11.3.8 Reconstruction from Sparse Data

Chapter Contents (Back)
Surface Reconstruction. Sparse Data.

Petitjean, S.[Sylvain],
A survey of methods for recovering quadrics in triangle meshes,
Surveys(34), No. 2, February 2002, pp. 211-262. Survey, Mesh. Survey, Triangulation. BibRef 0202

Sampson, P.D.,
Fitting Conic Sections to 'Very Scattered' Data: An Iterarive Refinement of the Bookstein Algorithm,
CGIP(18), No. 1, January 1982, pp. 97-108.
Elsevier DOI See also Fitting Conic Sections to Scattered Data. Why Bookstein may not be good for scattered data, and an iterative refinement. BibRef 8201

Stevenson, R.L., and Delp, E.J.,
Viewpoint Invariant Recovery of Visual Surfaces from Sparse Data,
PAMI(14), No. 9, September 1992, pp. 897-909.
IEEE DOI BibRef 9209
Earlier:
Viewpoint Invariant Recovery,
ICCV90(309-312).
IEEE DOI BibRef
Earlier:
Invariant Reconstruction of Visual Surfaces,
3DWS89(131-137). Convex approximation to the data. The description of the surface is invariant to the viewpoint BibRef

Poli, R., Coppini, G., Valli, G.,
Recovery of 3D Closed Surfaces from Sparse Data,
CVGIP(60), No. 1, July 1994, pp. 1-25.
WWW Link. BibRef 9407

Stewart, C.V.,
MINPRAN: A New Robust Estimator for Computer Vision,
PAMI(17), No. 10, October 1995, pp. 925-938.
IEEE DOI Robust Technique. BibRef 9510
Earlier:
A New Robust Operator for Computer Vision: Theoretical Analysis,
CVPR94(1-8).
IEEE DOI BibRef
Earlier: RPITR 93-21, August 1993. BibRef
And:
A New Robust Operator for Computer Vision: Application to Range Data,
CVPR94(167-173).
IEEE DOI BibRef
Earlier:
A New Robust Operator for Computer Vision: Application to Range and Intensity Images,
RPITR 93-24, October 1993. Finding surfaces when most points are noise (or overlapping surfaces). BibRef

Stewart, C.V.,
Bias in Robust Estimation Caused by Discontinuities and Multiple Structures,
PAMI(19), No. 8, August 1997, pp. 818-833.
IEEE DOI 9709
BibRef
And: TR96-4, RPI, Computer Science, 1996. Follow link under:
WWW Link. BibRef
Earlier:
Expected Performance of Robust Estimators Near Discontinuities,
ICCV95(969-974).
IEEE DOI BibRef
Earlier: RPITR-94-10, 1994. Dealing with outliers to the structure of interest, but not to another structure (i.e. a second structure). Looks at Least Median of Squares ( See also Robust Regression Methods for Computer Vision: A Review. Least Trimmed Squares ( See also Least Median of Squares Regression. ), M-Estimators ( See also Robust Statistics. ), Hough Transforms ( See also Survey of the Hough Transform, A. ), RANSAC ( See also Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. and M MINPRAN ( See also MINPRAN: A New Robust Estimator for Computer Vision. ). And says all have problems with this type of data. BibRef

Stewart, C.V.[Charles V.],
Robust Parameter Estimation in Computer Vision,
SIAM_Rev(41), No. 3, September 1999, pp. 513-537.
WWW Link. Stereo, Evaluation. Fundamental Matrix. Mosaic. Review of the use of robust statistice in computer vision for range, stereo, mosaic construction, etc. BibRef 9909

Stewart, C.V.[Charles V.],

Hebert, P., Laurendeau, D., and Bergevin, R.,
From 3-D Scattered Data to Geometric Signal Description: Invariant Stable Recovery of Straight Line Segments,
PRAI(8), 1994, pp. 1319-1342. BibRef 9400

