24.8.4.4.4 Ship Detection in Polarimetric Radar, SAR, PolSAR

Chapter Contents (Back)
SAR. Radar. Ship Detection. PolSAR. Polarmetric SAR.
See also SAR, Radar for Ship Tracking, Ship Trajectory.
See also ATR -- SAR Target, Object Recognition, SAR Applications.
See also Vehicle Detection, SAR.

Margarit, G., Mallorqui, J.J., Fortuny-Guasch, J., Lopez-Martinez, C.,
Exploitation of Ship Scattering in Polarimetric SAR for an Improved Classification Under High Clutter Conditions,
GeoRS(47), No. 4, April 2009, pp. 1224-1235.
IEEE DOI 0903
BibRef

Margarit, G., Tabasco, A.,
Ship Classification in Single-Pol SAR Images Based on Fuzzy Logic,
GeoRS(49), No. 8, August 2011, pp. 3129-3138.
IEEE DOI 1108
BibRef
Earlier: Correction: GeoRS(51), No. 5, May 2013, pp. 3201.
IEEE DOI 1305
BibRef

Velotto, D., Soccorsi, M., Lehner, S.,
Azimuth Ambiguities Removal for Ship Detection Using Full Polarimetric X-Band SAR Data,
GeoRS(52), No. 1, January 2014, pp. 76-88.
IEEE DOI 1402
marine radar BibRef

Hu, C.B.[Can-Bin], Ferro-Famil, L.[Laurent], Kuang, G.Y.[Gang-Yao],
Ship Discrimination Using Polarimetric SAR Data and Coherent Time-Frequency Analysis,
RS(5), No. 12, 2013, pp. 6899-6920.
DOI Link 1412
BibRef

Atteia, G.E., Collins, M.J.[Michael J.],
On the use of compact polarimetry SAR for ship detection,
PandRS(80), No. 1, June 2013, pp. 1-9.
Elsevier DOI 1305
Ship detection; Polarimetry; Compact polarimetry; Synthetic aperture radar BibRef

Touzi, R., Hurley, J., Vachon, P.W.,
Optimization of the Degree of Polarization for Enhanced Ship Detection Using Polarimetric RADARSAT-2,
GeoRS(53), No. 10, October 2015, pp. 5403-5424.
IEEE DOI 1509
electromagnetic wave polarisation BibRef

Tu, S.[Song], Su, Y.[Yi],
Fast and Accurate Target Detection Based on Multiscale Saliency and Active Contour Model for High-Resolution SAR Images,
GeoRS(54), No. 10, October 2016, pp. 5729-5744.
IEEE DOI 1610
image processing BibRef

Zhang, L.[Liang], Lu, S.T.[Sheng-Tao], Xiang, D.L.[De-Liang], Su, Y.[Yi],
Fast Ship Detection Based on the Superpixels for High Resolution SAR Images,
ICIVC22(172-177)
IEEE DOI 2301
Gamma distribution, Image resolution, Shape, Urban areas, Speckle, Radar polarimetry, Robustness, synthetic aperture radar (SAR), target detection BibRef

Gao, G., Luo, Y., Ouyang, K., Zhou, S.,
Statistical Modeling of PMA Detector for Ship Detection in High-Resolution Dual-Polarization SAR Images,
GeoRS(54), No. 7, July 2016, pp. 4302-4313.
IEEE DOI 1606
Adaptation models BibRef

Xu, L.[Lu], Zhang, H.[Hong], Wang, C.[Chao], Zhang, B.[Bo], Tian, S.[Sirui],
Compact Polarimetric SAR Ship Detection with m-d Decomposition Using Visual Attention Model,
RS(8), No. 9, 2016, pp. 751.
DOI Link 1610
BibRef

Fan, Q.C.[Qian-Cong], Chen, F.[Feng], Cheng, M.[Ming], Lou, S.L.[Shen-Long], Xiao, R.[Rulin], Zhang, B.[Biao], Wang, C.[Cheng], Li, J.[Jonathan],
Ship Detection Using a Fully Convolutional Network with Compact Polarimetric SAR Images,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Gao, G.[Gui], Shi, G.T.[Gong-Tao],
CFAR Ship Detection in Nonhomogeneous Sea Clutter Using Polarimetric SAR Data Based on the Notch Filter,
GeoRS(55), No. 8, August 2017, pp. 4811-4824.
IEEE DOI 1708
Clutter, Data models, Detectors, Marine vehicles, Scattering, Sea measurements, Synthetic aperture radar, Constant false alarm rate (CFAR), polarization, ship detection, synthetic, aperture, radar, (SAR) BibRef

