Heat Flux

Chapter Contents (Back)
Heat Flux. See also Land Surface Temperature, Atmospheric Measurements, Remote Sensing. See also Solar Radiation, Solar Irradiance, Measurements.

Zahira, S., Abderrahmane, H., Mederbal, K., Frederic, D.,
Mapping Latent Heat Flux in the Western Forest Covered Regions of Algeria Using Remote Sensing Data and a Spatialized Model,
RS(1), No. 4, December 2009, pp. 795-817.
DOI Link 1203

Maltese, A.[Antonino], Awada, H.[Hassan], Capodici, F.[Fulvio], Ciraolo, G.[Giuseppe], Loggia, G.L.[Goffredo La], Rallo, G.[Giovanni],
On the Use of the Eddy Covariance Latent Heat Flux and Sap Flow Transpiration for the Validation of a Surface Energy Balance Model,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804

Sun, Y.[Yibo], Jia, L.[Li], Chen, Q.[Qiting], Zheng, C.[Chaolei],
Optimizing Window Length for Turbulent Heat Flux Calculations from Airborne Eddy Covariance Measurements under Near Neutral to Unstable Atmospheric Stability Conditions,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806

Kumar, S.[Sujay], Holmes, T.[Thomas], Mocko, D.M.[David M.], Wang, S.[Shugong], Peters-Lidard, C.[Christa],
Attribution of Flux Partitioning Variations between Land Surface Models over the Continental U.S.,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link 1806
Plant and soil loss. BibRef

Dhungel, R.[Ramesh], Allen, R.G.[Richard G.], Trezza, R.[Ricardo], Robison, C.W.[Clarence W.],
Comparison of Latent Heat Flux Using Aerodynamic Methods and Using the Penman-Monteith Method with Satellite-Based Surface Energy Balance,
RS(6), No. 9, 2014, pp. 8844-8877.
DOI Link 1410

Feng, F.[Fei], Chen, J.Q.[Ji-Quan], Li, X.L.[Xiang-Lan], Yao, Y.J.[Yun-Jun], Liang, S.L.[Shun-Lin], Liu, M.[Meng], Zhang, N.N.[Nan-Nan], Guo, Y.[Yang], Yu, J.[Jian], Sun, M.[Minmin],
Validity of Five Satellite-Based Latent Heat Flux Algorithms for Semi-arid Ecosystems,
RS(7), No. 12, 2015, pp. 15853.
DOI Link 1601

Yang, Y.M.[Yong-Min], Qiu, J.X.[Jian-Xiu], Su, H.B.[Hong-Bo], Bai, Q.M.[Qing-Mei], Liu, S.[Suhua], Li, L.[Lu], Yu, Y.L.[Yi-Lei], Huang, Y.[Yaoxian],
A One-Source Approach for Estimating Land Surface Heat Fluxes Using Remotely Sensed Land Surface Temperature,
RS(9), No. 1, 2017, pp. xx-yy.
DOI Link 1702

Eswar, R.[Rajasekaran], Sekhar, M.[Muddu], Bhattacharya, B.K.[Bimal K.], Bandyopadhyay, S.[Soumya],
Spatial Disaggregation of Latent Heat Flux Using Contextual Models over India,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711

Liu, K.[Kai], Su, H.B.[Hong-Bo], Li, X.[Xueke],
Comparative Assessment of Two Vegetation Fractional Cover Estimating Methods and Their Impacts on Modeling Urban Latent Heat Flux Using Landsat Imagery,
RS(9), No. 5, 2017, pp. xx-yy.
DOI Link 1706

Chen, S.S.[Shan-Shan], Hu, D.[Deyong],
Parameterizing Anthropogenic Heat Flux with an Energy-Consumption Inventory and Multi-Source Remote Sensing Data,
RS(9), No. 11, 2017, pp. xx-yy.
DOI Link 1712

He, X.L.[Xin-Lei], Xu, T.R.[Tong-Ren], Bateni, S.M.[Sayed M.], Neale, C.M.U.[Christopher M. U.], Auligne, T.[Thomas], Liu, S.M.[Shao-Min], Wang, K.C.[Kai-Cun], Mao, K.B.[Ke-Biao], Yao, Y.J.[Yun-Jun],
Evaluation of the Weak Constraint Data Assimilation Approach for Estimating Turbulent Heat Fluxes at Six Sites,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link 1901

Wang, S.[Shasha], Hu, D.[Deyong], Chen, S.S.[Shan-Shan], Yu, C.[Chen],
A Partition Modeling for Anthropogenic Heat Flux Mapping in China,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link 1905

Wang, Y.[Yipu], Li, R.[Rui], Min, Q.L.[Qi-Long], Zhang, L.[Leiming], Yu, G.R.[Gui-Rui], Bergeron, Y.[Yves],
Estimation of Vegetation Latent Heat Flux over Three Forest Sites in ChinaFLUX using Satellite Microwave Vegetation Water Content Index,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link 1906

Krayenhoff, E.S.[E. Scott], Wu, Z.[Zhifeng], Shi, Q.[Qian], Ouyang, X.Y.[Xiao-Ying],
Parameterization of Urban Sensible Heat Flux from Remotely Sensed Surface Temperature: Effects of Surface Structure,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link 1906

Cheng, Z.[Zian], Pang, X.P.[Xiao-Ping], Zhao, X.[Xi], Stein, A.[Alfred],
Heat Flux Sources Analysis to the Ross Ice Shelf Polynya Ice Production Time Series and the Impact of Wind Forcing,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link 1902

