11.2.4.6 Point Cloud Processing for Neural Networks, Convolutional Neural Networks

Chapter Contents (Back)
CNN. Neural Networks. Point Cloud Processing.
See also Point Cloud Classification, Recognition.

Yang, Z.S.[Zhi-Shuang], Jiang, W.S.[Wan-Shou], Xu, B.[Bo], Zhu, Q.S.[Quan-Sheng], Jiang, S.[San], Huang, W.[Wei],
A Convolutional Neural Network-Based 3D Semantic Labeling Method for ALS Point Clouds,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Fan, H.[Heng], Mei, X.[Xue], Prokhorov, D.[Danil], Ling, H.B.[Hai-Bin],
Multi-Level Contextual RNNs With Attention Model for Scene Labeling,
ITS(19), No. 11, November 2018, pp. 3475-3485.
IEEE DOI 1812
BibRef
Earlier:
RGB-D Scene Labeling with Multimodal Recurrent Neural Networks,
PBVS17(203-211)
IEEE DOI 1709
convolution, feedforward neural nets, image classification, recurrent neural nets, multilevel contextual RNNs, intelligent transportation system. Computational modeling, Correlation, Feature extraction, Labeling, Recurrent neural networks, Semantics BibRef

Fan, H.[Heng], Chu, P.[Peng], Latecki, L.J.[Longin Jan], Ling, H.B.[Hai-Bin],
Scene Parsing Via Dense Recurrent Neural Networks With Attentional Selection,
WACV19(1816-1825)
IEEE DOI 1904
convolutional neural nets, image annotation, recurrent neural nets, convolutional neural networks, Roads BibRef

Han, J.W.[Jun-Wei], Chen, H.[Hao], Liu, N.[Nian], Yan, C.G.[Cheng-Gang], Li, X.L.[Xue-Long],
CNNs-Based RGB-D Saliency Detection via Cross-View Transfer and Multiview Fusion,
Cyber(48), No. 11, November 2018, pp. 3171-3183.
IEEE DOI 1810
Object detection, Image color analysis, Adaptation models, Fuses, Biological neural networks, salient object detection BibRef

Chen, H.[Hao], Li, Y.F.[You-Fu], Su, D.[Dan],
Multi-modal fusion network with multi-scale multi-path and cross-modal interactions for RGB-D salient object detection,
PR(86), 2019, pp. 376-385.
Elsevier DOI 1811
BibRef
Earlier:
RGB-D Saliency Detection by Multi-stream Late Fusion Network,
CVS17(459-468).
Springer DOI 1711
RGB-D, Convolutional neural networks, Multi-path, Saliency detection BibRef

Shao, Z.P.[Zhan-Peng], Hu, Z.Y.[Zhong-Yan], Yang, J.Y.[Jian-Yu], Li, Y.F.[You-Fu],
Multi-stream feature refinement network for human object interaction detection,
JVCIR(86), 2022, pp. 103529.
Elsevier DOI 2206
Human object interaction, Action recognition, Feature refinement and learning, Multi-stream neural network, Object semantic information BibRef

Chen, H.[Hao], Li, Y.F.[You-Fu],
Three-Stream Attention-Aware Network for RGB-D Salient Object Detection,
IP(28), No. 6, June 2019, pp. 2825-2835.
IEEE DOI 1905
BibRef
Earlier:
Progressively Complementarity-Aware Fusion Network for RGB-D Salient Object Detection,
CVPR18(3051-3060)
IEEE DOI 1812
convolutional neural nets, feature extraction, feature selection, image colour analysis, image fusion, cross-modal cross-level attention. Object detection, Fuses, Saliency detection, Task analysis, BibRef

Li, G.B.[Guan-Bin], Gan, Y.K.[Yu-Kang], Wu, H.J.[He-Jun], Xiao, N.[Nong], Lin, L.[Liang],
Cross-Modal Attentional Context Learning for RGB-D Object Detection,
IP(28), No. 4, April 2019, pp. 1591-1601.
IEEE DOI 1901
feature extraction, image colour analysis, image representation, learning (artificial intelligence), convolutional neural network BibRef

