11.2.3.3 Point Cloud Classification

Chapter Contents (Back)
Segmentation, Range. Feature Extraction. Segmentation, 3-D Data. Classification, 3-D Data. Point Cloud Classification.
See also Range Data, Point Cloud Processing and Analysis. Features to use in CNN:
See also Point Cloud Processing for Neural Networks, Convolutional Neural Networks.

Lin, C.H.[Chao-Hung], Chen, J.Y.[Jyun-Yuan], Su, P.L.[Po-Lin], Chen, C.H.[Chung-Hao],
Eigen-feature analysis of weighted covariance matrices for LiDAR point cloud classification,
PandRS(94), No. 1, 2014, pp. 70-79.
Elsevier DOI 1407
Point cloud classification. linear, planar, or spherical. BibRef

Wang, Z.[Zhen], Zhang, L.Q.[Li-Qiang], Zhang, L.[Liang], Li, R.J.[Rou-Jing], Zheng, Y.B.[Yi-Bo], Zhu, Z.D.[Zi-Dong],
A Deep Neural Network With Spatial Pooling (DNNSP) for 3-D Point Cloud Classification,
GeoRS(56), No. 8, August 2018, pp. 4594-4604.
IEEE DOI 1808
Large number of overlapping objects. feature extraction, geophysical image processing, image classification, image representation, spatial pooling BibRef

Arief, H.A.[Hasan Asy'ari], Indahl, U.G.[Ulf Geir], Strand, G.H.[Geir-Harald], Tveite, H.[Hĺvard],
Addressing overfitting on point cloud classification using Atrous XCRF,
PandRS(155), 2019, pp. 90-101.
Elsevier DOI 1908
Point cloud classification, Overfitting problem, Conditional random field BibRef

Tong, G.F.[Guo-Feng], Li, Y.[Yong], Zhang, W.L.[Wei-Long], Chen, D.[Dong], Zhang, Z.X.[Zhen-Xin], Yang, J.C.[Jing-Chao], Zhang, J.J.[Jian-Jun],
Point Set Multi-Level Aggregation Feature Extraction Based on Multi-Scale Max Pooling and LDA for Point Cloud Classification,
RS(11), No. 23, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Ng, Y.T.[Yong Thiang], Huang, C.M.[Chung Ming], Li, Q.T.[Qing Tao], Tian, J.[Jing],
RadialNet: a point cloud classification approach using local structure representation with radial basis function,
SIViP(14), No. 4, June 2020, pp. 747-752.
Springer DOI 2005
BibRef

Tong, G.F.[Guo-Feng], Li, Y.[Yong], Chen, D.[Dong], Xia, S.B.[Shao-Bo], Peethambaran, J.[Jiju], Wang, Y.B.[Yue-Bin],
Multi-View Features Joint Learning with Label and Local Distribution Consistency for Point Cloud Classification,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link 2001
Noise from outdoor sensors. BibRef

Wen, C.C.[Cong-Cong], Yang, L.[Lina], Li, X.[Xiang], Peng, L.[Ling], Chi, T.[Tianhe],
Directionally constrained fully convolutional neural network for airborne LiDAR point cloud classification,
PandRS(162), 2020, pp. 50-62.
Elsevier DOI 2004
Airborne LiDAR, Point cloud classification, Directionlly constrained nearest neighbor, ISPRS 3D labeling BibRef

Zhang, X. .L.[Xin- Liang], Fu, C.L.[Chen-Lin], Zhao, Y.J.[Yun-Ji], Xu, X.Z.[Xiao-Zhuo],
Hybrid feature CNN model for point cloud classification and segmentation,
IET-IPR(14), No. 16, 19 December 2020, pp. 4086-4091.
DOI Link 2103
BibRef

Wen, C.C.[Cong-Cong], Li, X.[Xiang], Yao, X.J.[Xiao-Jing], Peng, L.[Ling], Chi, T.[Tianhe],
Airborne LiDAR point cloud classification with global-local graph attention convolution neural network,
PandRS(173), 2021, pp. 181-194.
Elsevier DOI 2102
Airborne LiDAR, Point cloud classification, Point cloud deep learning, Graph attention convolution, ISPRS 3D labeling BibRef

