Margarit, G.,
Mallorqui, J.J.,
Fortuny-Guasch, J.,
Lopez-Martinez, C.,
Exploitation of Ship Scattering in Polarimetric SAR for an Improved
Classification Under High Clutter Conditions,
GeoRS(47), No. 4, April 2009, pp. 1224-1235.
IEEE DOI
0903
BibRef
Margarit, G.,
Tabasco, A.,
Ship Classification in Single-Pol SAR Images Based on Fuzzy Logic,
GeoRS(49), No. 8, August 2011, pp. 3129-3138.
IEEE DOI
1108
BibRef
Earlier:
Correction:
GeoRS(51), No. 5, May 2013, pp. 3201.
IEEE DOI
1305
BibRef
Velotto, D.,
Soccorsi, M.,
Lehner, S.,
Azimuth Ambiguities Removal for Ship Detection Using Full
Polarimetric X-Band SAR Data,
GeoRS(52), No. 1, January 2014, pp. 76-88.
IEEE DOI
1402
marine radar
BibRef
Hu, C.B.[Can-Bin],
Ferro-Famil, L.[Laurent],
Kuang, G.Y.[Gang-Yao],
Ship Discrimination Using Polarimetric SAR Data and Coherent
Time-Frequency Analysis,
RS(5), No. 12, 2013, pp. 6899-6920.
DOI Link
1412
BibRef
Atteia, G.E.,
Collins, M.J.[Michael J.],
On the use of compact polarimetry SAR for ship detection,
PandRS(80), No. 1, June 2013, pp. 1-9.
Elsevier DOI
1305
Ship detection; Polarimetry; Compact polarimetry; Synthetic aperture
radar
BibRef
Touzi, R.,
Hurley, J.,
Vachon, P.W.,
Optimization of the Degree of Polarization for Enhanced Ship
Detection Using Polarimetric RADARSAT-2,
GeoRS(53), No. 10, October 2015, pp. 5403-5424.
IEEE DOI
1509
electromagnetic wave polarisation
BibRef
Tu, S.[Song],
Su, Y.[Yi],
Fast and Accurate Target Detection Based on Multiscale Saliency and
Active Contour Model for High-Resolution SAR Images,
GeoRS(54), No. 10, October 2016, pp. 5729-5744.
IEEE DOI
1610
image processing
BibRef
Zhang, L.[Liang],
Lu, S.T.[Sheng-Tao],
Xiang, D.L.[De-Liang],
Su, Y.[Yi],
Fast Ship Detection Based on the Superpixels for High Resolution SAR
Images,
ICIVC22(172-177)
IEEE DOI
2301
Gamma distribution, Image resolution, Shape, Urban areas, Speckle,
Radar polarimetry, Robustness, synthetic aperture radar (SAR),
target detection
BibRef
Gao, G.,
Luo, Y.,
Ouyang, K.,
Zhou, S.,
Statistical Modeling of PMA Detector for Ship Detection in
High-Resolution Dual-Polarization SAR Images,
GeoRS(54), No. 7, July 2016, pp. 4302-4313.
IEEE DOI
1606
Adaptation models
BibRef
Xu, L.[Lu],
Zhang, H.[Hong],
Wang, C.[Chao],
Zhang, B.[Bo],
Tian, S.[Sirui],
Compact Polarimetric SAR Ship Detection with m-d Decomposition Using
Visual Attention Model,
RS(8), No. 9, 2016, pp. 751.
DOI Link
1610
BibRef
Fan, Q.C.[Qian-Cong],
Chen, F.[Feng],
Cheng, M.[Ming],
Lou, S.L.[Shen-Long],
Xiao, R.[Rulin],
Zhang, B.[Biao],
Wang, C.[Cheng],
Li, J.[Jonathan],
Ship Detection Using a Fully Convolutional Network with Compact
Polarimetric SAR Images,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Gao, G.[Gui],
Shi, G.T.[Gong-Tao],
CFAR Ship Detection in Nonhomogeneous Sea Clutter Using Polarimetric
SAR Data Based on the Notch Filter,
GeoRS(55), No. 8, August 2017, pp. 4811-4824.