Chen, C., Huang, H., Chen, C., Zheng, Z., Cheng, H.,
Multi-Scale Guided Mask Refinement for Coarse-to-Fine RGB-D Perception,
SPLetters(26), No. 2, February 2019, pp. 217-221.
IEEE DOI 1902
image colour analysis, image segmentation, neural nets, object detection, depth assisted methods, edge-preserving filtering BibRef

Ouadiay, F.Z.[Fatima Zahra], Zrira, N.[Nabila], Hannat, M.[Mohamed], Bouyakhf, E.[El_Houssine], Himmi, M.M.[Majid Mohamed],
3D object classification based on deep belief networks and point clouds,
IJCVR(9), No. 6, 2019, pp. 527-558.
DOI Link 1912
BibRef

Ouadiay, F.Z.[Fatima Zahra], Bouftaih, H., Bouyakhf, E.[El_Houssine], Himmi, M.M.[Majid Mohamed],
Simultaneous object detection and localization using convolutional neural networks,
ISCV18(1-8)
IEEE DOI 1807
convolution, feature extraction, feedforward neural nets, image classification, object detection BibRef

Wen, X., Han, Z., Liu, X., Liu, Y.S.,
Point2SpatialCapsule: Aggregating Features and Spatial Relationships of Local Regions on Point Clouds Using Spatial-Aware Capsules,
IP(29), 2020, pp. 8855-8869.
IEEE DOI 2009
Feature extraction, Shape, Routing, Aggregates, Machine learning, Spatial resolution, Point cloud, capsule network BibRef

Thermos, S.[Spyridon], Papadopoulos, G.T.[Georgios Th.], Daras, P.[Petros], Potamianos, G.[Gerasimos],
Deep sensorimotor learning for RGB-D object recognition,
CVIU(190), 2020, pp. 102844.
Elsevier DOI 1911
Object recognition, Sensorimotor learning, Object affordance, Convolutional neural networks, Recurrent neural networks, 3D convolutions BibRef

Zhou, F.[Feng], Hu, Y.[Yong], Shen, X.[Xukun],
MSANet: multimodal self-augmentation and adversarial network for RGB-D object recognition,
VC(35), No. 11, November 2018, pp. 1583-1594.
WWW Link. 1911
BibRef

Lin, Z.H.[Zhi-Hao], Huang, S.Y.[Sheng-Yu], Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Learning of 3D Graph Convolution Networks for Point Cloud Analysis,
PAMI(44), No. 8, August 2022, pp. 4212-4224.
IEEE DOI 2207
Feature extraction, Convolution, Kernel, Shape, Task analysis, 3D vision, point clouds, deformable kernels, 3D segmentation BibRef

Su, F.G.[Feng-Guang], Lin, C.S.[Ci-Siang], Wang, Y.C.A.F.[Yu-Chi-Ang Frank],
Learning Interpretable Representation for 3D Point Clouds,
ICPR21(7470-7477)
IEEE DOI 2105
Deep learning, Training, Solid modeling, Visualization, Shape, Transforms BibRef

Mirbauer, M.[Martin], Krabec, M.[Miroslav], Krivánek, J.[Jaroslav], Šikudová, E.[Elena],
Survey and Evaluation of Neural 3D Shape Classification Approaches,
PAMI(44), No. 11, November 2022, pp. 8635-8656.
IEEE DOI 2210
Shape, Feature extraction, Solid modeling, Convolution, Neural networks, Training, 3D shape analysis, object recognition BibRef

Li, Y.[Yong], Lin, Q.[Qi], Zhang, Z.X.[Zhen-Xin], Zhang, L.Q.[Li-Qiang], Chen, D.[Dong], Shuang, F.[Feng],
MFNet: Multi-Level Feature Extraction and Fusion Network for Large-Scale Point Cloud Classification,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Wang, B.[Bin], Wang, H.[Hao], Song, D.M.[Dong-Mei],
A Filtering Method for LiDAR Point Cloud Based on Multi-Scale CNN with Attention Mechanism,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Xv, J.B.[Jia-Bin], Deng, F.[Fei], Liu, H.B.[Hai-Bing],
Point Cloud Convolution Network Based on Spatial Location Correspondence,
IJGI(11), No. 12, 2022, pp. xx-yy.
DOI Link 2301
BibRef

