Fornay, G.D.,
The Viterbi Algorithm,
PIEEE(61), No. 3, March 1973, pp. 268-277.
An algorithm to compute the optimal (most likely) state sequence in
a hidden Markov model given a
sequence of observed outputs. (in TN**2 steps).
See also Error bounds for convolutional codes and an asymptotically optimal decoding algorithm.
BibRef
7303
Barrow, H.G., and
Tenenbaum, J.M.,
Computational Vision,
PIEEE(69), No. 5, May 1981, pp. 572-595.
BibRef
8105
Brady, M.,
Computational Approaches to Image Understanding,
Surveys(14), No. 1, March 1982, pp. 3-71.
BibRef
8203
And:
MIT AI Memo-653, October 1981.
Survey, Computational Vision.
Computational Vision, Survey. Survey of much of the DARPA research (up to early 81).
Concentrates on general processing techniques and ignores
applications. Separates the descriptions based on the level of
representation being used, especially those that relate to 3-D
descriptions. Mostly a review of MIT work with references to other
similar and related work, but little unrelated work.
Good references on topics covered.
BibRef
Brady, M.[Mike],
Toward a Computational Theory of Early Visual Processing in Reading,
MIT AI Memo-593, September 1980.
BibRef
8009
Ullman, S.,
Visual Routines,
Cognition(18), 1984, pp. 97-156.
BibRef
8400
RCV87(298-328).
BibRef
And:
MIT AI Memo-723, June 1983.
BibRef
And:
Visual Routines: Where bottom-Up and Top-down Processing Meet,
PR(2), 1986, pp. 159-213.
This second reference cannot be correct, not for the Pattern Recognition
journal.
General discussion of the later processing of visual information.
BibRef
Lee, D.,
Some Computational Aspects of Low-Level Computer Vision,
PIEEE(76), No. 8, August 1988, pp. 890-898.
BibRef
8808
Uttal, W.R.,
Liu, N., and
Kalki, J.,
An Integrated Computational Model of Three-Dimensional Vision,
SV(9), 1996, pp. 393-422.
BibRef
9600
Ritter, G.X., (Guest ed.),
Special Issue on Mathematical Imaging,
JMIV(5), No. 4, December 1995, 275-358.
BibRef
9512
Jobson, D.J.,
Rahman, Z.U.,
Woodell, G.A.,
Properties and Performance of a Center/Surround Retinex,
IP(6), No. 3, March 1997, pp. 451-462.
IEEE DOI
9703
BibRef
Daugman, J.G.,
Neural Image-Processing Strategies Applied in
Real-Time Pattern-Recognition,
RealTimeImg(3), No. 3, June 1997, pp. 157-171.
9708
BibRef
Fejes, S.,
Rosenfeld, A.,
Migration Processes I: the Continuous Case,
JMIV(8), No. 1, January 1998, pp. 5-25.
DOI Link
9803
BibRef
Fejes, S.,
Rosenfeld, A.,
Migration Processes II: the Discrete Case,
JMIV(8), No. 1, January 1998, pp. 27-40.
DOI Link
9803
BibRef
Fejes, S.,
Rosenfeld, A.,
Migration Processes,
ICPR96(II: 345-349).
IEEE DOI
9608
(Univ. of Maryland, USA)
BibRef
Fejes, S.,
Migration Processes: Theory and applications,
UMDTechnical report. CS-TR-3603, CAR-TR-813TR, November 1995.
WWW Link.
BibRef
9511
Ritter, G.X.,
Shi, H.C.,
Special Section on Advances in Mathematical Imaging,
JEI(6), No. 4, October 1997, pp. 393-394.
9807
BibRef
Zhu, S.C.[Song Chun],
Yuille, A.L.[Alan L.],
Mumford, D.[David],
Guest Editorial: Statistical and Computational Theories of Vision:
Modeling, Learning, Sampling and Computing, Part I,
IJCV(40), No. 1, October 2000, pp. 5-6.
DOI Link
0101
Introduction to the special issue.
