Studholme, C.,
Cardenas, V.,
Song, E.,
Ezekiel, F.,
Maudsley, A.A.,
Weiner, M.,
Accurate Template-Based Correction of Brain MRI Intensity Distortion
With Application to Dementia and Aging,
MedImg(23), No. 1, January 2004, pp. 99-110.
IEEE Abstract.
0403
BibRef
Zhao, M.B.[Ming-Bo],
Chan, R.H.M.,
Tang, P.[Peng],
Chow, T.W.S.,
Wong, S.W.H.,
Trace Ratio Linear Discriminant Analysis for Medical Diagnosis:
A Case Study of Dementia,
SPLetters(20), No. 5, May 2013, pp. 431-434.
IEEE DOI
1304
BibRef
He, M.,
Baker, S.L.,
Shah, V.D.,
Lockhart, S.N.,
Jagust, W.J.,
Scan-Time Corrections for 80-100-min Standardizetd Uptake Volume
Ratios to Measure the 18F-AV-1451 Tracer for Tau Imaging,
MedImg(38), No. 3, March 2019, pp. 697-709.
IEEE DOI
1903
Dementia, Image reconstruction, Interpolation, Training,
Magnetic resonance imaging, Tau, PET Imaging, SUVR, scan-time error,
Alzheimer's disease
BibRef
Jie, B.[Biao],
Liu, M.X.[Ming-Xia],
Zhang, D.Q.[Dao-Qiang],
Shen, D.G.[Ding-Gang],
Sub-Network Kernels for Measuring Similarity of Brain Connectivity
Networks in Disease Diagnosis,
IP(27), No. 5, May 2018, pp. 2340-2353.
IEEE DOI
1804
biomedical MRI, brain, cognition, diseases, graph theory,
image classification, medical image processing, neurophysiology,
mild cognitive impairment (MCI)
BibRef
Li, Y.,
Yang, H.,
Lei, B.,
Liu, J.,
Wee, C.,
Novel Effective Connectivity Inference Using Ultra-Group Constrained
Orthogonal Forward Regression and Elastic Multilayer Perceptron
Classifier for MCI Identification,
MedImg(38), No. 5, May 2019, pp. 1227-1239.
IEEE DOI
1905
Feature extraction, Time series analysis,
Functional magnetic resonance imaging, Diseases,
machine learning
BibRef
Huang, W.,
Luo, M.,
Liu, X.,
Zhang, P.,
Ding, H.,
Xue, W.,
Ni, D.,
Arterial Spin Labeling Images Synthesis From sMRI Using Unbalanced
Deep Discriminant Learning,
MedImg(38), No. 10, October 2019, pp. 2338-2351.
IEEE DOI
1910
Deep learning, Dementia, Biomedical imaging, Medical diagnosis,
Magnetic resonance imaging, Magnetic resonance imaging (MRI),
machine learning
BibRef
Bharanidharan, N.,
Rajaguru, H.[Harikumar],
Performance enhancement of swarm intelligence techniques in dementia
classification using dragonfly-based hybrid algorithms,
IJIST(30), No. 1, 2020, pp. 57-74.
DOI Link
2002
DA-PSO, dementia, hybrid swarm intelligence, MRI, OASIS
BibRef
Bharanidharan, N.,
Rajaguru, H.[Harikumar],
Improved chicken swarm optimization to classify dementia MRI images
using a novel controlled randomness optimization algorithm,
IJIST(30), No. 3, 2020, pp. 605-620.
DOI Link
2008
CSO, dementia, ICSO, meta-heuristic, MRI
BibRef
Du, L.,
Liu, F.,
Liu, K.,
Yao, X.,
Risacher, S.L.,
Han, J.,
Saykin, A.J.,
Shen, L.,
Associating Multi-Modal Brain Imaging Phenotypes and Genetic Risk
Factors via a Dirty Multi-Task Learning Method,
MedImg(39), No. 11, November 2020, pp. 3416-3428.
IEEE DOI
2011
Imaging, Genetics, Task analysis, Brain, Neuroimaging, Dementia,
Brain imaging genetics, sparse canonical correlation analysis,
the dirty multi-task SCCA
BibRef
Lella, E.[Eufemia],
Vessio, G.[Gennaro],
Ensembling complex network 'perspectives' for mild cognitive
impairment detection with artificial neural networks,
PRL(136), 2020, pp. 168-174.