Woo, S.[Sungmin], Lee, D.[Dogyoon], Hwang, S.[Sangwon], Kim, W.J.[Woo Jin], Lee, S.Y.[Sang-Youn],
MKConv: Multidimensional feature representation for point cloud analysis,
PR(143), 2023, pp. 109800.
Elsevier DOI 2310
Point cloud, Feature learning, Convolutional neural network, 3D vision BibRef

Hao, Y.[Yun], Su, Y.K.[Yu-Kun], Lin, G.S.[Guo-Sheng], Su, H.J.[Han-Jing], Wu, Q.Y.[Qing-Yao],
Contrastive Generative Network with Recursive-Loop for 3D point cloud generalized zero-shot classification,
PR(144), 2023, pp. 109843.
Elsevier DOI 2310
3D point cloud, Generalized zero-shot, Contrastive learning, Recursive-loop BibRef

Chen, C.C.[Chuan-Chuan], Liu, D.R.[Dong-Rui], Xu, C.Q.[Chang-Qing], Truong, T.K.[Trieu-Kien],
SAKS: Sampling Adaptive Kernels From Subspace for Point Cloud Graph Convolution,
CirSysVideo(33), No. 10, October 2023, pp. 6013-6025.
IEEE DOI 2310
BibRef

Zhao, Z.[Zhi], Ma, Y.X.[Yan-Xin], Xu, K.[Ke], Wan, J.W.[Jian-Wei],
Information geometry based extreme low-bit neural network for point cloud,
PR(146), 2024, pp. 109986.
Elsevier DOI 2311
Information geometry, Binary, Ternary, Neural network, Point cloud BibRef

Belyaev, E.[Evgeny], Liu, K.[Kai],
An Adaptive Binary rANS With Probability Estimation in Reverse Order,
SPLetters(30), 2023, pp. 1487-1491.
IEEE DOI 2311
Asymmetric Numeral Systems. BibRef

Xie, T.[Tao], Zhang, H.M.[Hao-Ming], Yang, L.Q.[Lin-Qi], Wang, K.[Ke], Dai, K.[Kun], Li, R.F.[Rui-Feng], Zhao, L.J.[Li-Jun],
Point-NAS: A Novel Neural Architecture Search Framework for Point Cloud Analysis,
IP(32), 2023, pp. 6526-6542.
IEEE DOI 2312
BibRef

Wang, L.[Li], Xie, T.[Tao], Zhang, X.Y.[Xin-Yu], Jiang, Z.Q.[Zhi-Qiang], Yang, L.Q.[Lin-Qi], Zhang, H.M.[Hao-Ming], Li, X.Y.[Xiao-Yu], Ren, Y.L.[Yi-Long], Yu, H.Y.[Hai-Yang], Li, J.[Jun], Liu, H.P.[Hua-Ping],
Auto-Points: Automatic Learning for Point Cloud Analysis with Neural Architecture Search,
MultMed(26), 2024, pp. 2878-2893.
IEEE DOI 2402
Point cloud compression, Task analysis, Training, Feature extraction, Computer architecture, Object detection, deep learning BibRef

Floris, A.[Alberto], Frittoli, L.[Luca], Carrera, D.[Diego], Boracchi, G.[Giacomo],
Composite convolution: A flexible operator for deep learning on 3D point clouds,
PR(153), 2024, pp. 110557.
Elsevier DOI Code:
WWW Link. 2405
3D point clouds, Deep learning, Convolution, Anomaly detection BibRef

Chen, R.X.[Rui-Xing], Wu, J.[Jun], Zhao, X.M.[Xue-Mei], Luo, Y.[Ying], Xu, G.[Gang],
SC-CNN: LiDAR point cloud filtering CNN under slope and copula correlation constraint,
PandRS(212), 2024, pp. 381-395.
Elsevier DOI 2406
BibRef

Xie, X.L.[Xian-Lin], Tang, X.S.[Xue-Song],
A novel density-based representation for point cloud and its ability to facilitate classification,
IET-IPR(18), No. 12, 2024, pp. 3496-3506.
DOI Link 2411
image classification, image processing, neural nets BibRef


de Silva-Edirimuni, D.[Dasith], Lu, X.Q.[Xue-Quan], Li, G.[Gang], Wei, L.[Lei], Robles-Kelly, A.[Antonio], Li, H.D.[Hong-Dong],
StraightPCF: Straight Point Cloud Filtering,
CVPR24(20721-20730)
IEEE DOI Code:
WWW Link. 2410
Point cloud compression, Surface cleaning, Deep learning, Training, Filtering, Noise, Stochastic processes, Point Cloud Filtering, Straight Flows BibRef

