Kadygrov, E.N.,
Miller, E.A.,
Troitsky, A.V.,
Study of Atmospheric Boundary Layer Thermodynamics During Total Solar
Eclipses,
GeoRS(51), No. 9, 2013, pp. 4672-4677.
IEEE DOI
1309
Atmospheric measurements
BibRef
Pal, S.[Sandip],
Monitoring Depth of Shallow Atmospheric Boundary Layer to Complement
LiDAR Measurements Affected by Partial Overlap,
RS(6), No. 9, 2014, pp. 8468-8493.
DOI Link
1410
BibRef
Case, J.L.,
La Fontaine, F.J.,
Bell, J.R.,
Jedlovec, G.J.,
Kumar, S.V.,
Peters-Lidard, C.D.,
A Real-Time MODIS Vegetation Product for Land Surface and Numerical
Weather Prediction Models,
GeoRS(52), No. 3, March 2014, pp. 1772-1786.
IEEE DOI
1403
atmospheric boundary layer
BibRef
Komarov, A.S.,
Zabeline, V.,
Barber, D.G.,
Ocean Surface Wind Speed Retrieval From C-Band SAR Images Without
Wind Direction Input,
GeoRS(52), No. 2, February 2014, pp. 980-990.
IEEE DOI
1402
atmospheric boundary layer
BibRef
Ringerud, S.,
Kummerow, C.D.,
Peters-Lidard, C.D.,
A Semi-Empirical Model for Computing Land Surface Emissivity in the
Microwave Region,
GeoRS(53), No. 4, April 2015, pp. 1935-1946.
IEEE DOI
1502
atmospheric boundary layer
BibRef
Pahlevan, N.[Nima],
Sarkar, S.[Sudipta],
Devadiga, S.[Sadashiva],
Wolfe, R.E.[Robert E.],
Román, M.[Miguel],
Vermote, E.[Eric],
Lin, G.Q.[Guo-Qing],
Xiong, X.X.[Xiao-Xiong],
Impact of Spatial Sampling on Continuity of MODIS-VIIRS Land Surface
Reflectance Products: A Simulation Approach,
GeoRS(55), No. 1, January 2017, pp. 183-196.
IEEE DOI
1701
atmospheric boundary layer
BibRef
Hao, D.L.[Da-Lei],
Wen, J.G.[Jian-Guang],
Xiao, Q.[Qing],
Wu, S.B.[Sheng-Biao],
Lin, X.W.[Xing-Wen],
You, D.Q.[Dong-Qin],
Tang, Y.[Yong],
Modeling Anisotropic Reflectance Over Composite Sloping Terrain,
GeoRS(56), No. 7, July 2018, pp. 3903-3923.
IEEE DOI
1807
atmospheric boundary layer, atmospheric radiation,
digital elevation models, geophysical signal processing,
topographic effects
BibRef
Fountoulakis, V.[Vasileios],
Earls, C.[Christopher],
Inverting for Maritime Environments Using Proper Orthogonal Bases
From Sparsely Sampled Electromagnetic Propagation Data,
GeoRS(54), No. 12, December 2016, pp. 7166-7176.
IEEE DOI
1612
atmospheric boundary layer.
BibRef
Saeed, U.,
Rocadenbosch, F.,
Crewell, S.,
Adaptive Estimation of the Stable Boundary Layer Height Using
Combined Lidar and Microwave Radiometer Observations,
GeoRS(54), No. 12, December 2016, pp. 6895-6906.
IEEE DOI
1612
aerosols
BibRef
Renju, R.,
Suresh Raju, C.,
Mathew, N.,
Kirankumar, N.V.P.,
Krishna Moorthy, K.,
Tropical Convective Cloud Characterization Using Ground-Based
Microwave Radiometric Observations,
GeoRS(54), No. 7, July 2016, pp. 3774-3779.
IEEE DOI
1606
BibRef
Renju, R.,
Suresh Raju, C.,
Mishra, M.K.,
Mathew, N.,
Rajeev, K.,
Krishna Moorthy, K.,
Atmospheric Boundary Layer Characterization Using Multiyear
Ground-Based Microwave Radiometric Observations Over a Tropical
Coastal Station,
GeoRS(55), No. 12, December 2017, pp. 6877-6882.