Gao, G.[Gui], Gao, S.[Sheng], He, J.[Juan], Li, G.S.[Gao-Sheng],
Ship Detection Using Compact Polarimetric SAR Based on the Notch Filter,
GeoRS(56), No. 9, September 2018, pp. 5380-5393.
IEEE DOI 1809
Marine vehicles, Synthetic aperture radar, Feature extraction, Scattering, Image reconstruction, Clutter, Oceans, synthetic aperture radar (SAR) BibRef

Gao, G.[Gui], Gao, S.[Sheng], He, J.[Juan], Li, G.S.[Gao-Sheng],
Adaptive Ship Detection in Hybrid-Polarimetric SAR Images Based on the Power-Entropy Decomposition,
GeoRS(56), No. 9, September 2018, pp. 5394-5407.
IEEE DOI 1809
Synthetic aperture radar, Marine vehicles, Feature extraction, Spaceborne radar, Entropy, Image reconstruction, synthetic aperture radar (SAR) BibRef

Xi, Y.Y.[Yu-Yang], Lang, H.T.[Hai-Tao], Tao, Y.H.[Yun-Hong], Huang, L.[Lin], Pei, Z.J.[Zi-Jun],
Four-Component Model-Based Decomposition for Ship Targets Using PolSAR Data,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link 1706
BibRef

Lin, H.P.[Hui-Ping], Song, S.L.[Sheng-Li], Yang, J.[Jian],
Ship Classification Based on MSHOG Feature and Task-Driven Dictionary Learning with Structured Incoherent Constraints in SAR Images,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Lin, H.P.[Hui-Ping], Chen, H.[Hang], Wang, H.M.[Hong-Miao], Yin, J.J.[Jun-Jun], Yang, J.[Jian],
Ship Detection for PolSAR Images via Task-Driven Discriminative Dictionary Learning,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link 1904
BibRef

Zhang, T.[Tao], Marino, A.[Armando], Xiong, H.L.[Hui-Lin], Yu, W.X.[Wen-Xian],
A Ship Detector Applying Principal Component Analysis to the Polarimetric Notch Filter,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link 1806
BibRef

Li, B., Liu, B., Guo, W., Zhang, Z., Yu, W.,
Ship Size Extraction for Sentinel-1 Images Based on Dual-Polarization Fusion and Nonlinear Regression: Push Error Under One Pixel,
GeoRS(56), No. 8, August 2018, pp. 4887-4905.
IEEE DOI 1808
gradient methods, image fusion, marine radar, radar imaging, regression analysis, ships, synthetic aperture radar, synthetic aperture radar (SAR) image BibRef

Zhang, T.[Tao], Ji, J.S.[Jin-Sheng], Li, X.F.[Xiao-Feng], Yu, W.X.[Wen-Xian], Xiong, H.L.[Hui-Lin],
Ship Detection From PolSAR Imagery Using the Complete Polarimetric Covariance Difference Matrix,
GeoRS(57), No. 5, May 2019, pp. 2824-2839.
IEEE DOI 1905
covariance matrices, geophysical signal processing, notch filters, object detection, radar clutter, radar imaging, target-to-clutter ratio (TCR) BibRef

Zhang, T.[Tao], Jiang, L.F.[Lin-Feng], Xiang, D.L.[De-Liang], Ban, Y.F.[Yi-Fang], Pei, L.[Ling], Xiong, H.L.[Hui-Lin],
Ship detection from PolSAR imagery using the ambiguity removal polarimetric notch filter,
PandRS(157), 2019, pp. 41-58.
Elsevier DOI 1911
PolSAR, Ship detection, Azimuth ambiguity removal, GP-PNF, PSH, Depolarized energy ratio of targets BibRef