Chen, Y.[Yang], Liu, G.L.[Guan-Lan], Xu, Y.M.[Ya-Ming], Pan, P.[Pai], Xing, Y.[Yin],
PointNet++ Network Architecture with Individual Point Level and Global Features on Centroid for ALS Point Cloud Classification,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link 2102
BibRef

Guo, R.[Rui], Zhou, Y.[Yong], Zhao, J.Q.[Jia-Qi], Man, Y.Y.[Yi-Yun], Liu, M.J.[Min-Jie], Yao, R.[Rui], Liu, B.[Bing],
Point cloud classification by dynamic graph CNN with adaptive feature fusion,
IET-CV(15), No. 3, 2021, pp. 235-244.
DOI Link 2106
BibRef

Gu, R.B.[Rui-Bin], Wu, Q.X.[Qiu-Xia], Ng, W.W.Y.[Wing W.Y.], Xu, H.B.[Hong-Bin], Wang, Z.Y.[Zhi-Yong],
ERINet: Enhanced Rotation-Invariant Network for Point Cloud Classification,
PRL(151), 2021, pp. 180-186.
Elsevier DOI 2110
Point cloud classification, Rotation invariance, 3D Deep learning BibRef

Qiu, S.[Shi], Anwar, S.[Saeed], Barnes, N.[Nick],
Geometric Back-Projection Network for Point Cloud Classification,
MultMed(24), No. 2022, pp. 1943-1955.
IEEE DOI 2204
BibRef
Earlier:
Dense-Resolution Network for Point Cloud Classification and Segmentation,
WACV21(3812-3821)
IEEE DOI 2106
Feature extraction, Task analysis, Geometry, Visualization, Shape, Redundancy, Point Cloud Classification, 3D Deep Learning, Error-correcting Feedback. Training, Visualization, Adaptation models, Computational modeling BibRef

Gu, R.B.[Rui-Bin], Wu, Q.X.[Qiu-Xia], Li, Y.Q.[Yu-Qiong], Kang, W.X.[Wen-Xiong], Ng, W.W.Y.[Wing W. Y.], Wang, Z.Y.[Zhi-Yong],
Enhanced Local and Global Learning for Rotation-Invariant Point Cloud Representation,
MultMedMag(29), No. 4, October 2022, pp. 24-37.
IEEE DOI 2301
Point cloud compression, Representation learning, Supervised learning, Perturbation methods, Unsupervised learning, Task analysis BibRef

Dang, J.S.[Ji-Sheng], Yang, J.[Jun],
LHPHGCNN: Lightweight Hierarchical Parallel Heterogeneous Group Convolutional Neural Networks for Point Cloud Scene Prediction,
ITS(23), No. 10, October 2022, pp. 18903-18915.
IEEE DOI 2210
BibRef
Earlier:
HPGCNN: Hierarchical Parallel Group Convolutional Neural Networks for Point Clouds Processing,
ACCV20(I:20-37).
Springer DOI 2103
Convolution, Point cloud compression, Encoding, Semantics, Shape, Feature extraction, 3D point cloud classification/segmentation, lightweight hierarchical parallel heterogeneous group convolutional neural network BibRef

Li, X.[Xiang], Wen, C.C.[Cong-Cong], Cao, Q.M.[Qi-Ming], Du, Y.L.[Yan-Lei], Fang, Y.[Yi],
Retraction: A novel semi-supervised method for airborne LiDAR point cloud classification,
PandRS(188), 2022, pp. 141.
Elsevier DOI 2205
BibRef
And: Original reference PandRS(180), 2021, pp. 117-129.
Elsevier DOI 2109
Airborne LiDAR, Point cloud classification, Semi-supervised classification, Siamese self-supervision BibRef