Anderson, M., and Betsis, D.,
Point Reconstruction from Noisy Images,
JMIV(5), No. 1, January 1995, pp. 77-90. BibRef 9501

Guo, B.N.,
Surface Reconstruction: From Points to Splines,
CAD(29), No. 4, April 1997, pp. 269-277. 9703
BibRef

Laurendeau, D., Poussart, D.,
Model Building of Three-Dimensional Polyhedral Objects Using 3D Edge Information and Hemispheric Histogram,
RA(3), 1987, pp. 459-470. BibRef 8700
Earlier:
3D Model Building using a Fast Range Finder,
CVPR86(424-426). Histograms of surface orientations are used to find surfaces. BibRef

Lee, S., Wolberg, G., Shin, S.Y.,
Scattered Data Interpolation with Multilevel B-Splines,
VCG(3), No. 3, Jul-Sep 1997, pp. 228-244. 9710
BibRef

Guy, G.[Gideon], and Medioni, G.[Gerard],
Inference of Surfaces, 3D Curves, and Junctions from Sparse, Noisy, 3D Data,
PAMI(19), No. 11, November 1997, pp. 1265-1277.
IEEE DOI
PDF File. 9712
BibRef
Earlier:
Inference of Surfaces, 3D Curves and Junctions from Sparse 3D Data,
ARPA96(1041-1050). BibRef
And: SCV95(599-604).
IEEE DOI
PDF File. BibRef
Earlier:
Inference of Surfaces from Sparse 3-D Points,
ARPA94(II:1487-1494). University of Southern California. Perceptual grouping technique. Does not depend on number of objects or holes BibRef

Tang, C.K.[Chi-Keung], and Medioni, G.[Gérard],
Inference of Integrated Surface, Curve, and Junction Descriptions from Sparse 3D Data,
PAMI(20), No. 11, November 1998, pp. 1206-1223.
IEEE DOI BibRef 9811 USC Computer Vision BibRef
Earlier:
Integrated Surface, Curve and Junction Inference from Sparse 3-D Data Sets,
ICCV98(818-824).
IEEE DOI
PDF File. BibRef

Tang, C.K.[Chi-Keung], Medioni, G.[Gérard],
Curvature-Augmented Tensor Voting for Shape Inference from Noisy 3D Data,
PAMI(24), No. 6, June 2002, pp. 858-864.
IEEE DOI BibRef 0206 USC Computer Vision 0206
Tensor voting to get the curvature information. No local surface fitting is needed. BibRef

Tang, C.K.[Chi-Keung], and Medioni, G.[Gérard],
Robust Estimation of Curvature Information from Noisy 3D Data for Shape Description,
ICCV99(426-433).
IEEE DOI BibRef 9900 USC Computer Vision BibRef

Tong, D.W.S.[Dickson Wai-Shun], Tang, C.K.[Chi-Keung], Mordohai, P.[Philippos], Medioni, G.,
First order augmentation to tensor voting for boundary inference and multiscale analysis in 3d,
PAMI(26), No. 5, May 2004, pp. 594-611.
IEEE Abstract. 0404
See also Simultaneous Two-View Epipolar Geometry Estimation and Motion Segmentation by 4D Tensor Voting. BibRef
Earlier: A1, A2, A4, Only:
First Order Tensor Voting and Application to 3-D Scale Analysis,
CVPR01(I:175-182).
IEEE DOI BibRef USC Computer Vision 0110
BibRef
And: A1, A2, A4, Only:
Integrated Tensor Voting in Multiple Scales for Shape Description in 3D,
PercOrg01(xx-yy). 0106
BibRef USC Computer Vision BibRef

Tong, W.S.[Wai-Shun], Tang, C.K.[Chi-Keung],
Robust Estimation of Adaptive Tensors of Curvature by Tensor Voting,
PAMI(27), No. 3, March 2005, pp. 434-449.
IEEE Abstract. 0501
BibRef
Earlier:
ROD-TV: reconstruction on demand by tensor voting,
CVPR03(II: 391-398).
IEEE DOI 0307
Reconstruction from a large and imperfect data set. Three-pass algorithm to estimate curvatures. Two pass only gets sign of curvature. BibRef