BibRef
Abubakar, A.,
van den Berg, P.M.,
Total variation as a multiplicative constraint for solving inverse
problems,
IP(10), No. 9, September 2001, pp. 1384-1392.
IEEE DOI
0108
BibRef
Cohen, L.D.[Laurent D.],
Guest Editorial: Special Issue on Mathematics and Image Analysis,
JMIV(20), No. 1-2, January-March 2004, pp. 5-5.
DOI Link
0403
BibRef
Cohen, L.D.[Laurent D.],
Guest Editorial,
JMIV(25), No. 3, October 2006, pp. 287.
Springer DOI
0611
Special issue intro.
BibRef
Cohen, L.D.[Laurent D.],
Sochen, N.A.[Nir A.],
Vese, L.A.[Luminita A.],
Guest Editorial, Special Issue Introduction,
JMIV(33), No. 2, February 2009, pp. xx-yy.
Springer DOI
0903
BibRef
Prabhu, N.[Nagabhushana],
Chang, H.C.[Hung-Chieh],
de Guzman, M.[Maria],
Optimization on Lie manifolds and pattern recognition,
PR(38), No. 12, December 2005, pp. 2286-2300.
Elsevier DOI
0510
Reduce vision problem to optimizing nonlinear function over a Lie manifold.
BibRef
Han, Y.,
Newton type algorithm on Riemannian manifolds applied to robot vision,
and suggestions for improvement of its performance,
VISP(152), No. 3, June 2005, pp. 275-282.
DOI Link
0510
BibRef
Kragic, D.[Danica],
Kyrki, V.[Ville], (Eds.)
Unifying Perspectives in Computational and Robot Vision,
Springer2008, ISBN: 978-0-387-75521-2
Survey, Computational Vision.
WWW Link.
Buy this book: Unifying Perspectives in Computational and Robot Vision (Lecture Notes in Electrical Engineering)
BibRef
0800
Kokkinos, I.[Iasonas],
Yuille, A.L.[Alan L.],
Inference and Learning with Hierarchical Shape Models,
IJCV(93), No. 2, June 2011, pp. 201-225.
WWW Link.
1104
BibRef
Earlier:
HOP: Hierarchical object parsing,
CVPR09(802-809).
IEEE DOI
0906
BibRef
And:
Inference and learning with hierarchical compositional models,
SIG09(6-6).
IEEE DOI
0906
BibRef
Yuille, A.L.,
Towards a theory of compositional learning and encoding of objects,
ITCVPR11(1448-1455).
IEEE DOI
1201
BibRef
Kokkinos, I.[Iasonas],
Maragos, P.[Petros],
Yuille, A.L.[Alan L.],
Bottom-Up and Top-down Object Detection using Primal Sketch Features
and Graphical Models,
CVPR06(II: 1893-1900).
IEEE DOI
0606
BibRef
Kokkinos, I.[Iasonas],
Deriche, R.[Rachid],
Maragos, P.[Petros],
Faugeras, O.D.[Olivier D.],
A Biologically Motivated and Computationally Tractable Model of Low and
Mid-Level Vision Tasks,
ECCV04(Vol II: 506-517).
Springer DOI
0405
BibRef
Gill, P.R.[Patrick R.],
Enabling a computer to do the job of a lens,
SPIE(Newsroom), September 4, 2013.
DOI Link
1310
A new kind of diffractive phase grating permits computational imaging
of polychromatic distant objects in situations where focal optics are
not convenient.
BibRef
Yang, C.H.[Chang-Huei],
Computational microscopy improves resolution, field of view,
SPIE(Newsroom), October 23, 2013.
DOI Link
1310
A complete data set derived from low-resolution snapshots could lead
to cost-effective autonomous digital pathology.
BibRef
Mitra, K.[Kaushik],
Cossairt, O.S.[Oliver S.],
Veeraraghavan, A.[Ashok],
A Framework for Analysis of Computational Imaging Systems:
Role of Signal Prior, Sensor Noise and Multiplexing,
PAMI(36), No. 10, October 2014, pp. 1909-1921.