Fei, J.J.[Jia-Jun], Deng, Z.D.[Zhi-Dong],
Incorporating Rotation Invariance with Non-invariant Networks for Point Clouds,
3DV24(985-994)
IEEE DOI Code:
WWW Link. 2408
Point cloud compression, Bridges, Representation learning, Codes, Solids, Complexity theory, Point clouds, 3D deep learning, Rotation invariance BibRef

Wu, C.Z.[Cheng-Zhi], Huang, Q.[Qianliang], Jin, K.[Kun], Pfrommer, J.[Julius], Beyerer, J.[Jürgen],
A Cross Branch Fusion-Based Contrastive Learning Framework for Point Cloud Self-supervised Learning,
3DV24(528-538)
IEEE DOI 2408
Point cloud compression, Representation learning, Training data, Benchmark testing, Data models, Task analysis BibRef

He, H.L.[Hong-Lin], Yang, Z.Q.[Zhuo-Qian], Li, S.[Shikai], Dai, B.[Bo], Wu, W.[Wayne],
OrthoPlanes: A Novel Representation for Better 3D-Awareness of GANs,
ICCV23(22939-22950)
IEEE DOI Code:
WWW Link. 2401
BibRef

Yuan, Z.Y.[Zi-Yang], Zhu, Y.M.[Yi-Ming], Li, Y.[Yu], Liu, H.Y.[Hong-Yu], Yuan, C.[Chun],
Make Encoder Great Again in 3D GAN Inversion through Geometry and Occlusion-Aware Encoding,
ICCV23(2437-2447)
IEEE DOI 2401
BibRef

Chen, X.Y.[Xing-Yu], Deng, Y.[Yu], Wang, B.Y.[Bao-Yuan],
Mimic3D: Thriving 3D-Aware GANs via 3D-to-2D Imitation,
ICCV23(2338-2348)
IEEE DOI Code:
WWW Link. 2401
BibRef

Sun, J.Q.[Jia-Qi], Niu, D.M.[Dong-Mei], Lv, N.[Na], Dou, W.T.[Wen-Tao], Peng, J.L.[Jing-Liang],
Lightweight Multi-View-Group Neural Network for 3D Shape Classification,
ICIP23(3409-3413)
IEEE DOI 2312
Based on depth maps generated by multi-view rendering. BibRef

Kaul, C.[Chaitanya], Mitton, J.[Joshua], Dai, H.[Hang], Murray-Smith, R.[Roderick],
Convolutional Point Transformer,
ACCVWS22(308-324).
Springer DOI 2307
Process 3D points to use on NN. BibRef

Yang, Y.Q.[Yu-Qi], Wang, P.S.[Peng-Shuai], Liu, Y.[Yang],
Interpolation-Aware Padding for 3D Sparse Convolutional Neural Networks,
ICCV21(7447-7455)
IEEE DOI 2203
Training, Interpolation, Runtime, Convolution, Semantics, Segmentation, grouping and shape, Detection and localization in 2D and 3D, Machine learning architectures and formulations BibRef

Mazur, K.[Kirill], Lempitsky, V.[Victor],
Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks,
ICCV21(10695-10704)
IEEE DOI 2203
Point cloud compression, Geometry, Image segmentation, Head, Semantics, Transformers, Recognition and classification BibRef

Chen, C.[Chao], Han, Z.Z.[Zhi-Zhong], Liu, Y.S.[Yu-Shen], Zwicker, M.[Matthias],
Unsupervised Learning of Fine Structure Generation for 3D Point Clouds by 2D Projection Matching,
ICCV21(12446-12457)
IEEE DOI 2203
Point cloud compression, Deep learning, Image resolution, Shape, Neural networks, Sampling methods, 3D from multiview and other sensors BibRef