IEEE DOI
1708
Clutter, Data models, Detectors, Marine vehicles, Scattering,
Sea measurements, Synthetic aperture radar,
Constant false alarm rate (CFAR), polarization, ship detection,
synthetic, aperture, radar, (SAR)
BibRef
Gao, G.[Gui],
Gao, S.[Sheng],
He, J.[Juan],
Li, G.S.[Gao-Sheng],
Ship Detection Using Compact Polarimetric SAR Based on the Notch
Filter,
GeoRS(56), No. 9, September 2018, pp. 5380-5393.
IEEE DOI
1809
Marine vehicles, Synthetic aperture radar, Feature extraction,
Scattering, Image reconstruction, Clutter, Oceans,
synthetic aperture radar (SAR)
BibRef
Gao, G.[Gui],
Gao, S.[Sheng],
He, J.[Juan],
Li, G.S.[Gao-Sheng],
Adaptive Ship Detection in Hybrid-Polarimetric SAR Images Based on
the Power-Entropy Decomposition,
GeoRS(56), No. 9, September 2018, pp. 5394-5407.
IEEE DOI
1809
Synthetic aperture radar, Marine vehicles, Feature extraction,
Spaceborne radar, Entropy, Image reconstruction,
synthetic aperture radar (SAR)
BibRef
Xi, Y.Y.[Yu-Yang],
Lang, H.T.[Hai-Tao],
Tao, Y.H.[Yun-Hong],
Huang, L.[Lin],
Pei, Z.J.[Zi-Jun],
Four-Component Model-Based Decomposition for Ship Targets Using
PolSAR Data,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Lin, H.P.[Hui-Ping],
Song, S.L.[Sheng-Li],
Yang, J.[Jian],
Ship Classification Based on MSHOG Feature and Task-Driven Dictionary
Learning with Structured Incoherent Constraints in SAR Images,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Lin, H.P.[Hui-Ping],
Chen, H.[Hang],
Wang, H.M.[Hong-Miao],
Yin, J.J.[Jun-Jun],
Yang, J.[Jian],
Ship Detection for PolSAR Images via Task-Driven Discriminative
Dictionary Learning,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Zhang, T.[Tao],
Marino, A.[Armando],
Xiong, H.L.[Hui-Lin],
Yu, W.X.[Wen-Xian],
A Ship Detector Applying Principal Component Analysis to the
Polarimetric Notch Filter,
RS(10), No. 6, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Li, B.,
Liu, B.,
Guo, W.,
Zhang, Z.,
Yu, W.,
Ship Size Extraction for Sentinel-1 Images Based on Dual-Polarization
Fusion and Nonlinear Regression: Push Error Under One Pixel,
GeoRS(56), No. 8, August 2018, pp. 4887-4905.
IEEE DOI
1808
gradient methods, image fusion, marine radar, radar imaging,
regression analysis, ships, synthetic aperture radar,
synthetic aperture radar (SAR) image
BibRef
Zhang, T.[Tao],
Ji, J.S.[Jin-Sheng],
Li, X.F.[Xiao-Feng],
Yu, W.X.[Wen-Xian],
Xiong, H.L.[Hui-Lin],
Ship Detection From PolSAR Imagery Using the Complete Polarimetric
Covariance Difference Matrix,
GeoRS(57), No. 5, May 2019, pp. 2824-2839.
IEEE DOI
1905
covariance matrices, geophysical signal processing,
notch filters, object detection, radar clutter, radar imaging,
target-to-clutter ratio (TCR)
BibRef
Zhang, T.[Tao],
Jiang, L.F.[Lin-Feng],
Xiang, D.L.[De-Liang],
Ban, Y.F.[Yi-Fang],
Pei, L.[Ling],
Xiong, H.L.[Hui-Lin],
Ship detection from PolSAR imagery using the ambiguity removal
polarimetric notch filter,
PandRS(157), 2019, pp. 41-58.
Elsevier DOI
1911
PolSAR, Ship detection, Azimuth ambiguity removal, GP-PNF, PSH,
Depolarized energy ratio of targets
BibRef
Pelich, R.[Ramona],
Chini, M.[Marco],
Hostache, R.[Renaud],
Matgen, P.[Patrick],
Lopez-Martinez, C.[Carlos],
Nuevo, M.[Miguel],
Ries, P.[Philippe],
Eiden, G.[Gerd],
Large-Scale Automatic Vessel Monitoring Based on Dual-Polarization
Sentinel-1 and AIS Data,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
dual-polarimetric descriptors. Ships.