IEEE DOI
1712
Aerosols, Atmospheric measurements,
Materials requirements planning, Microwave radiometry,
terrestrial atmosphere
BibRef
Park, S.[Soojin],
Kim, S.W.[Sang-Woo],
Park, M.S.[Moon-Soo],
Song, C.K.[Chang-Keun],
Measurement of Planetary Boundary Layer Winds with Scanning Doppler
Lidar,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link
1809
BibRef
Trent, T.[Tim],
Boesch, H.[Hartmut],
Somkuti, P.[Peter],
Scott, N.A.[Noëlle A.],
Observing Water Vapour in the Planetary Boundary Layer from the
Short-Wave Infrared,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Gilles, M.A.,
Earls, C.,
Bindel, D.,
A Subspace Pursuit Method to Infer Refractivity in the Marine
Atmospheric Boundary Layer,
GeoRS(57), No. 8, August 2019, pp. 5606-5617.
IEEE DOI
1908
Refractive index, Mathematical model, Sea surface,
Boundary conditions, Ducts, Eigenvalues and eigenfunctions,
radar remote sensing
BibRef
Liu, B.,
Ma, Y.,
Guo, J.,
Gong, W.,
Zhang, Y.,
Mao, F.,
Li, J.,
Guo, X.,
Shi, Y.,
Boundary Layer Heights as Derived From Ground-Based Radar Wind
Profiler in Beijing,
GeoRS(57), No. 10, October 2019, pp. 8095-8104.
IEEE DOI
1910
atmospheric boundary layer, atmospheric techniques, clouds,
radiosondes, remote sensing by radar, weather forecasting, wind,
signal-to-noise ratio (SNR)
BibRef
Li, H.,
Wang, H.,
Yang, Y.,
Du, Y.,
Cao, B.,
Bian, Z.,
Liu, Q.,
Evaluation of Atmospheric Correction Methods for the ASTER
Temperature and Emissivity Separation Algorithm Using Ground
Observation Networks in the HiWATER Experiment,
GeoRS(57), No. 5, May 2019, pp. 3001-3014.
IEEE DOI
1905
atmospheric boundary layer, atmospheric techniques,
atmospheric temperature, emissivity,
water vapor scaling (WVS)
BibRef
Dang, R.J.[Rui-Jun],
Yang, Y.[Yi],
Li, H.[Hong],
Hu, X.M.[Xiao-Ming],
Wang, Z.T.[Zhi-Ting],
Huang, Z.W.[Zhong-Wei],
Zhou, T.[Tian],
Zhang, T.J.[Tie-Jun],
Atmosphere Boundary Layer Height (ABLH) Determination under
Multiple-Layer Conditions Using Micro-Pulse Lidar,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Dang, R.J.[Rui-Jun],
Yang, Y.[Yi],
Hu, X.M.[Xiao-Ming],
Wang, Z.T.[Zhi-Ting],
Zhang, S.[Shuwen],
A Review of Techniques for Diagnosing the Atmospheric Boundary Layer
Height (ABLH) Using Aerosol Lidar Data,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Xu, J.[Jia],
Yao, Y.J.[Yun-Jun],
Tan, K.[Kanran],
Li, Y.[Yufu],
Liu, S.M.[Shao-Min],
Shang, K.[Ke],
Jia, K.[Kun],
Zhang, X.T.[Xiao-Tong],
Chen, X.W.[Xiao-Wei],
Bei, X.Y.[Xiang-Yi],
Integrating Latent Heat Flux Products from MODIS and Landsat Data
Using Multi-Resolution Kalman Filter Method in the Midstream of Heihe
River Basin of Northwest China,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Xu, J.[Jia],
Yao, Y.J.[Yun-Jun],
Liang, S.L.[Shun-Lin],
Liu, S.M.[Shao-Min],
Fisher, J.B.[Joshua B.],
Jia, K.[Kun],
Zhang, X.T.[Xiao-Tong],
Lin, Y.[Yi],
Zhang, L.L.[Li-Lin],
Chen, X.W.[Xiao-Wei],
Merging the MODIS and Landsat Terrestrial Latent Heat Flux Products
Using the Multiresolution Tree Method,
GeoRS(57), No. 5, May 2019, pp. 2811-2823.