Zhang, C.J.[Chun-Jiao], Xu, S.H.[Sheng-Hua], Jiang, T.[Tao], Liu, J.P.[Ji-Ping], Liu, Z.J.[Zheng-Jun], Luo, A.[An], Ma, Y.[Yu],
Integrating Normal Vector Features into an Atrous Convolution Residual Network for LiDAR Point Cloud Classification,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Wang, W.M.[Wei-Ming], You, Y.[Yang], Liu, W.[Wenhai], Lu, C.[Cewu],
Point cloud classification with deep normalized Reeb graph convolution,
IVC(106), 2021, pp. 104092.
Elsevier DOI 2102
Reeb graph, Point cloud, Graph normalization BibRef

You, Y.[Yang], Ye, Z.L.[Ze-Lin], Lou, Y.J.[Yu-Jing], Li, C.K.[Cheng-Kun], Li, Y.L.[Yong-Lu], Ma, L.Z.[Li-Zhuang], Wang, W.M.[Wei-Ming], Lu, C.[Cewu],
Canonical Voting: Towards Robust Oriented Bounding Box Detection in 3D Scenes,
CVPR22(1183-1192)
IEEE DOI 2210
Point cloud compression, Deep learning, Machine vision, Object detection, Sensor systems and applications, Vision applications and systems BibRef

Mao, Y.Q.[Yong-Qiang], Chen, K.Q.[Kai-Qiang], Diao, W.H.[Wen-Hui], Sun, X.[Xian], Lu, X.N.[Xiao-Nan], Fu, K.[Kun], Weinmann, M.[Martin],
Beyond single receptive field: A receptive field fusion-and-stratification network for airborne laser scanning point cloud classification,
PandRS(188), 2022, pp. 45-61.
Elsevier DOI 2205
Airborne laser scanning, Point cloud, Classification, Deep learning, Dilated graph convolution, Multi-scale receptive fields BibRef

Xu, Z.L.[Ze-Lin], Liu, K.J.[Kang-Jun], Chen, K.[Ke], Ding, C.X.[Chang-Xing], Wang, Y.W.[Yao-Wei], Jia, K.[Kui],
Classification of single-view object point clouds,
PR(135), 2023, pp. 109137.
Elsevier DOI 2212
Point cloud classification, Rotation equivariance, Pose estimation BibRef

Zhu, L.[Lei], Chen, W.N.[Wei-Nan], Lin, X.[Xubin], He, L.[Li], Guan, Y.S.[Yi-Sheng],
Curvature-Variation-Inspired Sampling for Point Cloud Classification and Segmentation,
SPLetters(29), 2022, pp. 1868-1872.
IEEE DOI 2209
Point cloud compression, Shape, Task analysis, Geometry, Sampling methods, Convolution, Curvature variation, point cloud BibRef

He, Y.Q.[Yun-Qian], Zhang, Z.[Zhi], Wang, Z.[Zhe], Luo, Y.K.[Yong-Kang], Su, L.[Li], Li, W.[Wanyi], Wang, P.[Peng], Zhang, W.[Wen],
IPC-Net: Incomplete point cloud classification network based on data augmentation and similarity measurement,
JVCIR(91), 2023, pp. 103769.
Elsevier DOI 2303
Incomplete point clouds, Point cloud classification, Data augmentation, Similarity measurement BibRef

Ye, C.G.[Chuang-Guan], Zhu, H.Y.[Hong-Yuan], Zhang, B.[Bo], Chen, T.[Tao],
A Closer Look at Few-Shot 3D Point Cloud Classification,
IJCV(131), No. 3, March 2023, pp. 772-795.
Springer DOI 2302
BibRef

Zhao, Z.[Zhi], Ma, Y.X.[Yan-Xin], Xu, K.[Ke], Wan, J.W.[Jian-Wei],
Deep Hybrid Compression Network for Lidar Point Cloud Classification and Segmentation,
RS(15), No. 16, 2023, pp. 4015.
DOI Link 2309
BibRef