BibRef
Leng, X.,
Ji, K.,
Zhou, S.,
Xing, X.,
Ship Detection Based on Complex Signal Kurtosis in Single-Channel SAR
Imagery,
GeoRS(57), No. 9, September 2019, pp. 6447-6461.
IEEE DOI
1909
Marine vehicles, Radar polarimetry, Synthetic aperture radar,
Clutter, Gaussian distribution, Proposals, Sensitivity,
synthetic aperture radar (SAR)
BibRef
Cao, C.H.[Cheng-Hui],
Zhang, J.[Jie],
Meng, J.M.[Jun-Min],
Zhang, X.[Xi],
Mao, X.P.[Xing-Peng],
Analysis of Ship Detection Performance with Full-, Compact- and
Dual-Polarimetric SAR,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Cui, Z.,
Li, Q.,
Cao, Z.,
Liu, N.,
Dense Attention Pyramid Networks for Multi-Scale Ship Detection in
SAR Images,
GeoRS(57), No. 11, November 2019, pp. 8983-8997.
IEEE DOI
1911
Marine vehicles, Feature extraction, Radar polarimetry,
Synthetic aperture radar, Radar imaging, Semantics,
synthetic aperture radar (SAR)
BibRef
Fan, W.W.[Wei-Wei],
Zhou, F.[Feng],
Bai, X.[Xueru],
Tao, M.L.[Ming-Liang],
Tian, T.[Tian],
Ship Detection Using Deep Convolutional Neural Networks for PolSAR
Images,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Ai, J.,
Tian, R.,
Luo, Q.,
Jin, J.,
Tang, B.,
Multi-Scale Rotation-Invariant Haar-Like Feature Integrated CNN-Based
Ship Detection Algorithm of Multiple-Target Environment in SAR
Imagery,
GeoRS(57), No. 12, December 2019, pp. 10070-10087.
IEEE DOI
1912
Marine vehicles, Feature extraction, Clutter,
Synthetic aperture radar, Radar polarimetry, Correlation,
constant false alarm rate (CFAR) detector (TCS-JCFAR)-based prescreening
BibRef
Liu, G.W.[Gen-Wang],
Zhang, X.[Xi],
Meng, J.M.[Jun-Min],
A Small Ship Target Detection Method Based on Polarimetric SAR,
RS(11), No. 24, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Liu, T.,
Zhang, J.,
Gao, G.,
Yang, J.,
Marino, A.,
CFAR Ship Detection in Polarimetric Synthetic Aperture Radar Images
Based on Whitening Filter,
GeoRS(58), No. 1, January 2020, pp. 58-81.
IEEE DOI
2001
Marine vehicles, Speckle, Covariance matrices, Clutter,
Synthetic aperture radar, Probability density function,
synthetic aperture radar
BibRef
Tian, M.,
Yang, Z.,
Duan, C.,
Liao, G.,
Liu, Y.,
Wang, C.,
Huang, P.,
A Method for Active Marine Target Detection Based on Complex
Interferometric Dissimilarity in Dual-Channel ATI-SAR Systems,
GeoRS(58), No. 1, January 2020, pp. 251-267.
IEEE DOI
2001
Object detection, Synthetic aperture radar, Measurement,
Marine vehicles, Clutter, Radar polarimetry,
synthetic aperture radar (SAR)
BibRef
Guo, R.[Rui],
Cui, J.Y.[Jing-Yu],
Jing, G.B.[Guo-Bin],
Zhang, S.X.[Shuang-Xi],
Xing, M.D.[Meng-Dao],
Validating GEV Model for Reflection Symmetry-Based Ocean Ship
Detection with Gaofen-3 Dual-Polarimetric Data,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Li, Y.Z.[Yong-Zhen],
Quan, S.N.[Si-Nong],
Xiang, D.L.[De-Liang],
Wang, W.[Wei],
Hu, C.B.[Can-Bin],
Liu, Y.[Yemin],
Wang, X.S.[Xue-Song],
Ship Recognition from Chaff Clouds with Sophisticated Polarimetric
Decomposition,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Jin, K.,
Chen, Y.,
Xu, B.,
Yin, J.,
Wang, X.,
Yang, J.,
A Patch-to-Pixel Convolutional Neural Network for Small Ship
Detection With PolSAR Images,
GeoRS(58), No. 9, September 2020, pp. 6623-6638.
