Case, J.L.,
LaFontaine, F.J.,
Bell, J.R.,
Jedlovec, G.J.,
Kumar, S.V.,
Peters-Lidard, C.D.,
A Real-Time MODIS Vegetation Product for Land Surface and Numerical
Weather Prediction Models,
GeoRS(52), No. 3, March 2014, pp. 1772-1786.
IEEE DOI
1403
atmospheric boundary layer
BibRef
Komarov, A.S.,
Zabeline, V.,
Barber, D.G.,
Ocean Surface Wind Speed Retrieval From C-Band SAR Images Without
Wind Direction Input,
GeoRS(52), No. 2, February 2014, pp. 980-990.
IEEE DOI
1402
atmospheric boundary layer
BibRef
Ringerud, S.,
Kummerow, C.D.,
Peters-Lidard, C.D.,
A Semi-Empirical Model for Computing Land Surface Emissivity in the
Microwave Region,
GeoRS(53), No. 4, April 2015, pp. 1935-1946.
IEEE DOI
1502
atmospheric boundary layer
BibRef
Hao, D.L.[Da-Lei],
Wen, J.G.[Jian-Guang],
Xiao, Q.[Qing],
Wu, S.B.[Sheng-Biao],
Lin, X.W.[Xing-Wen],
You, D.Q.[Dong-Qin],
Tang, Y.[Yong],
Modeling Anisotropic Reflectance Over Composite Sloping Terrain,
GeoRS(56), No. 7, July 2018, pp. 3903-3923.
IEEE DOI
1807
atmospheric boundary layer, atmospheric radiation,
digital elevation models, geophysical signal processing,
topographic effects
BibRef
Fountoulakis, V.[Vasileios],
Earls, C.[Christopher],
Inverting for Maritime Environments Using Proper Orthogonal Bases
From Sparsely Sampled Electromagnetic Propagation Data,
GeoRS(54), No. 12, December 2016, pp. 7166-7176.
IEEE DOI
1612
atmospheric boundary layer.
BibRef
Saeed, U.,
Rocadenbosch, F.,
Crewell, S.,
Adaptive Estimation of the Stable Boundary Layer Height Using
Combined Lidar and Microwave Radiometer Observations,
GeoRS(54), No. 12, December 2016, pp. 6895-6906.
IEEE DOI
1612
aerosols
BibRef
Renju, R.,
Suresh Raju, C.,
Mathew, N.,
Kirankumar, N.V.P.,
Krishna Moorthy, K.,
Tropical Convective Cloud Characterization Using Ground-Based
Microwave Radiometric Observations,
GeoRS(54), No. 7, July 2016, pp. 3774-3779.
IEEE DOI
1606
BibRef
Renju, R.,
Suresh Raju, C.,
Mishra, M.K.,
Mathew, N.,
Rajeev, K.,
Krishna Moorthy, K.,
Atmospheric Boundary Layer Characterization Using Multiyear
Ground-Based Microwave Radiometric Observations Over a Tropical
Coastal Station,
GeoRS(55), No. 12, December 2017, pp. 6877-6882.
IEEE DOI
1712
Aerosols, Atmospheric measurements,
Materials requirements planning, Microwave radiometry,
terrestrial atmosphere
BibRef
Park, S.[Soojin],
Kim, S.W.[Sang-Woo],
Park, M.S.[Moon-Soo],
Song, C.K.[Chang-Keun],
Measurement of Planetary Boundary Layer Winds with Scanning Doppler
Lidar,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Trent, T.[Tim],
Boesch, H.[Hartmut],
Somkuti, P.[Peter],
Scott, N.A.[Noëlle A.],
Observing Water Vapour in the Planetary Boundary Layer from the
Short-Wave Infrared,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Liu, B.,
Ma, Y.,
Guo, J.,
Gong, W.,
Zhang, Y.,
Mao, F.,
Li, J.,
Guo, X.,
Shi, Y.,
Boundary Layer Heights as Derived From Ground-Based Radar Wind
Profiler in Beijing,
GeoRS(57), No. 10, October 2019, pp. 8095-8104.
IEEE DOI
1910
atmospheric boundary layer, atmospheric techniques, clouds,
radiosondes, remote sensing by radar, weather forecasting, wind,
signal-to-noise ratio (SNR)
BibRef
Li, H.,
Wang, H.,
Yang, Y.,
Du, Y.,
Cao, B.,
Bian, Z.,
Liu, Q.,
Evaluation of Atmospheric Correction Methods for the ASTER
Temperature and Emissivity Separation Algorithm Using Ground
Observation Networks in the HiWATER Experiment,
GeoRS(57), No. 5, May 2019, pp. 3001-3014.