Meng, Z.H.[Zi-Hang], Singh, V.[Vikas], Ravi, S.N.[Sathya N.],
Neural TMDlayer: Modeling Instantaneous flow of features via SDE Generators,
ICCV21(11615-11624)
IEEE DOI 2203
Point cloud compression, Computational modeling, Stochastic processes, Differential equations, Representation learning BibRef

Chen, Z.[Zhang], Zhang, Y.[Yinda], Genova, K.[Kyle], Fanello, S.[Sean], Bouaziz, S.[Sofien], Häne, C.[Christian], Du, R.F.[Ruo-Fei], Keskin, C.[Cem], Funkhouser, T.[Thomas], Tang, D.H.[Dan-Hang],
Multiresolution Deep Implicit Functions for 3D Shape Representation,
ICCV21(13067-13076)
IEEE DOI 2203
Geometry, Point cloud compression, Solid modeling, Shape, Superresolution, Decoding, BibRef

Ran, H.X.[Hao-Xi], Zhuo, W.[Wei], Liu, J.[Jun], Lu, L.[Li],
Learning Inner-Group Relations on Point Clouds,
ICCV21(15457-15467)
IEEE DOI 2203
Point cloud compression, Analytical models, Philosophical considerations, Computational modeling, Semantics, grouping and shape BibRef

Li, F.[Feiran], Fujiwara, K.[Kent], Okura, F.[Fumio], Matsushita, Y.[Yasuyuki],
A Closer Look at Rotation-invariant Deep Point Cloud Analysis,
ICCV21(16198-16207)
IEEE DOI 2203
Point cloud compression, Task analysis, Principal component analysis, Scene analysis and understanding, Recognition and classification BibRef

Tan, H.X.[Han-Xiao], Kotthaus, H.[Helena],
Surrogate Model-Based Explainability Methods for Point Cloud NNs,
WACV22(2927-2936)
IEEE DOI 2202
Point cloud compression, Training, Deep learning, Privacy and Ethics in Vision 3D Computer Vision BibRef

Wu, S.C.[Shun-Cheng], Tateno, K.[Keisuke], Navab, N.[Nassir], Tombari, F.[Federico],
Incremental 3D Semantic Scene Graph Prediction from RGB Sequences,
CVPR23(5064-5074)
IEEE DOI 2309
BibRef

Wu, S.C.[Shun-Cheng], Wald, J.[Johanna], Tateno, K.[Keisuke], Navab, N.[Nassir], Tombari, F.[Federico],
SceneGraphFusion: Incremental 3D Scene Graph Prediction from RGB-D Sequences,
CVPR21(7511-7521)
IEEE DOI 2111
Simultaneous localization and mapping, Fuses, Semantics, Graph neural networks BibRef

Wu, Z.W.[Zong-Wei], Allibert, G.[Guillaume], Stolz, C.[Christophe], Demonceaux, C.[Cédric],
Depth-adapted CNN for RGB-D Cameras,
ACCV20(IV:388-404).
Springer DOI 2103
BibRef

Griffiths, D.[David], Boehm, J.[Jan], Ritschel, T.[Tobias],
Curiosity-driven 3D Object Detection Without Labels,
3DV21(525-534)
IEEE DOI 2201
Training, Visualization, Neural networks, Object detection, Rendering (computer graphics), Task analysis BibRef

Chen, Z.[Zhuo], Guan, T.[Tao], Luo, Y.[Yawei], Wang, Y.S.[Yue-Song], Luo, K.[Keyang], Xu, L.Y.[Luo-Yuan],
PC-Net: A Deep Network for 3D Point Clouds Analysis,
ICPR21(465-472)
IEEE DOI 2105
NN approach with non-regular data. Deep learning, Aggregates, Neural networks, Benchmark testing, Feature extraction BibRef

Li, Y.[Yawei], Chen, H.[He], Cui, Z.P.[Zhao-Peng], Timofte, R.[Radu], Pollefeys, M.[Marc], Chirikjian, G.S.[Gregory S.], Van Gool, L.J.[Luc J.],
Towards Efficient Graph Convolutional Networks for Point Cloud Handling,
ICCV21(3732-3742)
IEEE DOI 2203
Point cloud compression, Convolution, Memory management, Neural networks, Graphics processing units, Machine learning architectures and formulations BibRef