IEEE DOI
2008
Feature extraction, Marine vehicles, Object detection,
Optical imaging, Optical sensors, Synthetic aperture radar,
ship detection
BibRef
Wang, X.Q.[Xue-Qian],
Li, G.[Gang],
Zhang, X.,
He, Y.[You],
Ship Detection in SAR Images via Local Contrast of Fisher Vectors,
GeoRS(58), No. 9, September 2020, pp. 6467-6479.
IEEE DOI
2008
Marine vehicles, Radar polarimetry, Detectors, Clutter,
Synthetic aperture radar, Detection algorithms,
synthetic aperture radar (SAR)
BibRef
Wang, X.Q.[Xue-Qian],
Li, G.[Gang],
Plaza, A.[Antonio],
He, Y.[You],
Ship Detection in SAR Images via Enhanced Nonnegative Sparse
Locality-Representation of Fisher Vectors,
GeoRS(59), No. 11, November 2021, pp. 9424-9438.
IEEE DOI
2111
Marine vehicles, Radar polarimetry, Detectors, Clutter,
Feature extraction, Synthetic aperture radar, Training,
synthetic aperture radar (SAR)
BibRef
Liu, T.,
Yang, Z.,
Marino, A.,
Gao, G.,
Yang, J.,
Robust CFAR Detector Based on Truncated Statistics for Polarimetric
Synthetic Aperture Radar,
GeoRS(58), No. 9, September 2020, pp. 6731-6747.
IEEE DOI
2008
Marine vehicles, Clutter, Detectors, Covariance matrices,
Synthetic aperture radar, Training, truncated statistics (TS)
BibRef
Zhang, T.,
Yang, Z.,
Gan, H.,
Xiang, D.,
Zhu, S.,
Yang, J.,
PolSAR Ship Detection Using the Joint Polarimetric Information,
GeoRS(58), No. 11, November 2020, pp. 8225-8241.
IEEE DOI
2011
Marine vehicles, Scattering, Sea surface, Rough surfaces,
Surface roughness, Detectors, Covariance matrices,
surface scattering
BibRef
Fu, J.M.[Jia-Mei],
Sun, X.[Xian],
Wang, Z.R.[Zhi-Rui],
Fu, K.[Kun],
An Anchor-Free Method Based on Feature Balancing and Refinement
Network for Multiscale Ship Detection in SAR Images,
GeoRS(59), No. 2, February 2021, pp. 1331-1344.
IEEE DOI
2101
Marine vehicles, Feature extraction, Synthetic aperture radar,
Detectors, Radar polarimetry, Scattering, Semantics,
synthetic aperture radar (SAR)
BibRef
Liu, T.[Tao],
Yang, Z.Y.[Zi-Yuan],
Marino, A.[Armando],
Gao, G.[Gui],
Yang, J.[Jian],
PolSAR Ship Detection Based on Neighborhood Polarimetric Covariance
Matrix,
GeoRS(59), No. 6, June 2021, pp. 4874-4887.
IEEE DOI
2106
Marine vehicles, Covariance matrices, Detectors, Correlation,
Synthetic aperture radar, Clutter, Scattering,
polarimetric whitening filter (PWF)
BibRef
Wang, X.Q.[Xue-Qian],
Li, G.[Gang],
Zhang, X.P.[Xiao-Ping],
He, Y.[You],
A Fast CFAR Algorithm Based on Density-Censoring Operation for Ship
Detection in SAR Images,
SPLetters(28), 2021, pp. 1085-1089.
IEEE DOI
2106
Radar polarimetry, Clutter, Detectors, Marine vehicles, Reflectivity,
Signal processing algorithms, Feature extraction, Density,
constant false alarm rate
BibRef
Chen, S.W.[Si-Wei],
Cui, X.C.[Xing-Chao],
Wang, X.S.[Xue-Song],
Xiao, S.P.[Shun-Ping],
Speckle-Free SAR Image Ship Detection,
IP(30), 2021, pp. 5969-5983.
