22.2.24 Atmospheric Boundary Layer Height

Chapter Contents (Back)
Boundary Layer. Some overlap:
See also Heat Flux.

Kadygrov, E.N., Miller, E.A., Troitsky, A.V.,
Study of Atmospheric Boundary Layer Thermodynamics During Total Solar Eclipses,
GeoRS(51), No. 9, 2013, pp. 4672-4677.
Atmospheric measurements BibRef

Pal, S.[Sandip],
Monitoring Depth of Shallow Atmospheric Boundary Layer to Complement LiDAR Measurements Affected by Partial Overlap,
RS(6), No. 9, 2014, pp. 8468-8493.
DOI Link 1410

Case, J.L., La Fontaine, F.J., Bell, J.R., Jedlovec, G.J., Kumar, S.V., Peters-Lidard, C.D.,
A Real-Time MODIS Vegetation Product for Land Surface and Numerical Weather Prediction Models,
GeoRS(52), No. 3, March 2014, pp. 1772-1786.
atmospheric boundary layer BibRef

Komarov, A.S., Zabeline, V., Barber, D.G.,
Ocean Surface Wind Speed Retrieval From C-Band SAR Images Without Wind Direction Input,
GeoRS(52), No. 2, February 2014, pp. 980-990.
atmospheric boundary layer BibRef

Ringerud, S., Kummerow, C.D., Peters-Lidard, C.D.,
A Semi-Empirical Model for Computing Land Surface Emissivity in the Microwave Region,
GeoRS(53), No. 4, April 2015, pp. 1935-1946.
atmospheric boundary layer BibRef

Pahlevan, N.[Nima], Sarkar, S.[Sudipta], Devadiga, S.[Sadashiva], Wolfe, R.E.[Robert E.], Román, M.[Miguel], Vermote, E.[Eric], Lin, G.Q.[Guo-Qing], Xiong, X.X.[Xiao-Xiong],
Impact of Spatial Sampling on Continuity of MODIS-VIIRS Land Surface Reflectance Products: A Simulation Approach,
GeoRS(55), No. 1, January 2017, pp. 183-196.
atmospheric boundary layer BibRef

Hao, D.L.[Da-Lei], Wen, J.G.[Jian-Guang], Xiao, Q.[Qing], Wu, S.B.[Sheng-Biao], Lin, X.W.[Xing-Wen], You, D.Q.[Dong-Qin], Tang, Y.[Yong],
Modeling Anisotropic Reflectance Over Composite Sloping Terrain,
GeoRS(56), No. 7, July 2018, pp. 3903-3923.
atmospheric boundary layer, atmospheric radiation, digital elevation models, geophysical signal processing, topographic effects BibRef

Fountoulakis, V.[Vasileios], Earls, C.[Christopher],
Inverting for Maritime Environments Using Proper Orthogonal Bases From Sparsely Sampled Electromagnetic Propagation Data,
GeoRS(54), No. 12, December 2016, pp. 7166-7176.
atmospheric boundary layer. BibRef

Saeed, U., Rocadenbosch, F., Crewell, S.,
Adaptive Estimation of the Stable Boundary Layer Height Using Combined Lidar and Microwave Radiometer Observations,
GeoRS(54), No. 12, December 2016, pp. 6895-6906.
aerosols BibRef

Renju, R., Suresh Raju, C., Mathew, N., Kirankumar, N.V.P., Krishna Moorthy, K.,
Tropical Convective Cloud Characterization Using Ground-Based Microwave Radiometric Observations,
GeoRS(54), No. 7, July 2016, pp. 3774-3779.