Elsevier DOI
2008
Decision support systems, Mild cognitive impairment,
Diffusion-weighted imaging, Complex networks, Artificial neural networks
BibRef
Jiao, Z.Q.[Zhu-Qing],
Jiao, T.X.[Ting-Xuan],
Zhang, J.H.[Jia-Hao],
Shi, H.F.[Hai-Feng],
Wu, B.[Bona],
Zhang, Y.D.[Yu-Dong],
Sparse structure deep network embedding for transforming brain
functional network in early mild cognitive impairment classification,
IJIST(31), No. 3, 2021, pp. 1197-1210.
DOI Link
2108
brain functional network,
dilated convolutional neural network (DCNN), transform
BibRef
Yang, P.,
Zhou, F.,
Ni, D.,
Xu, Y.,
Chen, S.,
Wang, T.,
Lei, B.,
Fused Sparse Network Learning for Longitudinal Analysis of Mild
Cognitive Impairment,
Cyber(51), No. 1, January 2021, pp. 233-246.
IEEE DOI
2012
Diseases, Databases, Time series analysis, Imaging, Monitoring,
Brain modeling, Task analysis, Fused sparse network (FSN),
similarity network fusion (SNF)
BibRef
Bharanidharan, N.,
Rajaguru, H.[Harikumar],
Dementia MRI image classification using transformation technique
based on elephant herding optimization with Randomized Adam method
for updating the hyper-parameters,
IJIST(31), No. 3, 2021, pp. 1221-1245.
DOI Link
2108
dementia, elephant herding optimization,
evolutionary algorithms, MRI, swarm intelligence
BibRef
Perugia, G.[Giulia],
Díaz-Boladeras, M.[Marta],
Català-Mallofré, A.[Andreu],
Barakova, E.I.[Emilia I.],
Rauterberg, M.[Matthias],
ENGAGE-DEM: A Model of Engagement of People With Dementia,
AffCom(13), No. 2, April 2022, pp. 926-943.
IEEE DOI
2206
Dementia, Computational modeling, Mathematical model,
Task analysis, Physiology, Games, Atmospheric measurements,
social agents/robotics
BibRef
Li, Y.[Yang],
Liu, J.Y.[Jing-Yu],
Jiang, Y.Q.[Yi-Qiao],
Liu, Y.[Yu],
Lei, B.Y.[Bai-Ying],
Virtual Adversarial Training-Based Deep Feature Aggregation Network
From Dynamic Effective Connectivity for MCI Identification,
MedImg(41), No. 1, January 2022, pp. 237-251.
IEEE DOI
2201
Feature extraction, Diseases, Heuristic algorithms, Brain modeling,
Time series analysis, Deep learning, Training,
virtual adversarial training
BibRef
da Silva, V.F.[Vernon Furtado],
Silva, D.A.S.[Diego Augusto Santos],
Martins, P.C.[Priscila Custódio],
Calomeni, M.R.[Mauricio Rocha],
de Aquino Freire, I.[Ivete],
Militão, A.G.[Angeliete Garcês],
Borges, C.J.[Célio José],
de Barros-Vilela-Junior, G.[Guanis],
de Moraes, M.A.[Mario Antônio],
Silva, A.J.R.M.[Antônio José Rocha Martins],
de Almeida-Marinho, D.[Daniel],
Ribeiro, D.E.C.[Domingos Edno Castro],
Ribeiro, E.C.[Edinilson Castro],
Valentim-Silva, J.R.[João Rafael],
Effect of physical exercise and noninvasive brain stimulation on
cognition and dementia of elderly people with frailty: A randomized
study,
IJIST(32), No. 6, 2022, pp. 1941-1952.
DOI Link
2212
aging, brain stimulation, inhibitory control, qEEG, working memory
BibRef
Kang, E.[Eunsong],
Heo, D.W.[Da-Woon],
Lee, J.[Jiwon],
Suk, H.I.[Heung-II],
A Learnable Counter-Condition Analysis Framework for Functional
Connectivity-Based Neurological Disorder Diagnosis,
MedImg(43), No. 4, April 2024, pp. 1377-1387.