IEEE DOI
2107
Marine vehicles, Speckle, Synthetic aperture radar, Detectors,
Radar polarimetry, Spaceborne radar, Radar imaging,
speckle-free
BibRef
Li, H.L.[Hao-Liang],
Cui, X.C.[Xing-Chao],
Chen, S.W.[Si-Wei],
PolSAR Ship Detection with Optimal Polarimetric Rotation Domain
Features and SVM,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Zhu, D.[Dong],
Wang, X.Q.[Xue-Qian],
Cheng, Y.[Yayun],
Li, G.[Gang],
Vessel Target Detection in Spaceborne-Airborne Collaborative SAR
Images via Proposal and Polarization Fusion,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Zhang, T.W.[Tian-Wen],
Zhang, X.L.[Xiao-Ling],
A polarization fusion network with geometric feature embedding for
SAR ship classification,
PR(123), 2022, pp. 108365.
Elsevier DOI
2112
Synthetic aperture radar (SAR), Ship classification,
Convolutional neural network, Polarization fusion (PF),
Geometric feature embedding (GFE)
BibRef
Xu, X.[Xiaowo],
Zhang, X.L.[Xiao-Ling],
Shao, Z.K.[Zi-Kang],
Shi, J.[Jun],
Wei, S.[Shunjun],
Zhang, T.W.[Tian-Wen],
Zeng, T.J.[Tian-Jiao],
A Group-Wise Feature Enhancement-and-Fusion Network with
Dual-Polarization Feature Enrichment for SAR Ship Detection,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Zhang, P.P.[Pan-Pan],
Luo, H.B.[Hai-Bo],
Ju, M.[Moran],
He, M.[Miao],
Chang, Z.[Zheng],
Hui, B.[Bin],
Brain-Inspired Fast Saliency-Based Filtering Algorithm for Ship
Detection in High-Resolution SAR Images,
GeoRS(60), 2022, pp. 1-9.
IEEE DOI
2112
Marine vehicles, Feature extraction, Synthetic aperture radar,
Detectors, Radar polarimetry, Visualization, Focusing,
saliency map
BibRef
Li, D.[Dong],
Liang, Q.H.[Quan-Huan],
Liu, H.Q.[Hong-Qing],
Liu, Q.H.[Qing-Hua],
Liu, H.J.[Hai-Jun],
Liao, G.S.[Gui-Sheng],
A Novel Multidimensional Domain Deep Learning Network for SAR Ship
Detection,
GeoRS(60), 2022, pp. 1-13.
IEEE DOI
2112
Marine vehicles, Feature extraction, Synthetic aperture radar,
Radar polarimetry, Detectors, Object detection,
synthetic aperture radar (SAR)
BibRef
Ren, Y.B.[Yi-Bin],
Li, X.F.[Xiao-Feng],
Xu, H.[Huan],
A Deep Learning Model to Extract Ship Size From Sentinel-1 SAR Images,
GeoRS(60), 2022, pp. 1-14.
IEEE DOI
2112
Marine vehicles, Radar polarimetry, Feature extraction,
Synthetic aperture radar, Data mining, Radar imaging, Oceans,
synthetic aperture radar (SAR) image
BibRef
Gu, M.F.[Ming-Fei],
Wang, Y.H.[Ying-Hua],
Liu, H.W.[Hong-Wei],
Wang, P.H.[Peng-Hui],
PolSAR Ship Detection Based on a SIFT-like PolSAR Keypoint Detector,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Zhang, C.[Chuan],
Gao, G.[Gui],
Zhang, L.L.[Lin-Lin],
Chen, C.,
Gao, S.,
Yao, L.[Libo],
Bai, Q.[Qilin],
Gou, S.Q.[Shi-Quan],
A novel full-polarization SAR image ship detector based on scattering
mechanisms and wave polarization anisotropy,
PandRS(190), 2022, pp. 129-143.
Elsevier DOI
2208
Synthetic Aperture Radar (SAR), Scattering mechanism,
Wave polarization anisotropy, Relatively weakly scattering targets
BibRef
Adil, M.[Muhammad],
Buono, A.[Andrea],
Nunziata, F.[Ferdinando],
Ferrentino, E.[Emanuele],
Velotto, D.[Domenico],
Migliaccio, M.[Maurizio],
On the Effects of the Incidence Angle on the L-Band
Multi-Polarisation Scattering of a Small Ship,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Wang, J.L.[Jie-Lei],
Cui, Z.Y.[Zong-Yong],
Jiang, T.[Ting],
Cao, C.J.[Chang-Jie],
Cao, Z.J.[Zong-Jie],
Lightweight Deep Neural Networks for Ship Target Detection in SAR
Imagery,
IP(32), 2023, pp. 565-579.
