22.1.6.45 Atmospheric Boundary Layer Height

Chapter Contents (Back)
Boundary Layer. Some overlap: See also Heat Flux.

Case, J.L., LaFontaine, F.J., Bell, J.R., Jedlovec, G.J., Kumar, S.V., Peters-Lidard, C.D.,
A Real-Time MODIS Vegetation Product for Land Surface and Numerical Weather Prediction Models,
GeoRS(52), No. 3, March 2014, pp. 1772-1786.
IEEE DOI 1403
atmospheric boundary layer BibRef

Komarov, A.S., Zabeline, V., Barber, D.G.,
Ocean Surface Wind Speed Retrieval From C-Band SAR Images Without Wind Direction Input,
GeoRS(52), No. 2, February 2014, pp. 980-990.
IEEE DOI 1402
atmospheric boundary layer BibRef

Ringerud, S., Kummerow, C.D., Peters-Lidard, C.D.,
A Semi-Empirical Model for Computing Land Surface Emissivity in the Microwave Region,
GeoRS(53), No. 4, April 2015, pp. 1935-1946.
IEEE DOI 1502
atmospheric boundary layer BibRef

Hao, D.L.[Da-Lei], Wen, J.G.[Jian-Guang], Xiao, Q.[Qing], Wu, S.B.[Sheng-Biao], Lin, X.W.[Xing-Wen], You, D.Q.[Dong-Qin], Tang, Y.[Yong],
Modeling Anisotropic Reflectance Over Composite Sloping Terrain,
GeoRS(56), No. 7, July 2018, pp. 3903-3923.
IEEE DOI 1807
atmospheric boundary layer, atmospheric radiation, digital elevation models, geophysical signal processing, topographic effects BibRef

Fountoulakis, V.[Vasileios], Earls, C.[Christopher],
Inverting for Maritime Environments Using Proper Orthogonal Bases From Sparsely Sampled Electromagnetic Propagation Data,
GeoRS(54), No. 12, December 2016, pp. 7166-7176.
IEEE DOI 1612
atmospheric boundary layer. BibRef

Saeed, U., Rocadenbosch, F., Crewell, S.,
Adaptive Estimation of the Stable Boundary Layer Height Using Combined Lidar and Microwave Radiometer Observations,
GeoRS(54), No. 12, December 2016, pp. 6895-6906.
IEEE DOI 1612
aerosols BibRef

Renju, R., Suresh Raju, C., Mathew, N., Kirankumar, N.V.P., Krishna Moorthy, K.,
Tropical Convective Cloud Characterization Using Ground-Based Microwave Radiometric Observations,
GeoRS(54), No. 7, July 2016, pp. 3774-3779.
IEEE DOI 1606
BibRef

Renju, R., Suresh Raju, C., Mishra, M.K., Mathew, N., Rajeev, K., Krishna Moorthy, K.,
Atmospheric Boundary Layer Characterization Using Multiyear Ground-Based Microwave Radiometric Observations Over a Tropical Coastal Station,
GeoRS(55), No. 12, December 2017, pp. 6877-6882.
IEEE DOI 1712
Aerosols, Atmospheric measurements, Materials requirements planning, Microwave radiometry, terrestrial atmosphere BibRef

Park, S.[Soojin], Kim, S.W.[Sang-Woo], Park, M.S.[Moon-Soo], Song, C.K.[Chang-Keun],
Measurement of Planetary Boundary Layer Winds with Scanning Doppler Lidar,
RS(10), No. 8, 2018, pp. xx-yy.
DOI Link 1809
BibRef

Trent, T.[Tim], Boesch, H.[Hartmut], Somkuti, P.[Peter], Scott, N.A.[NoŽlle A.],
Observing Water Vapour in the Planetary Boundary Layer from the Short-Wave Infrared,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810
BibRef

Liu, B., Ma, Y., Guo, J., Gong, W., Zhang, Y., Mao, F., Li, J., Guo, X., Shi, Y.,
Boundary Layer Heights as Derived From Ground-Based Radar Wind Profiler in Beijing,
GeoRS(57), No. 10, October 2019, pp. 8095-8104.
IEEE DOI 1910
atmospheric boundary layer, atmospheric techniques, clouds, radiosondes, remote sensing by radar, weather forecasting, wind, signal-to-noise ratio (SNR) BibRef

Li, H., Wang, H., Yang, Y., Du, Y., Cao, B., Bian, Z., Liu, Q.,
Evaluation of Atmospheric Correction Methods for the ASTER Temperature and Emissivity Separation Algorithm Using Ground Observation Networks in the HiWATER Experiment,
GeoRS(57), No. 5, May 2019, pp. 3001-3014.
IEEE DOI 1905
atmospheric boundary layer, atmospheric techniques, atmospheric temperature, emissivity, water vapor scaling (WVS) BibRef