Renju, R., Suresh Raju, C., Mishra, M.K., Mathew, N., Rajeev, K., Krishna Moorthy, K.,
Atmospheric Boundary Layer Characterization Using Multiyear Ground-Based Microwave Radiometric Observations Over a Tropical Coastal Station,
GeoRS(55), No. 12, December 2017, pp. 6877-6882.
Aerosols, Atmospheric measurements, Materials requirements planning, Microwave radiometry, terrestrial atmosphere BibRef

Park, S.[Soojin], Kim, S.W.[Sang-Woo], Park, M.S.[Moon-Soo], Song, C.K.[Chang-Keun],
Measurement of Planetary Boundary Layer Winds with Scanning Doppler Lidar,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link 1809

Trent, T.[Tim], Boesch, H.[Hartmut], Somkuti, P.[Peter], Scott, N.A.[Noëlle A.],
Observing Water Vapour in the Planetary Boundary Layer from the Short-Wave Infrared,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810

Gilles, M.A., Earls, C., Bindel, D.,
A Subspace Pursuit Method to Infer Refractivity in the Marine Atmospheric Boundary Layer,
GeoRS(57), No. 8, August 2019, pp. 5606-5617.
Refractive index, Mathematical model, Sea surface, Boundary conditions, Ducts, Eigenvalues and eigenfunctions, radar remote sensing BibRef

Liu, B., Ma, Y., Guo, J., Gong, W., Zhang, Y., Mao, F., Li, J., Guo, X., Shi, Y.,
Boundary Layer Heights as Derived From Ground-Based Radar Wind Profiler in Beijing,
GeoRS(57), No. 10, October 2019, pp. 8095-8104.
atmospheric boundary layer, atmospheric techniques, clouds, radiosondes, remote sensing by radar, weather forecasting, wind, signal-to-noise ratio (SNR) BibRef

Li, H., Wang, H., Yang, Y., Du, Y., Cao, B., Bian, Z., Liu, Q.,
Evaluation of Atmospheric Correction Methods for the ASTER Temperature and Emissivity Separation Algorithm Using Ground Observation Networks in the HiWATER Experiment,
GeoRS(57), No. 5, May 2019, pp. 3001-3014.
atmospheric boundary layer, atmospheric techniques, atmospheric temperature, emissivity, water vapor scaling (WVS) BibRef

Dang, R.J.[Rui-Jun], Yang, Y.[Yi], Li, H.[Hong], Hu, X.M.[Xiao-Ming], Wang, Z.T.[Zhi-Ting], Huang, Z.W.[Zhong-Wei], Zhou, T.[Tian], Zhang, T.J.[Tie-Jun],
Atmosphere Boundary Layer Height (ABLH) Determination under Multiple-Layer Conditions Using Micro-Pulse Lidar,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902

Dang, R.J.[Rui-Jun], Yang, Y.[Yi], Hu, X.M.[Xiao-Ming], Wang, Z.T.[Zhi-Ting], Zhang, S.[Shuwen],
A Review of Techniques for Diagnosing the Atmospheric Boundary Layer Height (ABLH) Using Aerosol Lidar Data,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907

Xu, J.[Jia], Yao, Y.J.[Yun-Jun], Tan, K.[Kanran], Li, Y.[Yufu], Liu, S.M.[Shao-Min], Shang, K.[Ke], Jia, K.[Kun], Zhang, X.T.[Xiao-Tong], Chen, X.W.[Xiao-Wei], Bei, X.Y.[Xiang-Yi],
Integrating Latent Heat Flux Products from MODIS and Landsat Data Using Multi-Resolution Kalman Filter Method in the Midstream of Heihe River Basin of Northwest China,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link 1908

Xu, J.[Jia], Yao, Y.J.[Yun-Jun], Liang, S.L.[Shun-Lin], Liu, S.M.[Shao-Min], Fisher, J.B.[Joshua B.], Jia, K.[Kun], Zhang, X.T.[Xiao-Tong], Lin, Y.[Yi], Zhang, L.L.[Li-Lin], Chen, X.W.[Xiao-Wei],
Merging the MODIS and Landsat Terrestrial Latent Heat Flux Products Using the Multiresolution Tree Method,
GeoRS(57), No. 5, May 2019, pp. 2811-2823.
atmospheric boundary layer, atmospheric techniques, atmospheric temperature, land cover, land surface temperature, terrestrial latent heat flux (LE) BibRef