IEEE DOI
1905
atmospheric boundary layer, atmospheric techniques,
atmospheric temperature, land cover, land surface temperature,
terrestrial latent heat flux (LE)
BibRef
Wang, D.,
Chen, Y.,
Cui, Y.,
Sun, H.,
A Geometric Model to Simulate Urban Thermal Anisotropy for Simplified
Neighborhoods,
GeoRS(56), No. 8, August 2018, pp. 4930-4944.
IEEE DOI
1808
atmospheric temperature, buildings (structures),
land surface temperature, radiative transfer, remote sensing,
urban surface temperature
BibRef
Wang, D.,
Chen, Y.,
A Geometric Model to Simulate Urban Thermal Anisotropy in Simplified
Dense Neighborhoods (GUTA-Dense),
GeoRS(57), No. 8, August 2019, pp. 6226-6239.
IEEE DOI
1908
atmospheric boundary layer, atmospheric techniques,
atmospheric temperature, land surface temperature,
thermal anisotropy
BibRef
Han, B.,
Morton, Y.,
Gunawan, E.,
Xu, D.,
Planetary Boundary Layer Height Detection Using Mountaintop-Based
GNSS Radio Occultation Signal Amplitude,
GeoRS(57), No. 7, July 2019, pp. 4332-4348.
IEEE DOI
1907
Global navigation satellite system, Refractive index, Receivers,
Terrestrial atmosphere, Satellite broadcasting, Sea measurements,
planetary boundary layer height (PBLH)
BibRef
Liu, B.M.[Bo-Ming],
Guo, J.P.[Jian-Ping],
Gong, W.[Wei],
Shi, Y.F.[Yi-Fan],
Jin, S.[Shikuan],
Boundary Layer Height as Estimated from Radar Wind Profilers in Four
Cities in China: Relative Contributions from Aerosols and Surface
Features,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Allabakash, S.[Shaik],
Lim, S.[Sanghun],
Climatology of Planetary Boundary Layer Height-Controlling
Meteorological Parameters Over the Korean Peninsula,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Wang, D.X.[Dong-Xiang],
Stachlewska, I.S.[Iwona S.],
Song, X.Q.[Xiao-Quan],
Heese, B.[Birgit],
Nemuc, A.[Anca],
Variability of the Boundary Layer Over an Urban Continental Site
Based on 10 Years of Active Remote Sensing Observations in Warsaw,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link
2001
Atmospheric boundary layer height.
BibRef
Zhong, T.F.[Tian-Fen],
Wang, N.C.[Nan-Chao],
Shen, X.[Xue],
Xiao, D.[Da],
Xiang, Z.[Zhen],
Liu, D.[Dong],
Determination of Planetary Boundary Layer height with Lidar Signals
Using Maximum Limited Height Initialization and Range Restriction
(MLHI-RR),
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Aguirre, R.[Roberto],
Toledo, F.[Felipe],
Rodríguez, R.[Rafael],
Rondanelli, R.[Roberto],
Reyes, N.[Nicolas],
Díaz, M.[Marcos],
Low-Cost Ka-Band Cloud Radar System for Distributed Measurements
within the Atmospheric Boundary Layer,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Yang, Y.J.[Yuan-Jian],
Fan, S.[Sihui],
Wang, L.L.[Lin-Lin],
Gao, Z.[Zhiqiu],
Zhang, Y.J.[Yuan-Jie],
Zou, H.[Han],
Miao, S.G.[Shi-Guang],
Li, Y.[Yubin],
Huang, M.[Meng],
Yim, S.H.L.[Steve Hung Lam],
Lolli, S.[Simone],
Diurnal Evolution of the Wintertime Boundary Layer in Urban Beijing,
China: Insights from Doppler Lidar and a 325-m Meteorological Tower,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Wenta, M.[Marta],
Cassano, J.J.[John J.],
The Atmospheric Boundary Layer and Surface Conditions during
Katabatic Wind Events over the Terra Nova Bay Polynya,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Kim, M.H.[Man-Hae],