IEEE DOI
1410
Gaussian processes
BibRef
Cossairt, O.S.[Oliver S.],
Mitra, K.[Kaushik],
Veeraraghavan, A.[Ashok],
Analyzing computational imaging systems,
SPIE(Newsroom), November 19, 2013.
DOI Link
1311
A novel framework, which takes into account optical multiplexing,
sensor noise characteristics, and signal priors, can analyze any
linear computational imaging camera.
BibRef
Mitra, K.[Kaushik],
Cossairt, O.S.[Oliver S.],
Veeraraghavan, A.[Ashok],
Can we beat Hadamard multiplexing? Data driven design and analysis
for computational imaging systems,
ICCP14(1-9)
IEEE DOI
1411
Gaussian processes
BibRef
Greengard, S.[Samuel],
Seeing the Big Picture,
CACM(56), No. 12, December 2013, pp. 16-18.
DOI Link
1312
Lensless cameras and other advances in digital imaging, computational
optics, signal processing, and big data are transforming how we think
about photography.
BibRef
Rasanen, O.,
Kakouros, S.,
Modeling Dependencies in Multiple Parallel Data Streams with
Hyperdimensional Computing,
SPLetters(21), No. 7, July 2014, pp. 899-903.
IEEE DOI
1405
Context
BibRef
Vidal Mata, R.G.[Rosaura G.],
Banerjee, S.[Sreya],
Richard Webster, B.[Brandon],
Albright, M.[Michael],
Davalos, P.[Pedro],
McCloskey, S.[Scott],
Miller, B.[Ben],
Tambo, A.[Asong],
Ghosh, S.[Sushobhan],
Nagesh, S.[Sudarshan],
Yuan, Y.[Ye],
Hu, Y.Y.[Yue-Yu],
Wu, J.[Junru],
Yang, W.H.[Wen-Han],
Zhang, X.S.[Xiao-Shuai],
Liu, J.Y.[Jia-Ying],
Wang, Z.Y.[Zhang-Yang],
Chen, H.T.[Hwann-Tzong],
Huang, T.W.[Tzu-Wei],
Chin, W.C.[Wen-Chi],
Li, Y.C.[Yi-Chun],
Lababidi, M.[Mahmoud],
Otto, C.[Charles],
Scheirer, W.J.[Walter J.],
Bridging the Gap Between Computational Photography and Visual
Recognition,
PAMI(43), No. 12, December 2021, pp. 4272-4290.
IEEE DOI
2112
Visualization, Image restoration, Image recognition, Photography,
Object recognition, Image resolution, Computational photography,
evaluation
BibRef
Khan, S.S.[Salman Siddique],
Sundar, V.[Varun],
Boominathan, V.[Vivek],
Veeraraghavan, A.[Ashok],
Mitra, K.[Kaushik],
FlatNet: Towards Photorealistic Scene Reconstruction From Lensless
Measurements,
PAMI(44), No. 4, April 2022, pp. 1934-1948.
IEEE DOI
2203
Cameras, Image reconstruction, Lenses, Multiplexing,
Computational modeling, Mathematical model, lensless imaging,
image reconstruction
BibRef
Sheinin, M.[Mark],
Schechner, Y.Y.[Yoav Y.],
Kutulakos, K.N.[Kiriakos N.],
Computational Imaging on the Electric Grid,
PAMI(44), No. 12, December 2022, pp. 8728-8739.
IEEE DOI
2212
Lighting, Cameras, Light sources, Visualization, Photodiodes,
Urban areas, AC illumination, bulb flicker, bulb response function,
reflection removal
BibRef
Poudel, A.[Arpan],
Nakarmi, U.[Ukash],
DeepLIR: Attention-Based Approach for Mask-Based Lensless Image
Reconstruction,
VAQuality24(431-439)
IEEE DOI Code:
WWW Link.