Wang, D., Chen, Y., Cui, Y., Sun, H.,
A Geometric Model to Simulate Urban Thermal Anisotropy for Simplified Neighborhoods,
GeoRS(56), No. 8, August 2018, pp. 4930-4944.
atmospheric temperature, buildings (structures), land surface temperature, radiative transfer, remote sensing, urban surface temperature BibRef

Wang, D., Chen, Y.,
A Geometric Model to Simulate Urban Thermal Anisotropy in Simplified Dense Neighborhoods (GUTA-Dense),
GeoRS(57), No. 8, August 2019, pp. 6226-6239.
atmospheric boundary layer, atmospheric techniques, atmospheric temperature, land surface temperature, thermal anisotropy BibRef

Han, B., Morton, Y., Gunawan, E., Xu, D.,
Planetary Boundary Layer Height Detection Using Mountaintop-Based GNSS Radio Occultation Signal Amplitude,
GeoRS(57), No. 7, July 2019, pp. 4332-4348.
Global navigation satellite system, Refractive index, Receivers, Terrestrial atmosphere, Satellite broadcasting, Sea measurements, planetary boundary layer height (PBLH) BibRef

Liu, B.M.[Bo-Ming], Guo, J.P.[Jian-Ping], Gong, W.[Wei], Shi, Y.F.[Yi-Fan], Jin, S.[Shikuan],
Boundary Layer Height as Estimated from Radar Wind Profilers in Four Cities in China: Relative Contributions from Aerosols and Surface Features,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link 2006

Allabakash, S.[Shaik], Lim, S.[Sanghun],
Climatology of Planetary Boundary Layer Height-Controlling Meteorological Parameters Over the Korean Peninsula,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link 2008

Wang, D.X.[Dong-Xiang], Stachlewska, I.S.[Iwona S.], Song, X.Q.[Xiao-Quan], Heese, B.[Birgit], Nemuc, A.[Anca],
Variability of the Boundary Layer Over an Urban Continental Site Based on 10 Years of Active Remote Sensing Observations in Warsaw,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link 2001
Atmospheric boundary layer height. BibRef

Zhong, T.F.[Tian-Fen], Wang, N.C.[Nan-Chao], Shen, X.[Xue], Xiao, D.[Da], Xiang, Z.[Zhen], Liu, D.[Dong],
Determination of Planetary Boundary Layer height with Lidar Signals Using Maximum Limited Height Initialization and Range Restriction (MLHI-RR),
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link 2007

Aguirre, R.[Roberto], Toledo, F.[Felipe], Rodríguez, R.[Rafael], Rondanelli, R.[Roberto], Reyes, N.[Nicolas], Díaz, M.[Marcos],
Low-Cost Ka-Band Cloud Radar System for Distributed Measurements within the Atmospheric Boundary Layer,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link 2012

Yang, Y.J.[Yuan-Jian], Fan, S.[Sihui], Wang, L.L.[Lin-Lin], Gao, Z.[Zhiqiu], Zhang, Y.J.[Yuan-Jie], Zou, H.[Han], Miao, S.G.[Shi-Guang], Li, Y.[Yubin], Huang, M.[Meng], Yim, S.H.L.[Steve Hung Lam], Lolli, S.[Simone],
Diurnal Evolution of the Wintertime Boundary Layer in Urban Beijing, China: Insights from Doppler Lidar and a 325-m Meteorological Tower,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link 2012

Wenta, M.[Marta], Cassano, J.J.[John J.],
The Atmospheric Boundary Layer and Surface Conditions during Katabatic Wind Events over the Terra Nova Bay Polynya,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link 2012

Kim, M.H.[Man-Hae], Yeo, H.D.[Hui-Dong], Park, S.[Soojin], Park, D.H.[Do-Hyeon], Omar, A.[Ali], Nishizawa, T.[Tomoaki], Shimizu, A.[Atsushi], Kim, S.W.[Sang-Woo],
Assessing CALIOP-Derived Planetary Boundary Layer Height Using Ground-Based Lidar,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link 2104

Zhang, M.[Min], Tian, P.F.[Peng-Fei], Zeng, H.Y.[Hui-Yu], Wang, L.G.[Li-Gong], Liang, J.N.[Jie-Ning], Cao, X.J.[Xian-Jie], Zhang, L.[Lei],
A Comparison of Wintertime Atmospheric Boundary Layer Heights Determined by Tethered Balloon Soundings and Lidar at the Site of SACOL,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link 2105