Yeo, H.D.[Hui-Dong],
Park, S.[Soojin],
Park, D.H.[Do-Hyeon],
Omar, A.[Ali],
Nishizawa, T.[Tomoaki],
Shimizu, A.[Atsushi],
Kim, S.W.[Sang-Woo],
Assessing CALIOP-Derived Planetary Boundary Layer Height Using
Ground-Based Lidar,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Zhang, M.[Min],
Tian, P.F.[Peng-Fei],
Zeng, H.Y.[Hui-Yu],
Wang, L.G.[Li-Gong],
Liang, J.N.[Jie-Ning],
Cao, X.J.[Xian-Jie],
Zhang, L.[Lei],
A Comparison of Wintertime Atmospheric Boundary Layer Heights
Determined by Tethered Balloon Soundings and Lidar at the Site of
SACOL,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Kambezidis, H.D.[Harry D.],
Psiloglou, B.E.[Basil E.],
Gavriil, A.[Ariadne],
Petrinoli, K.[Kalliopi],
Detection of Upper and Lower Planetary-Boundary Layer Curves and
Estimation of Their Heights from Ceilometer Observations under
All-Weather Conditions: Case of Athens, Greece,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Li, D.D.[Ding-Dong],
Wu, Y.H.[Yong-Hua],
Gross, B.[Barry],
Moshary, F.[Fred],
Capabilities of an Automatic Lidar Ceilometer to Retrieve Aerosol
Characteristics within the Planetary Boundary Layer,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Sun, H.J.[Hai-Jiong],
Shi, H.R.[Hong-Rong],
Chen, H.Y.[Hong-Yan],
Tang, G.Q.[Gui-Qian],
Sheng, C.[Chen],
Che, K.[Ke],
Chen, H.B.[Hong-Bin],
Evaluation of a Method for Calculating the Height of the Stable
Boundary Layer Based on Wind Profile Lidar and Turbulent Fluxes,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zhou, Y.[Yong],
Liu, Y.[Yi],
Qiao, J.D.[Jian-Dong],
Lv, M.J.[Ming-Jie],
Du, Z.T.[Zhi-Tao],
Fan, Z.Q.[Zhi-Qiang],
Zhao, J.Q.[Jia-Qi],
Yu, Z.B.[Zhi-Bin],
Li, J.[Jiang],
Zhao, Z.Y.[Zheng-Yu],
He, F.[Fang],
Zhou, C.[Chen],
Investigation on Global Distribution of the Atmospheric Trapping
Layer by Using Radio Occultation Dataset,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Liu, X.Z.[Xiao-Zhou],
Cao, Y.[Yunhua],
Wu, Z.[Zhensen],
Wang, H.G.[Hong-Guang],
Inversion for Inhomogeneous Surface Duct without a Base Layer Based
on Ocean-Scattered Low-Elevation BDS Signals,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
Effect on radio signals by boundary layer.
BibRef
Liu, Z.X.[Zhen-Xing],
Chang, J.H.[Jian-Hua],
Li, H.X.[Hong-Xu],
Chen, S.C.[Si-Cheng],
Dai, T.F.[Teng-Fei],
Estimating Boundary Layer Height from LiDAR Data under Complex
Atmospheric Conditions Using Machine Learning,
RS(14), No. 2, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Wei, W.[Wang],
Pan, Y.[Ya'ni],
Feng, H.H.[Hui-Hui],
Chen, B.[Biyan],
Bagged Tree Model to Retrieve Planetary Boundary Layer Heights by
Integrating Lidar Backscatter Profiles and Meteorological Parameters,
RS(14), No. 7, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Tsikoudi, I.[Ioanna],
Marinou, E.[Eleni],
Vakkari, V.[Ville],
Gialitaki, A.[Anna],
Tsichla, M.[Maria],
Amiridis, V.[Vassilis],
Komppula, M.[Mika],
Raptis, I.P.[Ioannis Panagiotis],
Kampouri, A.[Anna],
Daskalopoulou, V.[Vasiliki],
Mihalopoulos, N.[Nikos],
Giannakaki, E.[Eleni],
Tombrou, M.[Maria],
Flocas, H.[Helena],
PBL Height Retrievals at a Coastal Site Using Multi-Instrument
Profiling Methods,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
Planetary Boundary Layer.