Pelich, R.[Ramona], Chini, M.[Marco], Hostache, R.[Renaud], Matgen, P.[Patrick], Lopez-Martinez, C.[Carlos], Nuevo, M.[Miguel], Ries, P.[Philippe], Eiden, G.[Gerd],
Large-Scale Automatic Vessel Monitoring Based on Dual-Polarization Sentinel-1 and AIS Data,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link 1905
dual-polarimetric descriptors. Ships. BibRef

Leng, X., Ji, K., Zhou, S., Xing, X.,
Ship Detection Based on Complex Signal Kurtosis in Single-Channel SAR Imagery,
GeoRS(57), No. 9, September 2019, pp. 6447-6461.
IEEE DOI 1909
Marine vehicles, Radar polarimetry, Synthetic aperture radar, Clutter, Gaussian distribution, Proposals, Sensitivity, synthetic aperture radar (SAR) BibRef

Cao, C.H.[Cheng-Hui], Zhang, J.[Jie], Meng, J.M.[Jun-Min], Zhang, X.[Xi], Mao, X.P.[Xing-Peng],
Analysis of Ship Detection Performance with Full-, Compact- and Dual-Polarimetric SAR,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Cui, Z., Li, Q., Cao, Z., Liu, N.,
Dense Attention Pyramid Networks for Multi-Scale Ship Detection in SAR Images,
GeoRS(57), No. 11, November 2019, pp. 8983-8997.
IEEE DOI 1911
Marine vehicles, Feature extraction, Radar polarimetry, Synthetic aperture radar, Radar imaging, Semantics, synthetic aperture radar (SAR) BibRef

Fan, W.W.[Wei-Wei], Zhou, F.[Feng], Bai, X.[Xueru], Tao, M.L.[Ming-Liang], Tian, T.[Tian],
Ship Detection Using Deep Convolutional Neural Networks for PolSAR Images,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Ai, J., Tian, R., Luo, Q., Jin, J., Tang, B.,
Multi-Scale Rotation-Invariant Haar-Like Feature Integrated CNN-Based Ship Detection Algorithm of Multiple-Target Environment in SAR Imagery,
GeoRS(57), No. 12, December 2019, pp. 10070-10087.
IEEE DOI 1912
Marine vehicles, Feature extraction, Clutter, Synthetic aperture radar, Radar polarimetry, Correlation, constant false alarm rate (CFAR) detector (TCS-JCFAR)-based prescreening BibRef

Liu, G.W.[Gen-Wang], Zhang, X.[Xi], Meng, J.M.[Jun-Min],
A Small Ship Target Detection Method Based on Polarimetric SAR,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Liu, T., Zhang, J., Gao, G., Yang, J., Marino, A.,
CFAR Ship Detection in Polarimetric Synthetic Aperture Radar Images Based on Whitening Filter,
GeoRS(58), No. 1, January 2020, pp. 58-81.
IEEE DOI 2001
Marine vehicles, Speckle, Covariance matrices, Clutter, Synthetic aperture radar, Probability density function, synthetic aperture radar BibRef

Tian, M., Yang, Z., Duan, C., Liao, G., Liu, Y., Wang, C., Huang, P.,
A Method for Active Marine Target Detection Based on Complex Interferometric Dissimilarity in Dual-Channel ATI-SAR Systems,
GeoRS(58), No. 1, January 2020, pp. 251-267.
IEEE DOI 2001
Object detection, Synthetic aperture radar, Measurement, Marine vehicles, Clutter, Radar polarimetry, synthetic aperture radar (SAR) BibRef

Guo, R.[Rui], Cui, J.Y.[Jing-Yu], Jing, G.B.[Guo-Bin], Zhang, S.X.[Shuang-Xi], Xing, M.D.[Meng-Dao],
Validating GEV Model for Reflection Symmetry-Based Ocean Ship Detection with Gaofen-3 Dual-Polarimetric Data,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link 2004
BibRef

Li, Y.Z.[Yong-Zhen], Quan, S.N.[Si-Nong], Xiang, D.L.[De-Liang], Wang, W.[Wei], Hu, C.B.[Can-Bin], Liu, Y.[Yemin], Wang, X.S.[Xue-Song],
Ship Recognition from Chaff Clouds with Sophisticated Polarimetric Decomposition,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Jin, K., Chen, Y., Xu, B., Yin, J., Wang, X., Yang, J.,
A Patch-to-Pixel Convolutional Neural Network for Small Ship Detection With PolSAR Images,
GeoRS(58), No. 9, September 2020, pp. 6623-6638.
IEEE DOI 2008
Feature extraction, Marine vehicles, Object detection, Optical imaging, Optical sensors, Synthetic aperture radar, ship detection BibRef

