11.3.3.1 Discontinuity Analysis in Surface Reconstruction

Chapter Contents (Back)
Discontinuities in Surfaces. Adaptive Reconstructions. Surface Reconstruction.

Grimson, W.E.L., and Pavlidis, T.,
Discontinuity Detection for Visual Surface Reconstruction,
CVGIP(30), No. 3, June 1985, pp. 316-330.
WWW Link. (Bell Labs work) An algorithm to detect disparity discontinuities from sparse data and fit a surface to the points. BibRef 8506

Terzopoulos, D.[Demetri],
The Computation of Visible-Surface Representations,
PAMI(10), No. 4, July 1988, pp. 417-438.
IEEE DOI BibRef 8807

Terzopoulos, D.[Demetri],
Multilevel Computational Processes for Visual Surface Reconstruction,
CVGIP(24), No. 1, October 1983, pp. 52-96.
WWW Link. BibRef 8310
Earlier:
Multiresolution Computation of Visible-Surface Representations,
Ph.D.Thesis (MIT EECS), January 1984. BibRef
And:
The Role of Constraints and Discontinuities in Visible Surface Reconstruction,
IJCAI83(1019-1022). Relaxation. This paper uses the multi-grid relaxation technique given earlier to derive a technique for surface reconstruction that considers discontinuities. See also Multiresolution Algorithms in Computational Vision. BibRef

Terzopoulos, D.[Demetri],
Computing Visible Surface Representations,
MIT AI Memo-800, March 1985.
WWW Link. BibRef 8503

Terzopoulos, D.[Demetri],
Multi-Level Reconstruction of Visual Surfaces: Variational Principles and Finite Element Representations,
MIT AI Memo-671, April 1982.
WWW Link. BibRef 8204

Terzopoulos, D.,
Efficient Multiresolution Algorithms for Computing Lightness, Shape from Shading, and Optical Flow,
AAAI-84(314-317). BibRef 8400

Vasilescu, M.A.O., and Terzopoulos, D.,
Adaptive Meshes and Shells: Irregular Triangulation, Discontinuities, and Hierarchical Subdivisions,
CVPR92(829-832).
IEEE DOI Follow-up to the following paper. BibRef 9200

Terzopoulos, D., and Vasilescu, M.A.O.,
Sampling and Reconstruction with Adaptive Meshes,
CVPR91(70-75).
IEEE DOI Cut the surface at the detected edges. BibRef 9100

Blake, A.,
Comparison of the Efficiency of Deterministic and Stochastic Algorithms for Visual Reconstruction,
PAMI(11), No. 1, January 1989, pp. 2-12.
IEEE DOI BibRef 8901
Earlier:
Reconstructing a Visible Surface,
AAAI-84(23-26). Graduated nonconvexity is better than simulated annealing both in efficiency and in problem-solving power. BibRef

Blake, A., and Zisserman, A.,
Visual Reconstruction,
Cambridge: MIT Press1987. ISBN 0262022710.
PDF File. A complete discussion of continuity constraints. Graduated nonconvexity. BibRef 8700

Blake, A., Zisserman, A.,
Localizing Discontinuities Using Weak Continuity Constraints,
PRL(6), 1987, pp. 51-59. BibRef 8700

Blake, A., and Zisserman, A.,
Invariant Surface Reconstruction Using Weak Continuity Constraints,
CVPR86(62-67). Explicitly include discontinuities. BibRef 8600

Yi, J.H., Chelberg, D.M.,
Discontinuity-Preserving and Viewpoint Invariant Reconstruction of Visible Surfaces Using a First-Order Regularization,
PAMI(17), No. 6, June 1995, pp. 624-629.
IEEE DOI Regularization. BibRef 9506

Jou, J.Y.[Jinn-Yeu], and Bovik, A.C.[Alan C.],
Improved Initial Approximation and Intensity-Guided Discontinuity Detection in Visible-Surface Reconstruction,
CVGIP(47), No. 3, September 1989, pp. 292-326.
WWW Link. BibRef 8909
Earlier:
Improving Visible-Surface Reconstruction,
CVPR88(138-143).
IEEE DOI By using edges it is possible to improve the speed and accuracy of the reconstruction. BibRef

