraction, Detectors,
Neural networks, Complexity theory, Training, Machine learning, CNN
BibRef
Soria, X.,
Riba, E.,
Sappa, A.D.[Angel D.],
Dense Extreme Inception Network:
Towards a Robust CNN Model for Edge Detection,
WACV20(1912-1921)
IEEE DOI
2006
Image edge detection, Convolution, Training, Feeds, Machine learning,
Task analysis, Kernel
See also Brief Analysis of the Dense Extreme Inception Network for Edge Detection, A.
BibRef
Jung, J.H.[Jay Hoon],
Kwon, Y.M.[Young-Min],
Color, Edge, and Pixel-wise Explanation of Predictions Based on
Interpretable Neural Network Model,
ICPR21(6003-6010)
IEEE DOI
2105
Image color analysis, Shape, Image edge detection, Neural networks,
Predictive models, Tools,
Deep Neural Network
BibRef
Iwai, S.[Shoma],
Miyazaki, T.[Tomo],
Sugaya, Y.[Yoshihiro],
Omachi, S.[Shinichiro],
Fidelity-Controllable Extreme Image Compression with Generative
Adversarial Networks,
ICPR21(8235-8242)
IEEE DOI
2105
Training, Interpolation, Image coding, Image edge detection,
Bit rate, Generative adversarial networks, Entropy
BibRef
Matsubara, Y.[Yoshitomo],
Levorato, M.[Marco],
Neural Compression and Filtering for Edge-assisted Real-time Object
Detection in Challenged Networks,
ICPR21(2272-2279)
IEEE DOI
2105
Support the computation.
Image edge detection, Computational modeling, Neural networks,
Object detection, split computing.
BibRef
Zheng, W.,
Gou, C.,
Yan, L.,
Wang, F.,
Differential-Evolution-Based Generative Adversarial Networks for Edge
Detection,
CEFRL19(2999-3008)
IEEE DOI
2004
edge detection, evolutionary computation,
learning (artificial intelligence), neural nets, Edge detection
BibRef
Zhao, B.[Bo],
Sun, X.W.[Xin-Wei],
Hong, X.P.[Xiao-Peng],
Yao, Y.[Yuan],
Wang, Y.Z.[Yi-Zhou],
Zero-Shot Learning Via Recurrent Knowledge Transfer,
WACV19(1308-1317)
IEEE DOI
1904
graph theory, learning (artificial intelligence),
object recognition, pattern clustering, learned SSS,
Image edge detection
BibRef
Douze, M.,
Szlam, A.,
Hariharan, B.,
Jégou, H.,
Low-Shot Learning with Large-Scale Diffusion,
CVPR18(3349-3358)
IEEE DOI
1812
Sparse matrices, Semisupervised learning, Visualization,
Diffusion processes, Training, Measurement, Image edge detection
BibRef
Lee, J.,
Zaheer, M.Z.,
Astrid, M.,
Lee, S.,
SmoothMix: a Simple Yet Effective Data Augmentation to Train Robust
Classifiers,
DeepVision20(3264-3274)
IEEE DOI
2008
Training, Image edge detection, Robustness, Predictive models,
Kernel, Task analysis, Transforms
BibRef
Croce, F.,
Hein, M.,
Sparse and Imperceivable Adversarial Attacks,
ICCV19(4723-4731)
IEEE DOI
2004
gradient methods, learning (artificial intelligence),
neural nets, pattern classification, security of data, Image edge detection
BibRef
Che, F.,
Zhu, X.,
Yang, T.,
Yu, T.,
3SGAN: 3D Shape Embedded Generative Adversarial Networks,
AIM19(3305-3314)
IEEE DOI
2004
edge detection, image colour analysis,
learning (artificial intelligence), neural nets, multiview
BibRef
Prabhu, A.[Ameya],
Batchu, V.[Vishal],
Munagala, S.A.[Sri Aurobindo],
Gajawada, R.[Rohit],
Namboodiri, A.[Anoop],
Distribution-Aware Binarization of Neural Networks for Sketch
Recognition,
WACV18(830-838)