Zhou, H.R.[Hao-Ran], Feng, Y.[Yidan], Fang, M.S.[Ming-Sheng], Wei, M.Q.[Ming-Qiang], Qin, J.[Jing], Lu, T.[Tong],
Adaptive Graph Convolution for Point Cloud Analysis,
ICCV21(4945-4954)
IEEE DOI 2203
Point cloud compression, Representation learning, Convolution, Shape, Semantics, Vision applications and systems, 3D from multiview and other sensors BibRef

Wong, C.C.[Chi-Chong], Vong, C.M.[Chi-Man],
Persistent Homology based Graph Convolution Network for Fine-grained 3D Shape Segmentation,
ICCV21(7078-7087)
IEEE DOI 2203
Deep learning, Point cloud compression, Solid modeling, Convolution, Computational modeling, Semantics, Segmentation, BibRef

Kaul, C.[Chaitanya], Pears, N.[Nick], Manandhar, S.[Suresh],
FatNet: A Feature-attentive Network for 3D Point Cloud Processing,
ICPR21(7211-7218)
IEEE DOI 2105
Deep learning, Pipelines, Neural networks, Benchmark testing, Fats BibRef

Shen, W.[Wen], Wei, Z.H.[Zhi-Hua], Huang, S.K.[Shi-Kun], Zhang, B.B.[Bin-Bin], Chen, P.Y.[Pan-Yue], Zhao, P.[Ping], Zhang, Q.S.[Quan-Shi],
Verifiability and Predictability: Interpreting Utilities of Network Architectures for Point Cloud Processing,
CVPR21(10698-10707)
IEEE DOI 2111
Measurement, Deep learning, Uncertainty, Network architecture BibRef

Wang, J.R.[Jian-Ren], Gang, H.M.[Hai-Ming], Ancha, S.[Siddarth], Chen, Y.T.[Yi-Ting], Held, D.[David],
Semi-supervised 3D Object Detection via Temporal Graph Neural Networks,
3DV21(413-422)
IEEE DOI 2201
Training, Point cloud compression, Smoothing methods, Detectors, Object detection, Semisupervised learning, 3d object detection BibRef

Lu, X.L.[Xiao-Long], Liu, B.[Baodi], Liu, W.F.[Wei-Feng], Zhang, K.[Kai], Li, Y.[Ye], Lu, X.P.[Xiao-Ping],
Linked Attention-Based Dynamic Graph Convolution Module for Point Cloud Classification,
ICIP21(3153-3157)
IEEE DOI 2201
Convolution, Benchmark testing, Feature extraction, Real-time systems, Data mining, Point cloud data, attention module, classification BibRef

Tailor, S.A.[Shyam A.], de Jong, R.[René], Azevedo, T.[Tiago], Mattina, M.[Matthew], Maji, P.[Partha],
Towards Efficient Point Cloud Graph Neural Networks Through Architectural Simplification,
DLGC21(2095-2104)
IEEE DOI 2112
Performance evaluation, Degradation, Memory management, Mixed reality, Feature extraction, Transformers BibRef

Qian, G.C.[Guo-Cheng], Abualshour, A.[Abdulellah], Li, G.H.[Guo-Hao], Thabet, A.[Ali], Ghanem, B.[Bernard],
PU-GCN: Point Cloud Upsampling using Graph Convolutional Networks,
CVPR21(11678-11687)
IEEE DOI 2111
Convolutional codes, Pipelines, Performance gain, Feature extraction BibRef

Zhao, Y.H.[Yong-Heng], Birdal, T.[Tolga], Lenssen, J.E.[Jan Eric], Menegatti, E.[Emanuele], Guibas, L.J.[Leonidas J.], Tombari, F.[Federico],
Quaternion Equivariant Capsule Networks for 3d Point Clouds,
ECCV20(I:1-19).
Springer DOI 2011
BibRef

Thomas, H.,
Rotation-Invariant Point Convolution With Multiple Equivariant Alignments.,
3DV20(504-513)
IEEE DOI 2102
Convolution, Kernel, Standards, Deep learning, Shape, Neural networks, Deep Learning, Point Clouds, Convolution BibRef