March, R.,
Visual Reconstruction with Discontinuities Using Variational Methods,
IVC(10), No. 1, January-February 1992, pp. 30-38.
WWW Link. BibRef 9201

Sparr, G., Hansson, A., Nielsen, L.,
Discontinuity Preserving Visual Reconstruction by Means of Potential Theory,
PRL(11), 1990, pp. 117-122. BibRef 9000

Qian, W., Titterington, D.M.,
Bayesian Image Restoration: An Application to Edge-Preserving Surface Recovery,
PAMI(15), No. 7, July 1993, pp. 748-752.
IEEE DOI 0401
See also On Some Bayesian/Regularization Methods for Image Restoration. BibRef

Vaidya, N.M., Boyer, K.L.,
Discontinuity-Preserving Surface Reconstruction Using Stochastic Differential Equations,
CVIU(72), No. 3, December 1998, pp. 257-270.
DOI Link BibRef 9812

Pedersini, F.[Federico], Sarti, A., Tubaro, S.,
Visible Surface Reconstruction with Accurate Localization of Object Boundaries,
CirSysVideo(10), No. 2, March 2000, pp. 278.
IEEE Top Reference. 0003
BibRef
Earlier:
Combined surface interpolation and object segmentation for automatic 3D scene reconstruction,
ICIP98(II: 963-966).
IEEE DOI 9810
BibRef
Earlier:
Combined Motion and Edge Analysis for a Layer-Based Representation of Image Sequences,
ICIP96(I: 921-924).
IEEE DOI BibRef
Earlier:
Synthesis of virtual views using non-Lambertian reflectivity models and stereo matching,
ICIP95(II: 358-361).
IEEE DOI 9510
BibRef

Kim, J.H.[Jae-Hak], Han, J.H.[Joon H.],
A corner preserving surface inference algorithm using 3D convolution,
PRL(22), No. 3-4, March 2001, pp. 259-269.
Elsevier DOI 0105
BibRef

Law, N.F., Chung, R.,
Multiresolution discontinuity-preserving surface reconstruction,
PR(34), No. 11, November 2001, pp. 2133-2144.
WWW Link. 0108
BibRef
Earlier:
Surface Reconstruction with Multiresolution Discontinuity Analysis,
ECCV98(II: 202).
Springer DOI BibRef

Lin, M.H.[Michael H.], Tomasi, C.[Carlo],
Surfaces with Occlusions from Layered Stereo,
PAMI(26), No. 8, August 2004, pp. 1073-1078.
IEEE Abstract. 0407
BibRef
Earlier: CVPR03(I: 710-717).
IEEE DOI
WWW Link. 0307
Estimate scene structure as a set of smooth surface patches. The disparities within each patch are modeled by a spline, while the extent of each patch is represented by a pixelwise labeling of the source images. Disparities and extents are alternately estimated in an iterative, energy minimization framework. BibRef

Li, K.[Kang], Wu, X.D.[Xiao-Dong], Chen, D.Z.[Danny Z.], Sonka, M.[Milan],
Optimal Surface Segmentation in Volumetric Images: A Graph-Theoretic Approach,
PAMI(28), No. 1, January 2006, pp. 119-134.
IEEE DOI 0512
BibRef
Earlier:
Globally optimal segmentation of interacting surfaces with geometric constraints,
CVPR04(I: 394-399).
IEEE DOI 0408
Surfaces in CT images. BibRef

Song, Q., Bai, J., Garvin, M.K., Sonka, M., Buatti, J.M., Wu, X.,
Optimal Multiple Surface Segmentation With Shape and Context Priors,
MedImg(32), No. 2, February 2013, pp. 376-386.
IEEE DOI 1301
BibRef

Song, Q.[Qi], Wu, X.D.[Xiao-Dong], Liu, Y.L.[Yun-Long], Sonka, M.[Milan], Garvin, M.K.[Mona K.],
Simultaneous searching of globally optimal interacting surfaces with shape priors,
CVPR10(2879-2886).
IEEE DOI 1006
BibRef