Tong, W.S.[Wai-Shun], Tang, C.K.[Chi-Keung],
Multiresolution Mesh Reconstruction from Noisy 3D Point Sets,
ICPR06(I: 5-8).
IEEE DOI 0609
BibRef

Lei, Z.B.[Zhi-Bin], Cooper, D.B.[David B.],
Linear-Programming Fitting of Implicit Polynomials,
PAMI(20), No. 2, February 1998, pp. 212-217.
IEEE DOI 9803
BibRef
Earlier:
New, Faster, More Controlled Fitting of Implicit Polynomial 2D Curves and 3D Surfaces to Data,
CVPR96(514-519).
IEEE DOI BibRef

Blane, M.M.[Michael M.], Lei, Z.B.[Zhi-Bin], Civi, H.[Hakan], Cooper, D.B.[David B.],
The 3L Algorithm for Fitting Implicit Polynomial Curves and Surfaces to Data,
PAMI(22), No. 3, March 2000, pp. 298-313.
IEEE DOI 0005
BibRef
Earlier: A2, A1, A4, Only:
3L Fitting of Higher Degree Implicit Polynomials,
WACV96(148-153).
IEEE DOI 9609
Fit polynomial shape models to data. BibRef

Oblonsek, C., Guid, N.,
A Fast Surface-Based Procedure for Object Reconstruction from 3D Scattered Points,
CVIU(69), No. 2, February 1998, pp. 185-195.
DOI Link BibRef 9802

Guo, B., Liu, J.,
Direct Visible Surface Interpolation,
CVIU(72), No. 3, December 1998, pp. 328-339.
DOI Link BibRef 9812

Park, I.K., Yun, I.D., Lee, S.U.,
Automatic 3-D Model Synthesis from Measured Range Data,
CirSysVideo(10), No. 2, March 2000, pp. 293.
IEEE Top Reference. 0003
BibRef

Tsogo, L., Masson, M.H., Bardot, A.,
Recovery of the metric structure of a pattern of points using minimal information,
SMC-A(31), No. 1, January 2001, pp. 30-42.
IEEE Top Reference. 0104
BibRef

Dinh, H.Q.[Huong Quynh], Turk, G.[Greg], Slabaugh, G.G.[Greg G.],
Reconstructing Surfaces by Volumetric Regularization Using Radial Basis Functions,
PAMI(24), No. 10, October 2002, pp. 1358-1371.
IEEE Abstract. 0210
BibRef
Earlier:
Reconstructing Surfaces Using Anisotropic Basis Functions,
ICCV01(II: 606-613).
IEEE DOI 0106
Surfaces from noisy pointsets. Variational implicit surface. Smooth and seamless models from sparse data. 3D surface is a sum of weighted radial basis functions. BibRef

Hilton, A.,
Scene modelling from sparse 3D data,
IVC(23), No. 10, 20 September 2005, pp. 900-920.
WWW Link. 0509
BibRef

Shen, X.Q., Palmer, P., McLauchlan, P., Hilton, A.,
Error Propagation from Camera Motion to Epipolar Constraint,
BMVC00(xx-yy).
PDF File. 0009
BibRef

Manessis, A.[Anastasios], Hilton, A.[Adrian], Palmer, P.[Phil], McLauchlan, P.[Phil], Shen, X.Q.[Xin-Quan],
Reconstruction of Scene Models from Sparse 3D Structure,
CVPR00(II: 666-671).
IEEE DOI 0005
BibRef

Manessis, A., Hilton, A., McLauchlan, P., Palmer, P.,
A Statistical Geometric Framework for Reconstruction of Scene Models,
BMVC00(xx-yy).
PDF File. 0009
BibRef