IEEE DOI
1806
data compression, edge detection, image coding,
learning (artificial intelligence), neural nets,
Task analysis
BibRef
Zhang, Q.,
Zhang, M.,
Wang, M.,
Sui, W.,
Meng, C.,
Yang, J.,
Kong, W.,
Cui, X.,
Lin, W.,
Efficient Deep Learning Inference Based on Model Compression,
EfficientDeep18(1776-17767)
IEEE DOI
1812
Computational modeling, Convolution, Adaptation models,
Image edge detection, Quantization (signal), Kernel
BibRef
Chen, W.,
Hays, J.,
SketchyGAN: Towards Diverse and Realistic Sketch to Image Synthesis,
CVPR18(9416-9425)
IEEE DOI
1812
Image edge detection, Image generation, Training,
Databases, Task analysis, Generative adversarial networks
BibRef
Chen, Y.,
Lai, Y.,
Liu, Y.,
CartoonGAN: Generative Adversarial Networks for Photo Cartoonization,
CVPR18(9465-9474)
IEEE DOI
1812
Training, Generative adversarial networks,
Manifolds, Image edge detection, Automobiles, Training data
BibRef
Shahin Shamsabadi, A.,
Haddadi, H.,
Cavallaro, A.,
Distributed One-Class Learning,
ICIP18(4123-4127)
IEEE DOI
1809
Training, Image reconstruction, Privacy, Training data,
Feature extraction, Image edge detection, Data privacy,
Privacy
BibRef
Etemad, E.,
Gao, Q.,
Object localization by optimizing convolutional neural network
detection score using generic edge features,
ICIP17(675-679)
IEEE DOI
1803
Convolutional neural networks, Image edge detection,
Object recognition, Optimization, Proposals, Search problems,
RCNN
BibRef
Yu, L.,
Fan, G.,
Edge-aware integration model for semantic labeling of rare classes,
ICIP17(4482-4486)
IEEE DOI
1803
Image color analysis, Image edge detection, Image segmentation,
Labeling, Probabilistic logic, Semantics, Training, CNN,
Superpixel
BibRef
Tamaazousti, Y.[Youssef],
Le Borgne, H.[Hervé],
Hudelot, C.[Céline],
MuCaLe-Net: Multi Categorical-Level Networks to Generate More
Discriminating Features,
CVPR17(5282-5291)
IEEE DOI
1711
Additives, Image edge detection,
Image representation, Proposals, Psychology, Standards
BibRef
Danilo, R.,
Wouafo, H.N.,
Chavet, C.,
Gripon, V.,
Conde-Canencia, L.,
Coussy, P.,
Associative Memory based on clustered Neural Networks:
Improved model and architecture for Oriented Edge Detection,
DASIP16(51-58)
IEEE DOI
1704
content-addressable storage
BibRef
Ganin, Y.[Yaroslav],
Lempitsky, V.[Victor],
N4-Fields: Neural Network Nearest Neighbor Fields for Image Transforms,
ACCV14(II: 536-551).
Springer DOI
1504
for edges or thin structures.
BibRef
Chen, J.S.[Jian-Sheng],
He, J.P.[Jin-Ping],
Su, G.D.[Guang-Da],
Combining image entropy with the Pulse Coupled Neural Network in edge
detection,
ICIP10(1637-1640).
IEEE DOI
1009
BibRef
Wang, J.L.[Jian-Lai],
Yang, C.L.[Chun-Ling],
Sun, C.[Chao],
A Novel Algorithm for Edge Detection of Remote Sensing Image Based on
CNN and PSO,
CISP09(1-5).
IEEE DOI
0910
BibRef
Li, J.J.[Jian-Jun],
Wei, Z.H.[Zhi-Hui],
Zhang, Z.J.[Zheng-Jun],
Xie, J.C.[Jian-Chun],
Edge Detection Method Based on Multi-Expert Information Fusion,
CISP09(1-4).
IEEE DOI
0910
BibRef
Chapter on Edge Detection and Analysis, Lines, Segments, Curves, Corners, Hough Transform continues in
Basic Edges, General Discussion, Analysis .