Kambezidis, H.D.[Harry D.], Psiloglou, B.E.[Basil E.], Gavriil, A.[Ariadne], Petrinoli, K.[Kalliopi],
Detection of Upper and Lower Planetary-Boundary Layer Curves and Estimation of Their Heights from Ceilometer Observations under All-Weather Conditions: Case of Athens, Greece,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link 2106

Li, D.D.[Ding-Dong], Wu, Y.H.[Yong-Hua], Gross, B.[Barry], Moshary, F.[Fred],
Capabilities of an Automatic Lidar Ceilometer to Retrieve Aerosol Characteristics within the Planetary Boundary Layer,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link 2109

Sun, H.J.[Hai-Jiong], Shi, H.R.[Hong-Rong], Chen, H.Y.[Hong-Yan], Tang, G.Q.[Gui-Qian], Sheng, C.[Chen], Che, K.[Ke], Chen, H.B.[Hong-Bin],
Evaluation of a Method for Calculating the Height of the Stable Boundary Layer Based on Wind Profile Lidar and Turbulent Fluxes,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link 2109

Zhou, Y.[Yong], Liu, Y.[Yi], Qiao, J.D.[Jian-Dong], Lv, M.J.[Ming-Jie], Du, Z.T.[Zhi-Tao], Fan, Z.Q.[Zhi-Qiang], Zhao, J.Q.[Jia-Qi], Yu, Z.B.[Zhi-Bin], Li, J.[Jiang], Zhao, Z.Y.[Zheng-Yu], He, F.[Fang], Zhou, C.[Chen],
Investigation on Global Distribution of the Atmospheric Trapping Layer by Using Radio Occultation Dataset,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link 2110

Liu, X.Z.[Xiao-Zhou], Cao, Y.[Yunhua], Wu, Z.[Zhensen], Wang, H.G.[Hong-Guang],
Inversion for Inhomogeneous Surface Duct without a Base Layer Based on Ocean-Scattered Low-Elevation BDS Signals,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link 2110
Effect on radio signals by boundary layer. BibRef

Liu, Z.X.[Zhen-Xing], Chang, J.H.[Jian-Hua], Li, H.X.[Hong-Xu], Chen, S.C.[Si-Cheng], Dai, T.F.[Teng-Fei],
Estimating Boundary Layer Height from LiDAR Data under Complex Atmospheric Conditions Using Machine Learning,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link 2201

Wei, W.[Wang], Pan, Y.[Ya'ni], Feng, H.H.[Hui-Hui], Chen, B.[Biyan],
Bagged Tree Model to Retrieve Planetary Boundary Layer Heights by Integrating Lidar Backscatter Profiles and Meteorological Parameters,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link 2205

Tsikoudi, I.[Ioanna], Marinou, E.[Eleni], Vakkari, V.[Ville], Gialitaki, A.[Anna], Tsichla, M.[Maria], Amiridis, V.[Vassilis], Komppula, M.[Mika], Raptis, I.P.[Ioannis Panagiotis], Kampouri, A.[Anna], Daskalopoulou, V.[Vasiliki], Mihalopoulos, N.[Nikos], Giannakaki, E.[Eleni], Tombrou, M.[Maria], Flocas, H.[Helena],
PBL Height Retrievals at a Coastal Site Using Multi-Instrument Profiling Methods,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link 2208
Planetary Boundary Layer. BibRef

Dias-Júnior, C.Q.[Cléo Quaresma], Carneiro, R.G.[Rayonil Gomes], Fisch, G.[Gilberto], d'Oliveira, F.A.F.[Flávio Augusto F.], Sörgel, M.[Matthias], Botía, S.[Santiago], Machado, L.A.T.[Luiz Augusto T.], Wolff, S.[Stefan], dos Santos, R.M.N.[Rosa Maria N.], Pöhlker, C.[Christopher],
Intercomparison of Planetary Boundary Layer Heights Using Remote Sensing Retrievals and ERA5 Reanalysis over Central Amazonia,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link 2209