Yin, Y.[Yin], Song, Q.[Qi], Sonka, M.[Milan],
Electric Field Theory Motivated Graph Construction for Optimal Medical Image Segmentation,
GbRPR09(334-342).
Springer DOI 0905
Applied to surface segmentation. BibRef

Han, D.F.[Dong-Feng], Sonka, M.[Milan], Bayouth, J.[John], Wu, X.D.[Xiao-Dong],
Optimal multiple-seams search for image resizing with smoothness and shape prior,
VC(26), No. 6-8, June 2010, pp. 749-759.
WWW Link. 1101
BibRef
Earlier: A1, A4, A2, Only:
Optimal multiple surfaces searching for video/image resizing: A graph-theoretic approach,
ICCV09(1026-1033).
IEEE DOI 0909
BibRef

Dou, X.[Xin], Wu, X.D.[Xiao-Dong], Wahle, A.[Andreas], Sonka, M.[Milan],
Globally optimal surface segmentation using regional properties of segmented objects,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Lui, L.M.[Lok Ming], Zeng, W.[Wei], Yau, S.T.[Shing-Tung], Gu, X.F.[Xian-Feng],
Shape Analysis of Planar Multiply-Connected Objects Using Conformal Welding,
PAMI(36), No. 7, July 2014, pp. 1384-1401.
IEEE DOI 1407
BibRef
Earlier:
Shape Analysis of Planar Objects with Arbitrary Topologies Using Conformal Geometry,
ECCV10(V: 672-686).
Springer DOI 1009
Educational institutions BibRef

Yin, X.T.[Xiao-Tian], Dai, J.F.[Jun-Fei], Yau, S.T.[Shing-Tung], Gu, X.F.[Xian-Feng],
Slit Map: Conformal Parameterization for Multiply Connected Surfaces,
GMP08(xx-yy).
Springer DOI 0804
itting with multiple connected surfaces BibRef

Gu, X.F.[Xian-Feng], Yau, S.T.[Shing-Tung],
Surface classification using conformal structures,
ICCV03(701-708).
IEEE DOI 0311
Conformal equivalent classes are between topological and isometric classes. BibRef


Saygili, G.[Gorkem], van der Maaten, L.[Laurens], Hendriks, E.A.[Emile A.],
Hybrid Kinect Depth Map Refinement for Transparent Objects,
ICPR14(2751-2756)
IEEE DOI 1412
BibRef

Alt, N.[Nicolas], Rives, P.[Patrick], Steinbach, E.[Eckehard],
Reconstruction of transparent objects in unstructured scenes with a depth camera,
ICIP13(4131-4135)
IEEE DOI 1402
3D Reconstruction; Transparency Detection BibRef

Wanner, S.[Sven], Goldluecke, B.[Bastian],
Reconstructing Reflective and Transparent Surfaces from Epipolar Plane Images,
GCPR13(1-10).
Springer DOI 1311
BibRef

Wang, Y.T.[Yin-Ting], Bu, J.J.[Jia-Jun], Li, N.[Na], Song, M.L.[Ming-Li], Tan, P.[Ping],
Detecting discontinuities for surface reconstruction,
ICPR12(2108-2111).
WWW Link. 1302
BibRef

Wang, Y.[Yilin], Dunn, E., Frahm, J.M.,
An Approach for Shape from Surface Normals with Local Discontinuity Detection,
3DIMPVT11(188-195).
IEEE DOI 1109
BibRef

Zheng, E., Wang, K., Dunn, E., Frahm, J.M.,
Minimal Solvers for 3D Geometry from Satellite Imagery,
ICCV15(738-746)
IEEE DOI 1602
Cameras BibRef

Ecker, A.[Ady], Jepson, A.D.[Allan D.], Kutulakos, K.N.[Kiriakos N.],
Semidefinite Programming Heuristics for Surface Reconstruction Ambiguities,
ECCV08(I: 127-140).
Springer DOI 0810
BibRef