IEEE DOI
2301
Marine vehicles, Task analysis, Optimization, Object detection,
Deep learning, Radar polarimetry, Neural networks, network pruning
BibRef
Qiu, W.X.[Wei-Xing],
Pan, Z.X.[Zong-Xu],
Yang, J.W.[Jian-Wei],
Few-Shot PolSAR Ship Detection Based on Polarimetric Features
Selection and Improved Contrastive Self-Supervised Learning,
RS(15), No. 7, 2023, pp. 1874.
DOI Link
2304
BibRef
Lanz, P.[Peter],
Marino, A.[Armando],
Simpson, M.D.[Morgan David],
Brinkhoff, T.[Thomas],
Köster, F.[Frank],
Möller, M.[Matthias],
The InflateSAR Campaign: Developing Refugee Vessel Detection
Capabilities with Polarimetric SAR,
RS(15), No. 8, 2023, pp. 2008.
DOI Link
2305
BibRef
Shao, Z.K.[Zi-Kang],
Zhang, T.W.[Tian-Wen],
Ke, X.[Xiao],
A Dual-Polarization Information-Guided Network for SAR Ship
Classification,
RS(15), No. 8, 2023, pp. 2138.
DOI Link
2305
BibRef
Gao, G.[Gui],
Bai, Q.[Qilin],
Zhang, C.[Chuan],
Zhang, L.L.[Lin-Lin],
Yao, L.[Libo],
Dualistic cascade convolutional neural network dedicated to fully
PolSAR image ship detection,
PandRS(202), 2023, pp. 663-681.
Elsevier DOI
2308
Polarimetric synthetic aperture radar,
Dualistic cascade convolutional neural network, Ship detection
BibRef
Jiang, X.[Xinqiao],
Xie, H.[Hongtu],
Lu, Z.[Zheng],
Hu, J.[Jun],
Energy-Efficient and High-Performance Ship Classification Strategy
Based on Siamese Spiking Neural Network in Dual-Polarized SAR Images,
RS(15), No. 20, 2023, pp. 4966.
DOI Link
2310
BibRef
Qiu, W.X.[Wei-Xing],
Pan, Z.X.[Zong-Xu],
Polarimetric Synthetic Aperture Radar Ship Potential Area Extraction
Based on Neighborhood Semantic Differences of the Latent Dirichlet
Allocation Bag-of-Words Topic Model,
RS(15), No. 23, 2023, pp. 5601.
DOI Link
2312
BibRef
Fang, L.[Lu],
Yang, Z.Y.[Zi-Yuan],
Mu, W.X.[Wen-Xing],
Liu, T.[Tao],
A Novel Polarization Scattering Decomposition Model and Its
Application to Ship Detection,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Wu, S.J.[Shu-Jie],
Wang, W.[Wei],
Deng, J.[Jie],
Quan, S.N.[Si-Nong],
Ruan, F.[Feng],
Guo, P.C.[Peng-Cheng],
Fan, H.Q.[Hong-Qi],
Nearshore Ship Detection in PolSAR Images by Integrating
Superpixel-Level GP-PNF and Refined Polarimetric Decomposition,
RS(16), No. 6, 2024, pp. 1095.
DOI Link
2403
BibRef
Shin, D.W.[Dae-Woon],
Yang, C.S.[Chan-Su],
Chowdhury, S.J.K.[Sree Juwel Kumar],
Enhancement of Small Ship Detection Using Polarimetric Combination
from Sentinel-1 Imagery,
RS(16), No. 7, 2024, pp. 1198.
DOI Link
2404
BibRef
Wei, H.[Hang],
Wang, Z.[Zulin],
Hua, G.X.[Geng-Xin],
Ni, Y.H.[Yuan-Han],
A Zero-Shot NAS Method for SAR Ship Detection Under Polynomial Search
Complexity,
SPLetters(31), 2024, pp. 1329-1333.