Solem, J.E.[Jan Erik], Heyden, A.[Anders],
Reconstructing Open Surfaces from Image Data,
IJCV(69), No. 3, September 2006, pp. 267-275.
Springer DOI 0606
BibRef
Earlier:
Reconstructing open surfaces from unorganized data points,
CVPR04(II: 653-660).
IEEE DOI 0408
BibRef

Aanæs, H.[Henrik], Solem, J.E.[Jan Erik],
Overlapping Constraint for Variational Surface Reconstruction,
SCIA05(551-556).
Springer DOI 0506
BibRef

Solem, J.E.[Jan Erik], Aanæs, H.[Henrik], Heyden, A.[Anders],
Variational Surface Interpolation from Sparse Point and Normal Data,
PAMI(29), No. 1, January 2007, pp. 181-184.
IEEE DOI 0701
Formulation to include sparse cues (specularities, contours) with dense matching to generate more accurate and compelet surfaces. See also PDE Based Shape from Specularities. BibRef

Solem, J.E.[Jan Erik], Kahl, F.[Fredrik], Heyden, A.[Anders],
Visibility Constrained Surface Evolution,
CVPR05(II: 892-899).
IEEE DOI 0507
BibRef

Overgaard, N.C.[Niels C.], Solem, J.E.[Jan Erik],
Separating Rigid Motion for Continuous Shape Evolution,
ELCVIA(6), No. 2, September 2007, pp. 1-8.
WWW Link. 0709
BibRef
Earlier: A2, A1:
A Geometric Formulation of Gradient Descent for Variational Problems with Moving Surfaces,
ScaleSpace05(419-430).
Springer DOI 0505
BibRef

Solem, J.E., Kahl, F.,
Surface reconstruction from the projection of points, curves and contours,
3DPVT04(301-307).
IEEE DOI 0412
BibRef

Chen, Y.L.[Yi-Ling], Lai, S.H.[Shang-Hong],
An Orientation Inference Framework for Surface Reconstruction From Unorganized Point Clouds,
IP(20), No. 3, March 2011, pp. 762-775.
IEEE DOI 1103
build surface orientation approximation BibRef

Ruiz, O., Vanegas, C., Cadavid, C.,
Ellipse-based principal component analysis for self-intersecting curve reconstruction from noisy point sets,
VC(27), No. 3, March 2011, pp. 211-226.
WWW Link. 1103
BibRef
And: Publisher's Erratum VC(27), No. 3, March 2011, pp. 227.
WWW Link. 1103
BibRef

Mahmoudi, M.[Mona], Sapiro, G.[Guillermo],
Sparse Representations for Range Data Restoration,
IP(21), No. 5, May 2012, pp. 2909-2915.
IEEE DOI 1204
BibRef

Xu, X.[Xie], Alvarado, A.S., Entezari, A.,
Reconstruction of Irregularly-Sampled Volumetric Data in Efficient Box Spline Spaces,
MedImg(31), No. 7, July 2012, pp. 1472-1480.
IEEE DOI 1208
BibRef

Xu, X., Ye, W., Entezari, A.,
Bandlimited Reconstruction of Multidimensional Images From Irregular Samples,
IP(22), No. 10, 2013, pp. 3950-3960.
IEEE DOI 1309
Irregular sampling BibRef

Harwin, S., Lucieer, A.,
Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery,
RS(4), No. 6, June 2012, pp. 1573-1599.
DOI Link 1208
BibRef
And:
An Accuracy Assessment of Georeferenced Point Clouds Produced Via Multi-view Stereo Techniques Applied to Imagery Acquired Via Unmanned Aerial Vehicle,
ISPRS12(XXXIX-B7:475-480).
DOI Link 1209
BibRef

Digne, J.[Julie], Cohen-Steiner, D.[David], Alliez, P.[Pierre], de Goes, F.[Fernando], Desbrun, M.[Mathieu],
Feature-Preserving Surface Reconstruction and Simplification from Defect-Laden Point Sets,
JMIV(48), No. 2, February 2014, pp. 369-382.
Springer DOI 1402
BibRef