Tzadok, T.[Tamir], Ronen, A.[Ayala], Rostkier-Edelstein, D.[Dorita], Agassi, E.[Eyal], Avisar, D.[David], Berkovic, S.[Sigalit], Manor, A.[Alon],
Profiling the Planetary Boundary Layer Wind with a StreamLine XR Doppler LiDAR: Comparison to In-Situ Observations and WRF Model Simulations,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link 2209

Silva, M.T.[Matheus T.], Guerrero-Rascado, J.L.[Juan Luis], Correia, A.L.[Alexandre L.], Gouveia, D.A.[Diego A.], Barbosa, H.M.J.[Henrique M. J.],
On the Sensitivity of a Ground-Based Tropospheric Lidar to Aitken Mode Particles in the Upper Troposphere,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210

Xiong, J.[Jie], Bai, Y.Q.[Yong-Qing], Zhao, T.L.[Tian-Liang], Zhou, Y.[Yue], Sun, X.Y.[Xiao-Yun], Xu, J.[Jiaping], Zhang, W.G.[Wen-Gang], Leng, L.[Liang], Xu, G.[Guirong],
Synergistic Effect of Atmospheric Boundary Layer and Regional Transport on Aggravating Air Pollution in the Twain-Hu Basin: A Case Study,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link 2211

Han, B.[Bisen], Zhou, T.[Tian], Zhou, X.W.[Xiao-Wen], Fang, S.[Shuya], Huang, J.P.[Jian-Ping], He, Q.[Qing], Huang, Z.W.[Zhong-Wei], Wang, M.Z.[Min-Zhong],
A New Algorithm of Atmospheric Boundary Layer Height Determined from Polarization Lidar,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212

Edemskiy, I.K.[Ilya K.], Yasyukevich, Y.V.[Yury V.],
Auroral Oval Boundary Dynamics on the Nature of Geomagnetic Storm,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212

Chen, B.[Bo], Liu, Y.[Yi], Feng, J.[Jian], Zhang, Y.[Yuqiang], Zhou, Y.F.[Yu-Feng], Zhou, C.[Chen], Zhao, Z.Y.[Zheng-Yu],
High-Resolution Observation of Ionospheric E-Layer Irregularities Using Multi-Frequency Range Imaging Technology,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link 2301

Zhu, J.Y.[Jin-Yao], Jin, X.[Xin], Shi, C.H.[Chun-Hua], Chen, D.[Dan],
The Troposphere-to-Stratosphere Transport Caused by a Rossby Wave Breaking Event over the Tibetan Plateau in Mid-March 2006,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link 2301

Chen, Z.Y.[Zhen-Yi], Schofield, R.[Robyn], Keywood, M.[Melita], Cleland, S.[Sam], Williams, A.G.[Alastair G.], Wilson, S.[Stephen], Griffiths, A.[Alan], Xiang, Y.[Yan],
Observations of the Boundary Layer in the Cape Grim Coastal Region: Interaction with Wind and the Influences of Continental Sources,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link 2301

Lee, H.J.[Hyo-Jung], Jo, H.Y.[Hyun-Young], Kim, J.M.[Jong-Min], Bak, J.[Juseon], Park, M.S.[Moon-Soo], Kim, J.K.[Jung-Kwon], Jo, Y.J.[Yu-Jin], Kim, C.H.[Cheol-Hee],
Nocturnal Boundary Layer Height Uncertainty in Particulate Matter Simulations during the KORUS-AQ Campaign,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link 2301

Ming, H.[Hu], Wang, M.Z.[Min-Zhong], Gao, L.[Lianhui], Qian, Y.[Yijia], Gao, M.L.[Ming-Liang], Chehri, A.[Abdellah],
Study on the Boundary Layer of the Haze at Xianyang Airport Based on Multi-Source Detection Data,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link 2302

Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Ionosphere, Ionosphere Tomography, Reflections, Ionospheric Effects .

Last update:Jun 1, 2023 at 10:05:03