Yu, Y.G.[You-Guang], Zhang, W.[Wei], Yang, F.Z.[Fu-Zheng], Li, G.[Ge],
Rate-Distortion Optimized Geometry Compression for Spinning LiDAR Point Cloud,
MultMed(25), 2023, pp. 2993-3005.
IEEE DOI 2309
BibRef


Chen, Y.J.[Yi-Jun], Yang, Z.[Zhulun], Zheng, X.W.[Xian-Wei], Chang, Y.D.[Ya-Dong], Li, X.[Xutao],
Pointformer: A Dual Perception Attention-based Network for Point Cloud Classification,
ACCV22(I:432-449).
Springer DOI 2307

WWW Link. BibRef

Paul, S.[Sneha], Patterson, Z.[Zachary], Bouguila, N.[Nizar],
Improved Training for 3D Point Cloud Classification,
SSSPR22(253-263).
Springer DOI 2301

WWW Link. BibRef

Shi, X.[Xian], Xu, X.[Xun], Zhang, W.[Wanyue], Zhu, X.T.[Xia-Tian], Foo, C.S.[Chuan Sheng], Jia, K.[Kui],
Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding,
ICPR22(5045-5051)
IEEE DOI 2212
Point cloud compression, Training, Solid modeling, Semantics, Semisupervised learning, Stability analysis BibRef

Wang, R.B.[Rui-Bin], Yang, Y.[Yibo], Tao, D.C.[Da-Cheng],
ART-Point: Improving Rotation Robustness of Point Cloud Classifiers via Adversarial Rotation,
CVPR22(14351-14360)
IEEE DOI 2210
Point cloud compression, Training, Deep learning, Computational modeling, Training data, Robustness, Representation learning BibRef

Zhou, M., Kang, Z., Wang, Z., Kong, M.,
Airborne Lidar Point Cloud Classification Fusion with Dim Point Cloud,
ISPRS20(B2:375-382).
DOI Link 2012
BibRef

Farella, E.M., Torresani, A., Remondino, F.,
Sparse Point Cloud Filtering Based On Covariance Features,
CIPA19(465-472).
DOI Link 1912
BibRef

Özdemir, E., Remondino, F., Golkar, A.,
Aerial Point Cloud Classification With Deep Learning and Machine Learning Algorithms,
SMPR19(843-849).
DOI Link 1912
BibRef

Özdemir, E., Remondino, F.,
Classification of Aerial Point Clouds With Deep Learning,
Semantics3D19(103-110).
DOI Link 1912
BibRef

Grilli, E., Poux, F., Remondino, F.,
Unsupervised Object-based Clustering in Support of Supervised Point-based 3d Point Cloud Classification,
ISPRS21(B2-2021: 471-478).
DOI Link 2201
BibRef

Grilli, E., Menna, F., Remondino, F.,
A Review of Point Clouds Segmentation And Classification Algorithms,
3DARCH17(339-344).
DOI Link 1805
BibRef

Karami, A., Menna, F., Remondino, F.,
Investigating 3d Reconstruction of Non-collaborative Surfaces Through Photogrammetry and Photometric Stereo,
ISPRS21(B2-2021: 519-526).
DOI Link 2201
BibRef

Uy, M.A., Pham, Q., Hua, B., Nguyen, T., Yeung, S.,
Revisiting Point Cloud Classification: A New Benchmark Dataset and Classification Model on Real-World Data,
ICCV19(1588-1597)
IEEE DOI 2004
Dataset, Point Cloud.
WWW Link. CAD, feature extraction, learning (artificial intelligence), neural nets, Market research BibRef

Roveri, R.[Riccardo], Rahmann, L.[Lukas], Öztireli, A.C.[A. Cengiz], Gross, M.[Markus],
A Network Architecture for Point Cloud Classification via Automatic Depth Images Generation,
CVPR18(4176-4184)
IEEE DOI 1812
Network architecture, Neural networks, Task analysis BibRef

Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Range Data, Point Cloud Processing and Analysis .


Last update:Aug 31, 2023 at 09:37:21