IEEE DOI
2404
Diseases, Feature extraction, Brain modeling, Adaptation models,
Analytical models, Support vector machines, Medical diagnosis,
explainable AI
BibRef
Pan, Y.L.[Yi-Lin],
Lu, M.Y.[Ming-Yu],
Shi, Y.[Yanpei],
Zhang, H.Y.[Hai-Yang],
A Path Signature Approach for Speech-Based Dementia Detection,
SPLetters(31), 2024, pp. 2880-2884.
IEEE DOI
2411
Dementia, Acoustics, Feature extraction, Audio recording,
Data mining, Trajectory, Rhythm, Character-level transcript,
wav2vec2.0
BibRef
Siddiquee, M.M.R.[Md Mahfuzur Rahman],
Shah, J.[Jay],
Wu, T.[Teresa],
Chong, C.[Catherine],
Schwedt, T.J.[Todd J.],
Dumkrieger, G.[Gina],
Nikolova, S.[Simona],
Li, B.X.[Bao-Xin],
Brainomaly: Unsupervised Neurologic Disease Detection Utilizing
Unannotated T1-weighted Brain MR Images,
WACV24(7558-7567)
IEEE DOI Code:
WWW Link.
2404
Measurement, Costs, Codes, Magnetic resonance imaging,
Computational modeling, Brain modeling, Applications,
Image recognition and understanding
BibRef
Tiwari, A.[Abhishek],
Singhal, A.[Ananya],
Shigwan, S.J.[Saurabh J.],
Singh, R.K.[Rajeev Kumar],
Deep Learning Framework using Sparse Diffusion MRI for Diagnosis of
Frontotemporal Dementia,
BioIm23(3823-3829)
IEEE DOI
2401
BibRef
Qiao, J.P.[Jian-Ping],
Liu, H.J.[Hong-Jia],
Wang, R.[Rong],
Wang, Z.S.[Zhi-Shun],
Sun, J.[Jiande],
The Multivariate Transformer Network for Mild Cognitive Impairment
Identification,
ICIP23(1140-1144)
IEEE DOI
2312
BibRef
Amini, M.[Morteza],
Mahmoodi, T.[Tayeb],
Sajedi, H.[Hedieh],
Mirzaea, S.[Sayeh],
Detection of Cortical Demantia in MRI Images Using Convolutional
Autoencoder Neural Network,
IPRIA21(1-3)
IEEE DOI
2201
Image analysis, Magnetic resonance imaging, Brain mapping,
Convolutional neural networks,
Classification
BibRef
Tang, H.T.[Hao-Teng],
Guo, L.[Lei],
Dennis, E.[Emily],
Thompson, P.M.[Paul M.],
Huang, H.[Heng],
Ajilore, O.[Olusola],
Leow, A.D.[Alex D.],
Zhan, L.[Liang],
Classifying Stages of Mild Cognitive Impairment via Augmented Graph
Embedding,
MBIA19(30-38).
Springer DOI
1912
BibRef
Chakraborty, R.,
Vemuri, B.C.,
Statistical analysis of longitudinal data and applications to
neuro-imaging,
ICIP17(211-214)
IEEE DOI
1803
Dementia, Electronics packaging, Frequency modulation, Manifolds,
Measurement, Statistical analysis, Trajectory,
Trajectories
BibRef
Ding, J.W.[Jun-Wei],
Huang, Q.[Qiu],
Prediction of MCI to AD conversion using Laplace Eigenmaps learned
from FDG and MRI images of AD patients and healthy controls,
ICIVC17(660-664)
IEEE DOI
1708
Diseases, Hippocampus, Image reconstruction,
Magnetic resonance imaging, Prognostics and health management,
Proteins, Support vector machines, alzheimers, image processing,
manifold, medical image, prediction
BibRef
Endo, T.,
Ukita, N.,
Tanaka, H.,
Hagita, N.,
Nakamura, S.,
Adachi, H.,
Ikeda, M.,
Kazui, H.,
Kudo, T.,
Initial response time measurement in eye movement for dementia
screening test,
MVA17(262-265)
DOI Link
1708
Cameras, Dementia, Facial features, Feature extraction, Iris, Time, factors
BibRef
Yang, X.[Xi],
Jin, Y.[Yan],
Chen, X.B.[Xiao-Bo],
Zhang, H.[Han],
Li, G.[Gang],
Shen, D.G.[Ding-Gang],
Functional Connectivity Network Fusion with Dynamic Thresholding for
MCI Diagnosis,
MLMI16(246-253).