Crespo, J.A.[Juan A.], Posselt, D.J.[Derek J.], Asharaf, S.[Shakeel],
CYGNSS Surface Heat Flux Product Development,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link 1910

Ge, N.[Nan], Zhong, L.[Lei], Ma, Y.[Yaoming], Cheng, M.[Meilin], Wang, X.[Xian], Zou, M.[Mijun], Huang, Z.[Ziyu],
Estimation of Land Surface Heat Fluxes Based on Landsat 7 ETM+ Data and Field Measurements over the Northern Tibetan Plateau,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link 1912

Xu, J.[Jia], Yao, Y.J.[Yun-Jun], Liang, S.L.[Shun-Lin], Liu, S.M.[Shao-Min], Fisher, J.B.[Joshua B.], Jia, K.[Kun], Zhang, X.T.[Xiao-Tong], Lin, Y.[Yi], Zhang, L.L.[Li-Lin], Chen, X.W.[Xiao-Wei],
Merging the MODIS and Landsat Terrestrial Latent Heat Flux Products Using the Multiresolution Tree Method,
GeoRS(57), No. 5, May 2019, pp. 2811-2823.
atmospheric boundary layer, atmospheric techniques, atmospheric temperature, land cover, land surface temperature, terrestrial latent heat flux (LE) BibRef

Xu, J.[Jia], Yao, Y.J.[Yun-Jun], Tan, K.[Kanran], Li, Y.[Yufu], Liu, S.M.[Shao-Min], Shang, K.[Ke], Jia, K.[Kun], Zhang, X.T.[Xiao-Tong], Chen, X.W.[Xiao-Wei], Bei, X.Y.[Xiang-Yi],
Integrating Latent Heat Flux Products from MODIS and Landsat Data Using Multi-Resolution Kalman Filter Method in the Midstream of Heihe River Basin of Northwest China,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link 1908

Li, X.J.[Xiao-Jun], Xin, X.Z.[Xiao-Zhou], Jiao, J.J.[Jing-Jun], Peng, Z.Q.[Zhi-Qing], Zhang, H.L.[Hai-Long], Shao, S.S.[Shan-Shan], Liu, Q.H.[Qin-Huo],
Estimating Subpixel Surface Heat Fluxes through Applying Temperature-Sharpening Methods to MODIS Data,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link 1708

Wang, X.Y.[Xuan-Yu], Yao, Y.J.[Yun-Jun], Zhao, S.H.[Shao-Hua], Jia, K.[Kun], Zhang, X.T.[Xiao-Tong], Zhang, Y.[Yuhu], Zhang, L.[Lilin], Xu, J.[Jia], Chen, X.W.[Xiao-Wei],
MODIS-Based Estimation of Terrestrial Latent Heat Flux over North America Using Three Machine Learning Algorithms,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link 1802

Yang, C.[Cheng], Wu, T.[Tonghua], Wang, J.[Jiemin], Yao, J.[Jimin], Li, R.[Ren], Zhao, L.[Lin], Xie, C.[Changwei], Zhu, X.F.[Xiao-Fan], Ni, J.[Jie], Hao, J.[Junming],
Estimating Surface Soil Heat Flux in Permafrost Regions Using Remote Sensing-Based Models on the Northern Qinghai-Tibetan Plateau under Clear-Sky Conditions,
RS(11), No. 4, 2019, pp. xx-yy.
DOI Link 1903

Nkwinkwa Njouodo, A.S.I.[Arielle Stela Imbol], Rouault, M.[Mathieu], Johannessen, J.A.[Johnny A.],
Latent Heat Flux in the Agulhas Current,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907

Yang, C.[Cheng], Wu, T.[Tonghua], Yao, J.[Jimin], Li, R.[Ren], Xie, C.[Changwei], Hu, G.[Guojie], Zhu, X.F.[Xiao-Fan], Zhang, Y.[Yinghui], Ni, J.[Jie], Hao, J.[Junming], Li, X.F.[Xiang-Fei], Ma, W.[Wensi], Wen, A.[Amin],
An Assessment of Using Remote Sensing-based Models to Estimate Ground Surface Soil Heat Flux on the Tibetan Plateau during the Freeze-thaw Process,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link 2002

Shang, K.[Ke], Yao, Y.J.[Yun-Jun], Li, Y.[Yufu], Yang, J.M.[Jun-Ming], Jia, K.[Kun], Zhang, X.T.[Xiao-Tong], Chen, X.W.[Xiao-Wei], Bei, X.Y.[Xiang-Yi], Guo, X.Z.[Xiao-Zheng],
Fusion of Five Satellite-Derived Products Using Extremely Randomized Trees to Estimate Terrestrial Latent Heat Flux over Europe,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link 2003

Tajfar, E.[Elahe], Bateni, S.M.[Sayed M.], Heggy, E.[Essam], Xu, T.[Tongren],
Feasibility of Estimating Turbulent Heat Fluxes via Variational Assimilation of Reference-Level Air Temperature and Specific Humidity Observations,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link 2004

Guo, X.Z.[Xiao-Zheng], Yao, Y.J.[Yun-Jun], Zhang, Y.[Yuhu], Lin, Y.[Yi], Jiang, B.[Bo], Jia, K.[Kun], Zhang, X.T.[Xiao-Tong], Xie, X.[Xianhong], Zhang, L.[Lilin], Shang, K.[Ke], Yang, J.[Junming], Bei, X.[Xiangyi],
Discrepancies in the Simulated Global Terrestrial Latent Heat Flux from GLASS and MERRA-2 Surface Net Radiation Products,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link 2009

Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Ocean Temperature, Sea Surface Temperature, SST .

Last update:Sep 28, 2020 at 12:04:43