IEEE DOI
2405
Training, Synthetic aperture radar, Search problems,
Marine vehicles, Task analysis, Radar polarimetry,
zero-shot neural architecture search (NAS)
BibRef
He, J.L.[Jing-Lu],
Sun, R.T.[Rui-Ting],
Kong, Y.Y.[Ying-Ying],
Chang, W.L.[Wen-Long],
Sun, C.L.[Cheng-Lu],
Chen, G.[Gaige],
Li, Y.H.[Ying-Hua],
Meng, Z.[Zhe],
Wang, F.P.[Fu-Ping],
CPINet: Towards A Novel Cross-Polarimetric Interaction Network for
Dual-Polarized SAR Ship Classification,
RS(16), No. 18, 2024, pp. 3479.
DOI Link
2410
BibRef
Wu, G.Q.[Guo-Qing],
Wang, S.B.L.[Sheng-Bin Luo],
Liu, Y.B.[Yi-Bin],
Wang, P.[Ping],
Li, Y.Z.[Yong-Zhen],
Ship Contour Extraction from Polarimetric SAR Images Based on
Polarization Modulation,
RS(16), No. 19, 2024, pp. 3669.
DOI Link
2410
BibRef
Ahmed, M.[Mahmoud],
El-Sheimy, N.[Naser],
Leung, H.[Henry],
A Novel Detection Transformer Framework for Ship Detection in
Synthetic Aperture Radar Imagery Using Advanced Feature Fusion and
Polarimetric Techniques,
RS(16), No. 20, 2024, pp. 3877.
DOI Link
2411
BibRef
Hu, C.B.[Can-Bin],
Chen, H.Y.[Hong-Yun],
Sun, X.K.[Xiao-Kun],
Ma, F.[Fei],
Polarimetric SAR Ship Detection Using Context Aggregation Network
Enhanced by Local and Edge Component Characteristics,
RS(17), No. 4, 2025, pp. 568.
DOI Link
2502
BibRef
Zhao, D.D.[Dan-Dan],
Zhang, Z.[Zhe],
Lu, D.D.[Dong-Dong],
Qiu, X.L.[Xiao-Lan],
Li, W.[Wei],
Li, H.[Hang],
Wu, Y.R.[Yi-Rong],
CV-YOLO: A Complex-Valued Convolutional Neural Network for Oriented
Ship Detection in Single-Polarization Single-Look Complex SAR Images,
RS(17), No. 8, 2025, pp. 1478.
DOI Link
2505
BibRef
Hanbay, K.[Kazim],
SAR Ship Detection Based on Gaussian Probability and Eigenvalue
Analysis,
SPLetters(32), 2025, pp. 2214-2218.
IEEE DOI
2506
Marine vehicles, Radar polarimetry,
Eigenvalues and eigenfunctions, Standards,
synthetic aperture radar (SAR)
BibRef
Song, G.[Guo],
Deng, Y.K.[Yun-Kai],
Zhang, H.[Heng],
Liu, X.Q.[Xiu-Qing],
Chang, S.[Sheng],
Improving SAR Ship Detection Accuracy by Optimizing Polarization
Modes: A Study of Generalized Compact Polarimetry (GCP) Performance,
RS(17), No. 11, 2025, pp. 1951.
DOI Link
2506
BibRef
Yao, C.[Cheng],
Bai, L.[Lin],
Xue, D.L.[Dong-Ling],
Lin, X.Y.[Xiang-Yuan],
Ye, Z.[Zhen],
Wang, Y.Q.[Yan-Qi],
Yin, K.[Kangdi],
GFB-Net: A Global Context-Guided Feature Balance Network for
Arbitrary-Oriented SAR Ship Detection,
ICIVC22(166-171)
IEEE DOI
2301
Location awareness, Radar detection, Detectors, Object detection,
Radar imaging, Feature extraction, Radar polarimetry,
synthetic aperture radar (SAR)
BibRef
Zhang, H.[Hui],
Liu, S.W.[Shen-Wen],
Li, Y.Z.[Yong-Zhen],
Chen, S.W.[Si-Wei],
Compact-Pol SAR Ship Detection Combining Sublook Analysis and Tucker
Decomposition,
ICIVC22(208-213)
IEEE DOI
2301
Support vector machines, Time-frequency analysis, Tensors,
Filtering, Feature extraction, Polarimetry, Data mining, ship detection
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
SAR, Radar for Ship Tracking, Ship Trajectory .