IEEE DOI
1905
atmospheric boundary layer, atmospheric techniques,
atmospheric temperature, emissivity,
water vapor scaling (WVS)
BibRef
Dang, R.J.[Rui-Jun],
Yang, Y.[Yi],
Li, H.[Hong],
Hu, X.M.[Xiao-Ming],
Wang, Z.T.[Zhi-Ting],
Huang, Z.W.[Zhong-Wei],
Zhou, T.[Tian],
Zhang, T.J.[Tie-Jun],
Atmosphere Boundary Layer Height (ABLH) Determination under
Multiple-Layer Conditions Using Micro-Pulse Lidar,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Dang, R.J.[Rui-Jun],
Yang, Y.[Yi],
Hu, X.M.[Xiao-Ming],
Wang, Z.T.[Zhi-Ting],
Zhang, S.[Shuwen],
A Review of Techniques for Diagnosing the Atmospheric Boundary Layer
Height (ABLH) Using Aerosol Lidar Data,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Xu, J.[Jia],
Yao, Y.J.[Yun-Jun],
Tan, K.[Kanran],
Li, Y.[Yufu],
Liu, S.M.[Shao-Min],
Shang, K.[Ke],
Jia, K.[Kun],
Zhang, X.T.[Xiao-Tong],
Chen, X.W.[Xiao-Wei],
Bei, X.Y.[Xiang-Yi],
Integrating Latent Heat Flux Products from MODIS and Landsat Data
Using Multi-Resolution Kalman Filter Method in the Midstream of Heihe
River Basin of Northwest China,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Xu, J.[Jia],
Yao, Y.J.[Yun-Jun],
Liang, S.L.[Shun-Lin],
Liu, S.M.[Shao-Min],
Fisher, J.B.[Joshua B.],
Jia, K.[Kun],
Zhang, X.T.[Xiao-Tong],
Lin, Y.[Yi],
Zhang, L.L.[Li-Lin],
Chen, X.W.[Xiao-Wei],
Merging the MODIS and Landsat Terrestrial Latent Heat Flux Products
Using the Multiresolution Tree Method,
GeoRS(57), No. 5, May 2019, pp. 2811-2823.
IEEE DOI
1905
atmospheric boundary layer, atmospheric techniques,
atmospheric temperature, land cover, land surface temperature,
terrestrial latent heat flux (LE)
BibRef
Wang, D.,
Chen, Y.,
Cui, Y.,
Sun, H.,
A Geometric Model to Simulate Urban Thermal Anisotropy for Simplified
Neighborhoods,
GeoRS(56), No. 8, August 2018, pp. 4930-4944.
IEEE DOI
1808
atmospheric temperature, buildings (structures),
land surface temperature, radiative transfer, remote sensing,
urban surface temperature
BibRef
Wang, D.,
Chen, Y.,
A Geometric Model to Simulate Urban Thermal Anisotropy in Simplified
Dense Neighborhoods (GUTA-Dense),
GeoRS(57), No. 8, August 2019, pp. 6226-6239.
IEEE DOI
1908
atmospheric boundary layer, atmospheric techniques,
atmospheric temperature, land surface temperature,
thermal anisotropy
BibRef
Liu, B.[Boming],
Guo, J.P.[Jian-Ping],
Gong, W.[Wei],
Shi, Y.F.[Yi-Fan],
Jin, S.[Shikuan],
Boundary Layer Height as Estimated from Radar Wind Profilers in Four
Cities in China: Relative Contributions from Aerosols and Surface
Features,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Allabakash, S.[Shaik],
Lim, S.[Sanghun],
Climatology of Planetary Boundary Layer Height-Controlling
Meteorological Parameters Over the Korean Peninsula,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Wang, D.X.[Dong-Xiang],
Stachlewska, I.S.[Iwona S.],
Song, X.Q.[Xiao-Quan],
Heese, B.[Birgit],
Nemuc, A.[Anca],
Variability of the Boundary Layer Over an Urban Continental Site
Based on 10 Years of Active Remote Sensing Observations in Warsaw,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
Atmospheric boundary layer height.
BibRef
Huang, T.[Tao],
Yim, S.H.L.[Steve Hung-Lam],
Yang, Y.J.[Yuan-Jian],
Lee, O.S.M.[Olivia Shuk-Ming],
Lam, D.H.Y.[David Hok-Yin],
Cheng, J.C.H.[Jack Chin-Ho],
Guo, J.P.[Jian-Ping],
Observation of Turbulent Mixing Characteristics in the Typical
Daytime Cloud-Topped Boundary Layer over Hong Kong in 2019,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Zhong, T.F.[Tian-Fen],
Wang, N.C.[Nan-Chao],
Shen, X.[Xue],
Xiao, D.[Da],
Xiang, Z.[Zhen],
Liu, D.[Dong],
Determination of Planetary Boundary Layer height with Lidar Signals
Using Maximum Limited Height Initialization and Range Restriction
(MLHI-RR),
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Aguirre, R.[Roberto],
Toledo, F.[Felipe],
Rodríguez, R.[Rafael],
Rondanelli, R.[Roberto],
Reyes, N.[Nicolas],
Díaz, M.[Marcos],
Low-Cost Ka-Band Cloud Radar System for Distributed Measurements
within the Atmospheric Boundary Layer,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Yang, Y.J.[Yuan-Jian],
Fan, S.[Sihui],
Wang, L.L.[Lin-Lin],
Gao, Z.[Zhiqiu],
Zhang, Y.J.[Yuan-Jie],
Zou, H.[Han],
Miao, S.G.[Shi-Guang],
Li, Y.[Yubin],
Huang, M.[Meng],
Yim, S.H.L.[Steve Hung Lam],
Lolli, S.[Simone],
Diurnal Evolution of the Wintertime Boundary Layer in Urban Beijing,
China: Insights from Doppler Lidar and a 325-m Meteorological Tower,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Wenta, M.[Marta],
Cassano, J.J.[John J.],
The Atmospheric Boundary Layer and Surface Conditions during
Katabatic Wind Events over the Terra Nova Bay Polynya,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Ionosphere, Ionosphere Tomography, Reflections, Ionospheric Effects .