Wang, X.Q.[Xue-Qian], Li, G.[Gang], Zhang, X., He, Y.[You],
Ship Detection in SAR Images via Local Contrast of Fisher Vectors,
GeoRS(58), No. 9, September 2020, pp. 6467-6479.
IEEE DOI 2008
Marine vehicles, Radar polarimetry, Detectors, Clutter, Synthetic aperture radar, Detection algorithms, synthetic aperture radar (SAR) BibRef

Wang, X.Q.[Xue-Qian], Li, G.[Gang], Plaza, A.[Antonio], He, Y.[You],
Ship Detection in SAR Images via Enhanced Nonnegative Sparse Locality-Representation of Fisher Vectors,
GeoRS(59), No. 11, November 2021, pp. 9424-9438.
IEEE DOI 2111
Marine vehicles, Radar polarimetry, Detectors, Clutter, Feature extraction, Synthetic aperture radar, Training, synthetic aperture radar (SAR) BibRef

Liu, T., Yang, Z., Marino, A., Gao, G., Yang, J.,
Robust CFAR Detector Based on Truncated Statistics for Polarimetric Synthetic Aperture Radar,
GeoRS(58), No. 9, September 2020, pp. 6731-6747.
IEEE DOI 2008
Marine vehicles, Clutter, Detectors, Covariance matrices, Synthetic aperture radar, Training, truncated statistics (TS) BibRef

Zhang, T., Yang, Z., Gan, H., Xiang, D., Zhu, S., Yang, J.,
PolSAR Ship Detection Using the Joint Polarimetric Information,
GeoRS(58), No. 11, November 2020, pp. 8225-8241.
IEEE DOI 2011
Marine vehicles, Scattering, Sea surface, Rough surfaces, Surface roughness, Detectors, Covariance matrices, surface scattering BibRef

Fu, J.M.[Jia-Mei], Sun, X.[Xian], Wang, Z.R.[Zhi-Rui], Fu, K.[Kun],
An Anchor-Free Method Based on Feature Balancing and Refinement Network for Multiscale Ship Detection in SAR Images,
GeoRS(59), No. 2, February 2021, pp. 1331-1344.
IEEE DOI 2101
Marine vehicles, Feature extraction, Synthetic aperture radar, Detectors, Radar polarimetry, Scattering, Semantics, synthetic aperture radar (SAR) BibRef

Liu, T.[Tao], Yang, Z.Y.[Zi-Yuan], Marino, A.[Armando], Gao, G.[Gui], Yang, J.[Jian],
PolSAR Ship Detection Based on Neighborhood Polarimetric Covariance Matrix,
GeoRS(59), No. 6, June 2021, pp. 4874-4887.
IEEE DOI 2106
Marine vehicles, Covariance matrices, Detectors, Correlation, Synthetic aperture radar, Clutter, Scattering, polarimetric whitening filter (PWF) BibRef

Wang, X.Q.[Xue-Qian], Li, G.[Gang], Zhang, X.P.[Xiao-Ping], He, Y.[You],
A Fast CFAR Algorithm Based on Density-Censoring Operation for Ship Detection in SAR Images,
SPLetters(28), 2021, pp. 1085-1089.
IEEE DOI 2106
Radar polarimetry, Clutter, Detectors, Marine vehicles, Reflectivity, Signal processing algorithms, Feature extraction, Density, constant false alarm rate BibRef

Chen, S.W.[Si-Wei], Cui, X.C.[Xing-Chao], Wang, X.S.[Xue-Song], Xiao, S.P.[Shun-Ping],
Speckle-Free SAR Image Ship Detection,
IP(30), 2021, pp. 5969-5983.
IEEE DOI 2107
Marine vehicles, Speckle, Synthetic aperture radar, Detectors, Radar polarimetry, Spaceborne radar, Radar imaging, speckle-free BibRef