2404
Deep learning, Image quality, Multiplexing, Computational modeling,
Noise reduction, Pipelines, Reconstruction algorithms
BibRef
Chan, D.[Dorian],
Sheinin, M.[Mark],
O'Toole, M.[Matthew],
SpinCam: High-Speed Imaging via a Rotating Point-Spread Function,
ICCV23(10755-10765)
IEEE DOI
2401
BibRef
Yan, Z.[Zike],
Yang, H.X.[Hao-Xiang],
Zha, H.B.[Hong-Bin],
Active Neural Mapping,
ICCV23(10947-10958)
IEEE DOI
2401
BibRef
Shah, S.[Sachin],
Kulshrestha, S.[Sakshum],
Metzler, C.A.[Christopher A.],
TiDy-PSFs: Computational Imaging with Time-Averaged Dynamic
Point-Spread-Functions,
ICCV23(10623-10633)
IEEE DOI
2401
BibRef
Chen, S.Q.[Shi-Qi],
Feng, H.J.[Hua-Jun],
Gao, K.M.[Ke-Ming],
Xu, Z.H.[Zhi-Hai],
Chen, Y.T.[Yue-Ting],
Extreme-Quality Computational Imaging via Degradation Framework,
ICCV21(2612-2621)
IEEE DOI
2203
Degradation, Image quality, Visualization, Deconvolution,
Network architecture, Cameras, Optical imaging,
Low-level and physics-based vision
BibRef
Chang, Y.Y.[Yuan-Yang],
Chen, H.T.[Hwann-Tzong],
Finding good composition in panoramic scenes,
ICCV09(2225-2231).
IEEE DOI
0909
Find good (artistic composition) sub views.
BibRef
Soatto, S.[Stefano],
Actionable information in vision,
ICCV09(2138-2145).
IEEE DOI
0909
Complexity not of the image itself, but the image after removal of
effects of viewpoint and illumination.
BibRef
Franc, V.[Vojtech],
Hlavác, V.[Václav],
Navara, M.[Mirko],
Sequential Coordinate-Wise Algorithm for the Non-negative Least Squares
Problem,
CAIP05(407).
Springer DOI
0509
Least Squares. The proposed algorithm showed promising performance in comparison
to the Landweber method.
BibRef
Fischer, S.[Sylvain],
Bayerl, P.[Pierre],
Neumann, H.[Heiko],
Cristóbal, G.[Gabriel],
Redondo, R.[Rafael],
Are Iterations and Curvature Useful for Tensor Voting?,
ECCV04(Vol III: 158-169).
Springer DOI
0405
Add iterations and curvature enhancements.
See also Curvature-Augmented Tensor Voting for Shape Inference from Noisy 3D Data.
BibRef
Nayar, S.K.,
Computational Imaging,
ICIP01(Invited Talk, Computational Imaging).
0108
Not in proceedings.
BibRef
Woodham, R.J.,
A Computational Approach to Remote Sensing,
CVPR85(2-12).
(UBC) Nice discussion of various techniques.
BibRef
8500
Edelman, S.[Shimon],
Weinshall, D.[Daphna],
Computational Vision: A Critical Review,
MIT AI Memo-1158, October 1989.
BibRef
8910
Thompson, W.B.[William B.], and
Yonas, A.[Albert],
What Should be Computed In Low Level Vision Systems,
AAAI-80(7-10).
BibRef
8000
Hildreth, E.C.[Ellen C.],
Ullman, S.[Shimon],
The Computational Study of Vision,
MIT AI Memo-1038, April 1988.
WWW Link.
BibRef
8804
Hildreth, E.C.[Ellen C.],
Hollerbach, J.M.[John M.],
The Computational Approach to Vision and Motor Control,
MIT AI Memo-846, August 1985.
WWW Link.
BibRef
8508
Hollerbach, J.M.[John M.],
Hierarchical Shape Description of Objects by Selection and
Modification of Prototypes,
MIT AI-TR-346 November 1975.
WWW Link.
BibRef
7511
Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Physics Based Vision .