Dang, R.J.[Rui-Jun], Yang, Y.[Yi], Li, H.[Hong], Hu, X.M.[Xiao-Ming], Wang, Z.T.[Zhi-Ting], Huang, Z.W.[Zhong-Wei], Zhou, T.[Tian], Zhang, T.J.[Tie-Jun],
Atmosphere Boundary Layer Height (ABLH) Determination under Multiple-Layer Conditions Using Micro-Pulse Lidar,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link 1902
BibRef

Dang, R.J.[Rui-Jun], Yang, Y.[Yi], Hu, X.M.[Xiao-Ming], Wang, Z.T.[Zhi-Ting], Zhang, S.[Shuwen],
A Review of Techniques for Diagnosing the Atmospheric Boundary Layer Height (ABLH) Using Aerosol Lidar Data,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link 1907
BibRef

Xu, J.[Jia], Yao, Y.J.[Yun-Jun], Tan, K.[Kanran], Li, Y.[Yufu], Liu, S.M.[Shao-Min], Shang, K.[Ke], Jia, K.[Kun], Zhang, X.T.[Xiao-Tong], Chen, X.W.[Xiao-Wei], Bei, X.Y.[Xiang-Yi],
Integrating Latent Heat Flux Products from MODIS and Landsat Data Using Multi-Resolution Kalman Filter Method in the Midstream of Heihe River Basin of Northwest China,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Xu, J.[Jia], Yao, Y.J.[Yun-Jun], Liang, S.L.[Shun-Lin], Liu, S.M.[Shao-Min], Fisher, J.B.[Joshua B.], Jia, K.[Kun], Zhang, X.T.[Xiao-Tong], Lin, Y.[Yi], Zhang, L.L.[Li-Lin], Chen, X.W.[Xiao-Wei],
Merging the MODIS and Landsat Terrestrial Latent Heat Flux Products Using the Multiresolution Tree Method,
GeoRS(57), No. 5, May 2019, pp. 2811-2823.
IEEE DOI 1905
atmospheric boundary layer, atmospheric techniques, atmospheric temperature, land cover, land surface temperature, terrestrial latent heat flux (LE) BibRef

Wang, D., Chen, Y., Cui, Y., Sun, H.,
A Geometric Model to Simulate Urban Thermal Anisotropy for Simplified Neighborhoods,
GeoRS(56), No. 8, August 2018, pp. 4930-4944.
IEEE DOI 1808
atmospheric temperature, buildings (structures), land surface temperature, radiative transfer, remote sensing, urban surface temperature BibRef

Wang, D., Chen, Y.,
A Geometric Model to Simulate Urban Thermal Anisotropy in Simplified Dense Neighborhoods (GUTA-Dense),
GeoRS(57), No. 8, August 2019, pp. 6226-6239.
IEEE DOI 1908
atmospheric boundary layer, atmospheric techniques, atmospheric temperature, land surface temperature, thermal anisotropy BibRef

Liu, B.[Boming], Guo, J.P.[Jian-Ping], Gong, W.[Wei], Shi, Y.F.[Yi-Fan], Jin, S.[Shikuan],
Boundary Layer Height as Estimated from Radar Wind Profilers in Four Cities in China: Relative Contributions from Aerosols and Surface Features,
RS(12), No. 10, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Allabakash, S.[Shaik], Lim, S.[Sanghun],
Climatology of Planetary Boundary Layer Height-Controlling Meteorological Parameters Over the Korean Peninsula,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Wang, D.X.[Dong-Xiang], Stachlewska, I.S.[Iwona S.], Song, X.Q.[Xiao-Quan], Heese, B.[Birgit], Nemuc, A.[Anca],
Variability of the Boundary Layer Over an Urban Continental Site Based on 10 Years of Active Remote Sensing Observations in Warsaw,
RS(12), No. 2, 2020, pp. xx-yy.
DOI Link 2001
Atmospheric boundary layer height. BibRef

Huang, T.[Tao], Yim, S.H.L.[Steve Hung-Lam], Yang, Y.J.[Yuan-Jian], Lee, O.S.M.[Olivia Shuk-Ming], Lam, D.H.Y.[David Hok-Yin], Cheng, J.C.H.[Jack Chin-Ho], Guo, J.P.[Jian-Ping],
Observation of Turbulent Mixing Characteristics in the Typical Daytime Cloud-Topped Boundary Layer over Hong Kong in 2019,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Zhong, T.F.[Tian-Fen], Wang, N.C.[Nan-Chao], Shen, X.[Xue], Xiao, D.[Da], Xiang, Z.[Zhen], Liu, D.[Dong],
Determination of Planetary Boundary Layer height with Lidar Signals Using Maximum Limited Height Initialization and Range Restriction (MLHI-RR),
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link 2007
BibRef


Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Ionosphere, Ionosphere Tomography, Reflections, Ionospheric Effects .


Last update:Nov 23, 2020 at 10:27:11