Li, H.L.[Hao-Liang], Cui, X.C.[Xing-Chao], Chen, S.W.[Si-Wei],
PolSAR Ship Detection with Optimal Polarimetric Rotation Domain Features and SVM,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Zhu, D.[Dong], Wang, X.Q.[Xue-Qian], Cheng, Y.[Yayun], Li, G.[Gang],
Vessel Target Detection in Spaceborne-Airborne Collaborative SAR Images via Proposal and Polarization Fusion,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link 2110
BibRef

Zhang, T.W.[Tian-Wen], Zhang, X.L.[Xiao-Ling],
A polarization fusion network with geometric feature embedding for SAR ship classification,
PR(123), 2022, pp. 108365.
Elsevier DOI 2112
Synthetic aperture radar (SAR), Ship classification, Convolutional neural network, Polarization fusion (PF), Geometric feature embedding (GFE) BibRef

Xu, X.[Xiaowo], Zhang, X.L.[Xiao-Ling], Shao, Z.K.[Zi-Kang], Shi, J.[Jun], Wei, S.[Shunjun], Zhang, T.W.[Tian-Wen], Zeng, T.J.[Tian-Jiao],
A Group-Wise Feature Enhancement-and-Fusion Network with Dual-Polarization Feature Enrichment for SAR Ship Detection,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link 2211
BibRef

Zhang, P.P.[Pan-Pan], Luo, H.B.[Hai-Bo], Ju, M.[Moran], He, M.[Miao], Chang, Z.[Zheng], Hui, B.[Bin],
Brain-Inspired Fast Saliency-Based Filtering Algorithm for Ship Detection in High-Resolution SAR Images,
GeoRS(60), 2022, pp. 1-9.
IEEE DOI 2112
Marine vehicles, Feature extraction, Synthetic aperture radar, Detectors, Radar polarimetry, Visualization, Focusing, saliency map BibRef

Li, D.[Dong], Liang, Q.H.[Quan-Huan], Liu, H.Q.[Hong-Qing], Liu, Q.H.[Qing-Hua], Liu, H.J.[Hai-Jun], Liao, G.S.[Gui-Sheng],
A Novel Multidimensional Domain Deep Learning Network for SAR Ship Detection,
GeoRS(60), 2022, pp. 1-13.
IEEE DOI 2112
Marine vehicles, Feature extraction, Synthetic aperture radar, Radar polarimetry, Detectors, Object detection, synthetic aperture radar (SAR) BibRef

Ren, Y.B.[Yi-Bin], Li, X.F.[Xiao-Feng], Xu, H.[Huan],
A Deep Learning Model to Extract Ship Size From Sentinel-1 SAR Images,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI 2112
Marine vehicles, Radar polarimetry, Feature extraction, Synthetic aperture radar, Data mining, Radar imaging, Oceans, synthetic aperture radar (SAR) image BibRef

Gu, M.F.[Ming-Fei], Wang, Y.H.[Ying-Hua], Liu, H.W.[Hong-Wei], Wang, P.H.[Peng-Hui],
PolSAR Ship Detection Based on a SIFT-like PolSAR Keypoint Detector,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Zhang, C.[Chuan], Gao, G.[Gui], Zhang, L.L.[Lin-Lin], Chen, C., Gao, S., Yao, L.[Libo], Bai, Q.[Qilin], Gou, S.Q.[Shi-Quan],
A novel full-polarization SAR image ship detector based on scattering mechanisms and wave polarization anisotropy,
PandRS(190), 2022, pp. 129-143.
Elsevier DOI 2208
Synthetic Aperture Radar (SAR), Scattering mechanism, Wave polarization anisotropy, Relatively weakly scattering targets BibRef

Adil, M.[Muhammad], Buono, A.[Andrea], Nunziata, F.[Ferdinando], Ferrentino, E.[Emanuele], Velotto, D.[Domenico], Migliaccio, M.[Maurizio],
On the Effects of the Incidence Angle on the L-Band Multi-Polarisation Scattering of a Small Ship,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Wang, J.L.[Jie-Lei], Cui, Z.Y.[Zong-Yong], Jiang, T.[Ting], Cao, C.J.[Chang-Jie], Cao, Z.J.[Zong-Jie],
Lightweight Deep Neural Networks for Ship Target Detection in SAR Imagery,
IP(32), 2023, pp. 565-579.
IEEE DOI 2301
Marine vehicles, Task analysis, Optimization, Object detection, Deep learning, Radar polarimetry, Neural networks, network pruning BibRef