Xu, Q.G.[Qian-Geng], Sun, X.D.[Xu-Dong], Wu, C.Y.[Cho-Ying], Wang, P.Q.[Pan-Qu], Neumann, U.[Ulrich],
Grid-GCN for Fast and Scalable Point Cloud Learning,
CVPR20(5660-5669)
IEEE DOI 2008
Computational modeling, Data models, Convolution, Aggregates, Task analysis, Feature extraction BibRef

Lin, Z., Huang, S., Wang, Y.F.,
Convolution in the Cloud: Learning Deformable Kernels in 3D Graph Convolution Networks for Point Cloud Analysis,
CVPR20(1797-1806)
IEEE DOI 2008
Convolution, Kernel, Feature extraction, Shape, Task analysis BibRef

Ye, M., Xu, S., Cao, T.,
HVNet: Hybrid Voxel Network for LiDAR Based 3D Object Detection,
CVPR20(1628-1637)
IEEE DOI 2008
Feature extraction, Object detection, Laser radar, Encoding, Aggregates BibRef

Shi, W., Rajkumar, R.,
Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud,
CVPR20(1708-1716)
IEEE DOI 2008
Neural networks, Object detection, Feature extraction, Convolution, Laser radar, Shape BibRef

Griffiths, D., Boehm, J.,
Weighted Point Cloud Augmentation for Neural Network Training Data Class-imbalance,
Laser19(981-987).
DOI Link 1912
BibRef

Zhang, L.[Ling], Zhu, Z.G.[Zhi-Gang],
Unsupervised Feature Learning for Point Cloud Understanding by Contrasting and Clustering Using Graph Convolutional Neural Networks,
3DV19(395-404)
IEEE DOI 1911
Task analysis, Feature extraction, Training, Unsupervised learning, Semantics, Graph convolutional neural network BibRef

Komarichev, A.[Artem], Zhong, Z.[Zichun], Hua, J.[Jing],
A-CNN: Annularly Convolutional Neural Networks on Point Clouds,
CVPR19(7413-7422).
IEEE DOI 2002
BibRef

Zhao, W., Yi, R., Liu, Y.,
An Adaptive Filter for Deep Learning Networks on Large-Scale Point Cloud,
ICIP19(1620-1624)
IEEE DOI 1910
Large-scale point cloud filtering, super-points, deep learning BibRef

Hansen, L.[Lasse], Diesel, J.[Jasper], Heinrich, M.P.[Mattias P.],
Multi-kernel Diffusion CNNs for Graph-Based Learning on Point Clouds,
DeepLearn-G18(III:456-469).
Springer DOI 1905
BibRef

Ye, X.Q.[Xiao-Qing], Li, J.[Jiamao], Huang, H.[Hexiao], Du, L.[Liang], Zhang, X.L.[Xiao-Lin],
3D Recurrent Neural Networks with Context Fusion for Point Cloud Semantic Segmentation,
ECCV18(VII: 415-430).
Springer DOI 1810
BibRef

Gadelha, M.[Matheus], Wang, R.[Rui], Maji, S.[Subhransu],
Multiresolution Tree Networks for 3D Point Cloud Processing,
ECCV18(VII: 105-122).
Springer DOI 1810
BibRef

Zia, S., Yüksel, B., Yüret, D., Yemez, Y.,
RGB-D Object Recognition Using Deep Convolutional Neural Networks,
DeepLearn-G17(887-894)
IEEE DOI 1802
Feature extraction, Image color analysis, Object recognition, BibRef

Zhao, L.J.[Li-Jun], Liang, J.[Jie], Bai, H.H.[Hui-Hui], Wang, A.H.[An-Hong], Zhao, Y.[Yao],
Convolutional Neural Network-Based Depth Image Artifact Removal,
ICIP17(2438-2442)
IEEE DOI 1803
Color, Feature extraction, Image coding, Image color analysis, Image resolution, Training, joint filtering BibRef

Pang, G.[Guan], Neumann, U.[Ulrich],
3D point cloud object detection with multi-view convolutional neural network,
ICPR16(585-590)
IEEE DOI 1705
Complexity theory, Detectors, Object detection, Search problems, Training. 3D object extraction from point clouds. BibRef

Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Semantic Object Detection, 3D, Depth .


Last update:Nov 26, 2024 at 16:40:19