Springer DOI
1611
BibRef
Li, F.[Feng],
Tran, L.[Loc],
Thung, K.H.[Kim-Han],
Ji, S.W.[Shui-Wang],
Shen, D.G.[Ding-Gang],
Li, J.[Jiang],
Robust Deep Learning for Improved Classification of AD/MCI Patients,
MLMI14(240-247).
Springer DOI
1410
BibRef
Stühler, E.[Elisabeth],
Berthold, M.R.[Michael R.],
Dementia-Related Features in Longitudinal MRI:
Tracking Keypoints over Time,
MCV14(59-70).
Springer DOI
1501
BibRef
Díaz, G.[Gloria],
García-Polo, P.[Pablo],
Mato, V.[Virginia],
Alfayate, E.[Eva],
Hernández-Tamames, J.A.[Juan Antonio],
Malpica, N.[Norberto],
Predicting Very Early Stage Mild Cognitive Impairment Based on a
Voxel-wise Arterial Spin Labeling Analysis,
CIARP14(714-721).
Springer DOI
1411
BibRef
Hu, C.H.[Chen-Hui],
Hua, X.[Xue],
Thompson, P.M.[Paul M.],
El Fakhri, G.[Georges],
Li, Q.Z.[Quan-Zheng],
Inferring Sources of Dementia Progression with Network Diffusion Model,
MLMI14(42-49).
Springer DOI
1410
BibRef
Bron, E.[Esther],
Smits, M.[Marion],
van Swieten, J.[John],
Niessen, W.[Wiro],
Klein, S.[Stefan],
Feature Selection Based on SVM Significance Maps for Classification of
Dementia,
MLMI14(272-279).
Springer DOI
1410
BibRef
Simoes, R.[Rita],
Slump, C.[Cornelis],
van Cappellen-van Walsum, A.M.[Anne-Marie],
Using local texture maps of brain MR images to detect Mild Cognitive
Impairment,
ICPR12(153-156).
WWW Link.
1302
BibRef
Nir, T.M.[Talia M.],
Jahanshad, N.[Neda],
Toga, A.W.[Arthur W.],
Jack, C.R.[Clifford R.],
Weiner, M.W.[Michael W.],
Thompson, P.M.[Paul M.],
Connectivity Network Breakdown Predicts Imminent Volumetric Atrophy in
Early Mild Cognitive Impairment,
MBIA12(41-50).
Springer DOI
1210
BibRef
Gray, K.R.[Katherine R.],
Aljabar, P.[Paul],
Heckemann, R.A.[Rolf A.],
Hammers, A.[Alexander],
Rueckert, D.[Daniel],
Random Forest-Based Manifold Learning for Classification of Imaging
Data in Dementia,
MLMI11(159-166).
Springer DOI
1109
BibRef
Tosun, D.[Duygu],
Weiner, M.W.[Michael W.],
Schuff, N.[Norbert],
Rosen, H.[Howard],
Miller, B.L.[Bruce L.],
Joint Independent Component Analysis of Brain Perfusion and Structural
Magnetic Resonance Images in Dementia,
ICPR10(2720-2723).
IEEE DOI
1008
BibRef
Kondou, Y.[Youhei],
Kawasumi, M.[Mikiko],
Yamamoto, O.[Osami],
Yamada, M.[Muneo],
Yamamoto, S.[Shin],
Nakanno, T.[Tomoaki],
Study of Early Screening Method of Dementia and Its Systemization,
MVA09(82-).
PDF File.
0905
BibRef
Akgul, C.B.[Ceyhun Burak],
Ekin, A.[Ahmet],
A Probabilistic Information Fusion Approach to MR-based Automated
Diagnosis of Dementia,
ICPR10(265-268).
IEEE DOI
1008
BibRef
Akgül, C.B.[Ceyhun Burak],
Ünay, D.[Devrim],
Ekin, A.[Ahmet],
Automated diagnosis of Alzheimer's disease using image similarity and
user feedback,
CIVR09(Article No 34).
DOI Link
0907
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Brain, Cortex, Alzheimer's Disease .