Qiu, W.X.[Wei-Xing], Pan, Z.X.[Zong-Xu], Yang, J.W.[Jian-Wei],
Few-Shot PolSAR Ship Detection Based on Polarimetric Features Selection and Improved Contrastive Self-Supervised Learning,
RS(15), No. 7, 2023, pp. 1874.
DOI Link 2304
BibRef

Lanz, P.[Peter], Marino, A.[Armando], Simpson, M.D.[Morgan David], Brinkhoff, T.[Thomas], Köster, F.[Frank], Möller, M.[Matthias],
The InflateSAR Campaign: Developing Refugee Vessel Detection Capabilities with Polarimetric SAR,
RS(15), No. 8, 2023, pp. 2008.
DOI Link 2305
BibRef

Shao, Z.K.[Zi-Kang], Zhang, T.W.[Tian-Wen], Ke, X.[Xiao],
A Dual-Polarization Information-Guided Network for SAR Ship Classification,
RS(15), No. 8, 2023, pp. 2138.
DOI Link 2305
BibRef

Gao, G.[Gui], Bai, Q.[Qilin], Zhang, C.[Chuan], Zhang, L.L.[Lin-Lin], Yao, L.[Libo],
Dualistic cascade convolutional neural network dedicated to fully PolSAR image ship detection,
PandRS(202), 2023, pp. 663-681.
Elsevier DOI 2308
Polarimetric synthetic aperture radar, Dualistic cascade convolutional neural network, Ship detection BibRef

Jiang, X.[Xinqiao], Xie, H.[Hongtu], Lu, Z.[Zheng], Hu, J.[Jun],
Energy-Efficient and High-Performance Ship Classification Strategy Based on Siamese Spiking Neural Network in Dual-Polarized SAR Images,
RS(15), No. 20, 2023, pp. 4966.
DOI Link 2310
BibRef

Qiu, W.X.[Wei-Xing], Pan, Z.X.[Zong-Xu],
Polarimetric Synthetic Aperture Radar Ship Potential Area Extraction Based on Neighborhood Semantic Differences of the Latent Dirichlet Allocation Bag-of-Words Topic Model,
RS(15), No. 23, 2023, pp. 5601.
DOI Link 2312
BibRef

Fang, L.[Lu], Yang, Z.Y.[Zi-Yuan], Mu, W.X.[Wen-Xing], Liu, T.[Tao],
A Novel Polarization Scattering Decomposition Model and Its Application to Ship Detection,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link 2401
BibRef

Wu, S.J.[Shu-Jie], Wang, W.[Wei], Deng, J.[Jie], Quan, S.N.[Si-Nong], Ruan, F.[Feng], Guo, P.C.[Peng-Cheng], Fan, H.Q.[Hong-Qi],
Nearshore Ship Detection in PolSAR Images by Integrating Superpixel-Level GP-PNF and Refined Polarimetric Decomposition,
RS(16), No. 6, 2024, pp. 1095.
DOI Link 2403
BibRef

Shin, D.W.[Dae-Woon], Yang, C.S.[Chan-Su], Chowdhury, S.J.K.[Sree Juwel Kumar],
Enhancement of Small Ship Detection Using Polarimetric Combination from Sentinel-1 Imagery,
RS(16), No. 7, 2024, pp. 1198.
DOI Link 2404
BibRef

Wei, H.[Hang], Wang, Z.[Zulin], Hua, G.X.[Geng-Xin], Ni, Y.H.[Yuan-Han],
A Zero-Shot NAS Method for SAR Ship Detection Under Polynomial Search Complexity,
SPLetters(31), 2024, pp. 1329-1333.
IEEE DOI 2405
Training, Synthetic aperture radar, Search problems, Marine vehicles, Task analysis, Radar polarimetry, zero-shot neural architecture search (NAS) BibRef

He, J.L.[Jing-Lu], Sun, R.T.[Rui-Ting], Kong, Y.Y.[Ying-Ying], Chang, W.L.[Wen-Long], Sun, C.L.[Cheng-Lu], Chen, G.[Gaige], Li, Y.H.[Ying-Hua], Meng, Z.[Zhe], Wang, F.P.[Fu-Ping],
CPINet: Towards A Novel Cross-Polarimetric Interaction Network for Dual-Polarized SAR Ship Classification,
RS(16), No. 18, 2024, pp. 3479.
DOI Link 2410
BibRef