Matyunin, S.[Sergey], Vatolin, D.[Dmitriy], Berdnikov, Y.[Yury], Smirnov, M.[Maxim],
Temporal filtering for depth maps generated by Kinect depth camera,
3DTV11(1-4).
IEEE DOI 1105
BibRef

Badea, D.[Dragos], Jacobsen, K.[Karsten],
Filtering Process of LIDAR Data,
ISPRS08(B1: 815 ff).
PDF File. 0807
BibRef

Gelas, A., Ohtake, Y., Kanai, T., Prost, R.,
Approximation of Unorganized Point Set with Composite Implicit Surface,
ICIP06(1217-1220).
IEEE DOI 0610
BibRef

Landa, Y.[Yanina], Tsai, R.[Richard], Cheng, L.T.[Li-Tien],
Visibility of Point Clouds and Mapping of Unknown Environments,
ACIVS06(1014-1025).
Springer DOI 0609
Interpolate visible points to describe the object. BibRef

Salvado, O.[Olivier], Wilson, D.L.[David L.],
Removal of Interpolation Induced Artifacts in Similarity Surfaces,
WBIR06(43-49).
Springer DOI 0607
BibRef

Özkan, C.[Coskun],
Surface Interpolation by Adaptive Neuro-fuzzy Inference System Based Local Ordinary Kriging,
ACCV06(I:196-205).
Springer DOI 0601
BibRef

Ahn, S.J.[Soon-Jeong], Yoo, J.[Jaechil], Lee, B.G.[Byung-Gook], Lee, J.J.[Joon-Jae],
3D Surface Reconstruction from Scattered Data Using Moving Least Square Method,
CIAP05(719-726).
Springer DOI 0509
BibRef

Chen, G.Y.[Guang-Yi], Dudek, G.[Gregory], Torres-Mendez, L.A.[Luz A.],
Scene Reconstruction with Sparse Range Information,
CRV05(444-451).
IEEE DOI 0505
BibRef

Kovesi, P.[Peter],
Shapelets Correlated with Surface Normals Produce Surfaces,
ICCV05(II: 994-1001).
IEEE DOI 0510
BibRef

Blanz, V., Mehl, A., Vetter, T., Seidel, H.P.,
A statistical method for robust 3D surface reconstruction from sparse data,
3DPVT04(293-300).
IEEE DOI 0412
BibRef

Bodenmueller, T., Hirzinger, G.,
Online surface reconstruction from unorganized 3D-points for the DLR hand-guided scanner system,
3DPVT04(285-292).
IEEE DOI 0412
BibRef

Ahn, S.J.[Sung Joon], Effenberger, I.[Ira], Roth-Koch, S.[Sabine], Westkämper, E.[Engelbert],
Geometric Segmentation and Object Recognition in Unordered and Incomplete Point Cloud,
DAGM03(450-457).
Springer DOI 0310
BibRef

Li, X.K.[Xiao-Kun], Gao, F.[Feng], Everding, B., He, L.[Lei], Wee, W.G.,
Error analysis, modeling, and correction for 3-D range data,
ICIP02(III: 873-876).
IEEE DOI 0210
BibRef

van Kaick, O.M.[Oliver Matias], Pedrini, H.[Helio],
Smooth Image Surface Approximation by Piecewise Cubic Polynomials,
CIARP07(261-270).
Springer DOI 0711
BibRef

van Kaick, O.M., da Silva, M.V.G., Schwartz, W.R., Pedrini, H.,
Fitting smooth surfaces to scattered 3D data using piecewise quadratic approximation,
ICIP02(I: 493-496).
IEEE DOI 0210
BibRef

Bors, A.G.[Adrian G.], Kechagias, L.[Lefteris], Pitas, I.[Ioannis],
Virtual Drilling in 3-D Objects Reconstructed by Shape-Based Interpolation,
VF01(729 ff.).
Springer DOI 0209
BibRef