Schmidt, A., Soergel, U.,
Monitoring and change detection of Wadden Sea areas using Lidar data,
SSG13(219-224).
DOI Link 1402
BibRef

Soergel, U., Jacobsen, K., Schack, L.,
TanDEM-X Mission: Overview and Evaluation of intermediate Results,
SSG13(225-230).
DOI Link 1402
BibRef

Schmidt, A., Rottensteiner, F., Soergel, U.,
Monitoring Concepts for Coastal Areas Using LIDAR Data,
Hannover13(311-316).
DOI Link 1308
BibRef

Goepfert, J., Soergel, U., Heipke, C., Brzank, A.,
An Approach for Filtering LIDAR Data in Coastal Vegetated Areas Using Intensity Information and Multiple Echoes,
ISPRS08(B3b: 219 ff).
PDF File. 0807
BibRef

Shimizu, M.[Masao], Okutomi, M.[Masatoshi],
Microscopic Surface Shape Estimation of a Transparent Plate Using a Complex Image,
ACCV07(II: 176-185).
Springer DOI 0711
BibRef

Fanany, M.I.[Mohamad Ivan], Kumazawa, I.[Itsuo],
Analytic Reconstruction of Transparent and Opaque Surfaces from Texture Images,
IbPRIA07(II: 380-387).
Springer DOI 0706
BibRef
Earlier:
A Neural Network for Simultaneously Reconstructing Transparent and Opaque Surfaces,
ICIAR06(II: 157-168).
Springer DOI 0610
BibRef

Fanany, M.I.[Mohamad Ivan], Kobayashi, K.[Kiichi], Kumazawa, I.[Itsuo],
A Combinatorial Transparent Surface Modeling from Polarization Images,
IWCIA04(65-76).
Springer DOI 0505
BibRef

Wu, T.P.[Tai-Pang], Tang, C.K.[Chi-Keung],
Visible Surface Reconstruction from Normals with Discontinuity Consideration,
CVPR06(II: 1793-1800).
IEEE DOI 0606
BibRef

Yang, J.[Jing], Duncan, J.S.,
Joint prior models of neighboring objects for 3D image segmentation,
CVPR04(I: 314-319).
IEEE DOI 0408
BibRef

Wallace, A.M., Csakany, P., Buller, G.S., Walker, A.C.,
3D Imaging of Transparent Objects,
BMVC00(xx-yy).
PDF File. 0009
BibRef

Borga, M., Knutsson, H.,
Estimating Multiple Depths in Semi-transparent Stereo Images,
SCIA99(Computer Vision III). BibRef 9900

Mathur, S., Ferrie, F.P.,
Edge Localization in Surface Reconstruction Using Optimal Estimation Theory,
CVPR97(833-838).
IEEE DOI 9704
BibRef

Vaidya, N.M., Boyer, K.L.,
Discontinuity Preserving Surface Reconstruction Through Global Optimization,
SCV95(115-120).
IEEE Top Reference. Ohio State University. BibRef 9500

Shizawa, M.,
Reconstruction of multiple overlapping surfaces via standard regularization techniques,
ICPR94(A:321-325).
IEEE DOI 9410
BibRef

Figueiredo, M.A.T., and Leitao, J.M.N.,
Simulated Tearing: An Algorithm for Discontinuity-Preserving Visual Surface Reconstruction,
CVPR93(28-33).
IEEE DOI BibRef 9300

Gunsel, B., Jain, A.K.,
Visual surface reconstruction and boundary detection using stochastic models,
ICPR92(III:343-346).
IEEE DOI 9208
BibRef

Pawlak, M.,
On the detection and measurement of discontinuities,
ICPR92(III:378-381).
IEEE DOI 9208
BibRef

Marroquin, J.L.[Jose L.],
Surface Reconstruction Preserving Discontinuities,
MIT AI Memo-792, August 1984.
WWW Link. BibRef 8408

Chapter on 3-D Object Description and Computation Techniques, Surfaces, Deformable, View Generation, Video Conferencing continues in
Fitting Curved Surfaces .


Last update:Mar 13, 2017 at 16:25:24