Wu, G.Q.[Guo-Qing], Wang, S.B.L.[Sheng-Bin Luo], Liu, Y.B.[Yi-Bin], Wang, P.[Ping], Li, Y.Z.[Yong-Zhen],
Ship Contour Extraction from Polarimetric SAR Images Based on Polarization Modulation,
RS(16), No. 19, 2024, pp. 3669.
DOI Link 2410
BibRef

Ahmed, M.[Mahmoud], El-Sheimy, N.[Naser], Leung, H.[Henry],
A Novel Detection Transformer Framework for Ship Detection in Synthetic Aperture Radar Imagery Using Advanced Feature Fusion and Polarimetric Techniques,
RS(16), No. 20, 2024, pp. 3877.
DOI Link 2411
BibRef

Hu, C.B.[Can-Bin], Chen, H.Y.[Hong-Yun], Sun, X.K.[Xiao-Kun], Ma, F.[Fei],
Polarimetric SAR Ship Detection Using Context Aggregation Network Enhanced by Local and Edge Component Characteristics,
RS(17), No. 4, 2025, pp. 568.
DOI Link 2502
BibRef

Zhao, D.D.[Dan-Dan], Zhang, Z.[Zhe], Lu, D.D.[Dong-Dong], Qiu, X.L.[Xiao-Lan], Li, W.[Wei], Li, H.[Hang], Wu, Y.R.[Yi-Rong],
CV-YOLO: A Complex-Valued Convolutional Neural Network for Oriented Ship Detection in Single-Polarization Single-Look Complex SAR Images,
RS(17), No. 8, 2025, pp. 1478.
DOI Link 2505
BibRef

Hanbay, K.[Kazim],
SAR Ship Detection Based on Gaussian Probability and Eigenvalue Analysis,
SPLetters(32), 2025, pp. 2214-2218.
IEEE DOI 2506
Marine vehicles, Radar polarimetry, Eigenvalues and eigenfunctions, Standards, synthetic aperture radar (SAR) BibRef

Song, G.[Guo], Deng, Y.K.[Yun-Kai], Zhang, H.[Heng], Liu, X.Q.[Xiu-Qing], Chang, S.[Sheng],
Improving SAR Ship Detection Accuracy by Optimizing Polarization Modes: A Study of Generalized Compact Polarimetry (GCP) Performance,
RS(17), No. 11, 2025, pp. 1951.
DOI Link 2506
BibRef


Kamirul, K.[Kamirul], Pappas, O.[Odysseas], Achim, A.[Alin],
Sparse R-CNN OBB: Ship Target Detection in SAR Images Based on Oriented Sparse Learnable Proposals,
ICIP25(504-509)
IEEE DOI 2601
Training, Head, Pipelines, Object detection, Streaming media, Radar polarimetry, Proposals, Marine vehicles, synthetic aperture radar (SAR) BibRef

Yao, C.[Cheng], Bai, L.[Lin], Xue, D.L.[Dong-Ling], Lin, X.Y.[Xiang-Yuan], Ye, Z.[Zhen], Wang, Y.Q.[Yan-Qi], Yin, K.[Kangdi],
GFB-Net: A Global Context-Guided Feature Balance Network for Arbitrary-Oriented SAR Ship Detection,
ICIVC22(166-171)
IEEE DOI 2301
Location awareness, Radar detection, Detectors, Object detection, Radar imaging, Feature extraction, Radar polarimetry, synthetic aperture radar (SAR) BibRef

Zhang, H.[Hui], Liu, S.W.[Shen-Wen], Li, Y.Z.[Yong-Zhen], Chen, S.W.[Si-Wei],
Compact-Pol SAR Ship Detection Combining Sublook Analysis and Tucker Decomposition,
ICIVC22(208-213)
IEEE DOI 2301
Support vector machines, Time-frequency analysis, Tensors, Filtering, Feature extraction, Polarimetry, Data mining, ship detection BibRef

Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
SAR, Radar for Ship Tracking, Ship Trajectory .


Last update:Jan 8, 2026 at 12:52:16