BibRef
Dias-Júnior, C.Q.[Cléo Quaresma],
Carneiro, R.G.[Rayonil Gomes],
Fisch, G.[Gilberto],
d'Oliveira, F.A.F.[Flávio Augusto F.],
Sörgel, M.[Matthias],
Botía, S.[Santiago],
Machado, L.A.T.[Luiz Augusto T.],
Wolff, S.[Stefan],
dos Santos, R.M.N.[Rosa Maria N.],
Pöhlker, C.[Christopher],
Intercomparison of Planetary Boundary Layer Heights Using Remote
Sensing Retrievals and ERA5 Reanalysis over Central Amazonia,
RS(14), No. 18, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Tzadok, T.[Tamir],
Ronen, A.[Ayala],
Rostkier-Edelstein, D.[Dorita],
Agassi, E.[Eyal],
Avisar, D.[David],
Berkovic, S.[Sigalit],
Manor, A.[Alon],
Profiling the Planetary Boundary Layer Wind with a StreamLine XR
Doppler LiDAR: Comparison to In-Situ Observations and WRF Model
Simulations,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Silva, M.T.[Matheus T.],
Guerrero-Rascado, J.L.[Juan Luis],
Correia, A.L.[Alexandre L.],
Gouveia, D.A.[Diego A.],
Barbosa, H.M.J.[Henrique M. J.],
On the Sensitivity of a Ground-Based Tropospheric Lidar to Aitken
Mode Particles in the Upper Troposphere,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Xiong, J.[Jie],
Bai, Y.Q.[Yong-Qing],
Zhao, T.L.[Tian-Liang],
Zhou, Y.[Yue],
Sun, X.Y.[Xiao-Yun],
Xu, J.[Jiaping],
Zhang, W.G.[Wen-Gang],
Leng, L.[Liang],
Xu, G.[Guirong],
Synergistic Effect of Atmospheric Boundary Layer and Regional
Transport on Aggravating Air Pollution in the Twain-Hu Basin:
A Case Study,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Han, B.[Bisen],
Zhou, T.[Tian],
Zhou, X.W.[Xiao-Wen],
Fang, S.[Shuya],
Huang, J.P.[Jian-Ping],
He, Q.[Qing],
Huang, Z.W.[Zhong-Wei],
Wang, M.Z.[Min-Zhong],
A New Algorithm of Atmospheric Boundary Layer Height Determined from
Polarization Lidar,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Edemskiy, I.K.[Ilya K.],
Yasyukevich, Y.V.[Yury V.],
Auroral Oval Boundary Dynamics on the Nature of Geomagnetic Storm,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Chen, B.[Bo],
Liu, Y.[Yi],
Feng, J.[Jian],
Zhang, Y.[Yuqiang],
Zhou, Y.F.[Yu-Feng],
Zhou, C.[Chen],
Zhao, Z.Y.[Zheng-Yu],
High-Resolution Observation of Ionospheric E-Layer Irregularities
Using Multi-Frequency Range Imaging Technology,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Zhu, J.Y.[Jin-Yao],
Jin, X.[Xin],
Shi, C.H.[Chun-Hua],
Chen, D.[Dan],
The Troposphere-to-Stratosphere Transport Caused by a Rossby Wave
Breaking Event over the Tibetan Plateau in Mid-March 2006,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Chen, Z.Y.[Zhen-Yi],
Schofield, R.[Robyn],
Keywood, M.[Melita],
Cleland, S.[Sam],
Williams, A.G.[Alastair G.],
Wilson, S.[Stephen],
Griffiths, A.[Alan],
Xiang, Y.[Yan],
Observations of the Boundary Layer in the Cape Grim Coastal Region:
Interaction with Wind and the Influences of Continental Sources,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Lee, H.J.[Hyo-Jung],
Jo, H.Y.[Hyun-Young],
Kim, J.M.[Jong-Min],
Bak, J.[Juseon],
Park, M.S.[Moon-Soo],
Kim, J.K.[Jung-Kwon],
Jo, Y.J.[Yu-Jin],
Kim, C.H.[Cheol-Hee],
Nocturnal Boundary Layer Height Uncertainty in Particulate Matter
Simulations during the KORUS-AQ Campaign,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Ming, H.[Hu],
Wang, M.Z.[Min-Zhong],
Gao, L.[Lianhui],
Qian, Y.[Yijia],
Gao, M.L.[Ming-Liang],
Chehri, A.[Abdellah],
Study on the Boundary Layer of the Haze at Xianyang Airport Based on
Multi-Source Detection Data,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Ionosphere, Ionosphere Tomography, Reflections, Ionospheric Effects .