Bors, A.G., Kechagias, L., Pitas, I.,
Shape-Based Interpolation Using Morphological Morphing,
ICIP01(II: 161-164).
IEEE DOI 0108
BibRef

Hall, P.[Peter],
Robust reconstruction of 3D space-curves from images at arbitrary angles,
BMVC97(xx-yy).
HTML Version. 0209
BibRef

Kozera, R.[Ryszard], Noakes, L.[Lyle],
Optimal Knots Selection for Sparse Reduced Data,
GPID15(3-14).
Springer DOI 1603
BibRef
And: A2, A1:
Interpolating Sporadic Data,
ECCV02(II: 613 ff.).
Springer DOI 0205
BibRef

Chen, H., Meer, P.,
Robust Computer Vision through Kernel Density Estimation,
ECCV02(I: 236 ff.).
Springer DOI 0205
For structure recovery from corrupted data. BibRef

Bartoli, A.E.[Adrien E.],
Piecewise Planar Segmentation for Automatic Scene Modeling,
CVPR01(II:283-289).
IEEE DOI 0110
Estimate the planes from random samples of points. BibRef

Boyer, E.[Edmond], Petitjean, S.[Sylvain],
Curve and Surface Reconstruction from Regular and Non-Regular Point Sets,
CVPR00(II: 659-665).
IEEE DOI 0005
BibRef

Park, I.K.[In Kyu], and Lee, S.U.,
Geometric Modeling from Scattered 3-D Range Data,
ICIP97(II: 712-715).
IEEE DOI BibRef 9700

Weiss, R.S.[Richard S.],
The Epipolar Parametrization,
ORCV94(101-107).
Springer DOI 9412
Sensor Fusion. Fitting surfaces from possibly sparse points. BibRef

Talmage, D., Noble, J.A., Zisserman, A.,
Uncalibrated X-Ray Stereo Reconstruction,
BMVC95(xx-yy).
PDF File. 9509
BibRef

Sullivan, S., Noble, J.A., Ponce, J.,
On Reconstructing Curved Object Boundaries from Sparse Sets of X-Ray Images,
CVRMed95(XX-YY) BibRef 9500

Krebs, B.[Björn], Korn, B.[Bernd], Wahl, F.M.[Friedrich M.],
Plausibilistic preprocessing of sparse range images,
CIAP95(361-366).
Springer DOI 9509
BibRef

Hebert, P., Laurendeau, D., Poussart, D.,
Surface profile description: reliable geometric primitive extraction,
ICPR94(A:258-263).
IEEE DOI 9410
BibRef
Earlier:
Scene Reconstruction and Description: Geometric Primitive Extraction from Multiple View Scattered Data,
CVPR93(286-292).
IEEE DOI Merging range data from different viewpoints. BibRef

Boult, T.E., and Lerner, M.,
Energy-Based Segmentation of Very Sparse Range Surfaces,
CRA90(232-237). BibRef 9000
And: DARPA90(565-572). Fit smooth surfaces to points, handle holes, gaps, etc. BibRef

Boult, T.E.[Terrance E.], and Kender, J.R.,
Visual Surface Reconstruction Using Sparse Depth Data,
CVPR86(68-76). BibRef 8600
Earlier:
On Surface Reconstruction Using Sparse Depth Data,
DARPA85(197-208). Survey, Surface Reconstruction. Surface Reconstruction, Survey. General survey of the techniques, the paper discusses the implementation using splines. Gets better when the data is sparse, dense data takes too long. BibRef

Boult, T.E.[Terrance E.],
Visual Surface Interpolation: A Comparison of Two Methods,
DARPA85(466-478). BibRef 8500

Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Surveys, Overviews, Evaluations and Analysis of 3-D Reconstructions .


Last update:Sep 25, 2017 at 16:36:46