Cox, I.J., and
Miller, M.L.,
On Finding Ranked Assignments with Application to Multi-Target Tracking
and Motion Correspondence,
AeroSys(32), No. 1, January 1995, pp. 486-489.
BibRef
9501
Cox, I.J.,
Hingorani, S.L.,
An Efficient Implementation of Reid's Multiple Hypothesis Tracking
Algorithm and Its Evaluation for the Purpose of Visual Tracking,
PAMI(18), No. 2, February 1996, pp. 138-150.
IEEE DOI
BibRef
9602
Earlier:
An Efficient Implementation and Evaluation of Reid's
Multiple Hypothesis Tracking Algorithm for Visual Tracking,
ICPR94(A:437-442).
IEEE DOI For Reid:
See also Algorithm for Tracking Multiple Targets, An. Track (in the image plane) a large nubmer of corner features
through an image sequence.
BibRef
Shen, X.Q.[Xin-Quan],
Palmer, P.[Phil],
Uncertainty Propagation and the Matching of Junctions as Feature
Groupings,
PAMI(22), No. 12, December 2000, pp. 1381-1395.
IEEE DOI
0012
In tracking use topology of junctions based on groupings of
features which are related to an object.
BibRef
Micheloni, C.[Christian],
Foresti, G.L.[Gian Luca],
A robust feature tracker for active surveillance of outdoor scenes,
ELCVIA(1), No. 1 2002, pp. 21-34.
DOI Link
BibRef
0200
Earlier:
Focusing on Target's Features while Tracking,
ICPR06(I: 836-839).
IEEE DOI
0609
BibRef
Earlier:
Zoom on Target While Tracking,
ICIP05(III: 117-120).
IEEE DOI
0512
Track features, compensate for background changes due to camera motion
(
See also Generalized Image Matching by the Method of Differences. )
BibRef
Veenman, C.J.,
Reinders, M.J.T.,
Backer, E.,
Motion tracking as a constrained optimization problem,
PR(36), No. 9, September 2003, pp. 2049-2067.
Elsevier DOI
0307
BibRef
Veenman, C.J.,
Reinders, M.J.T.,
Backer, E.,
Establishing motion correspondence using extended temporal scope,
AI(145), No. 1-2, April 2003, pp. 227-243.
Elsevier DOI Feature point matching.
0306
BibRef
Dorini, L.B.[Leyza Baldo],
Goldenstein, S.K.[Siome Klein],
Unscented feature tracking,
CVIU(115), No. 1, January 2011, pp. 8-15.
Elsevier DOI
1011
Feature tracking; Uncertainty tracking; Outlier rejection; Statistical
correspondences
BibRef
Gouiffès, M.[Michèle],
Collewet, C.[Christophe],
Fernandez-Maloigne, C.[Christine],
Trémeau, A.[Alain],
A study on local photometric models and their application to robust
tracking,
CVIU(116), No. 8, August 2012, pp. 896-907.
Elsevier DOI
1205
BibRef
Earlier:
A Photometric Model for Specular Highlights and Lighting Changes.
Application to Feature Points Tracking.,
ICIP06(2117-2120).
IEEE DOI
0610
BibRef
Earlier:
Feature Points Tracking:
Robustness to Specular Highlights and Lighting Changes,
ECCV06(IV: 82-93).
Springer DOI
0608
Robust feature point tracking; Local photometric
models
BibRef
Collewet, C.[Christophe],
Marchand, E.[Eric],
Modeling complex luminance variations for target tracking,
CVPR08(1-7).
IEEE DOI
0806
BibRef
Kermad, C.,
Collewet, C.[Christophe],
Improving Feature Tracking by Robust Points of Interest Selection,
VMV01(xx-yy).
PDF File.
0209
BibRef
Gouiffes, M.[Michele],
Tracking by Combining Photometric Normalization and Color Invariants
According to their Relevance,
ICIP07(VI: 145-148).
IEEE DOI
0709
BibRef
Fan, J.L.[Jia-Lue],
Shen, X.H.[Xiao-Hui],
Wu, Y.[Ying],
Scribble Tracker: A Matting-Based Approach for Robust Tracking,
PAMI(34), No. 8, August 2012, pp. 1633-1644.
IEEE DOI
1206
BibRef
Earlier:
Closed-Loop Adaptation for Robust Tracking,
ECCV10(I: 411-424).
Springer DOI
1009
Model updating in tracking. Get accurate boundaries of the target.
BibRef
Fan, J.L.[Jia-Lue],
Wu, Y.[Ying],
Contextual saliency,
VCIP11(1-4).
IEEE DOI
1201
BibRef
Earlier: A2, A1:
Contextual flow,
CVPR09(33-40).
IEEE DOI
0906
Feature point tracking.
BibRef
Bins, J.[Jose],
Dihl, L.L.[Leandro L.],
Jung, C.R.[Claudio R.],
Target Tracking Using Multiple Patches and Weighted Vector Median
Filters,
JMIV(45), No. 3, March 2013, pp. 293-307.
Springer DOI
1301
Separate patches on one target. Track each patch, fuse results with WVM
BibRef
Fickel, G.P.[Guilherme P.],
Jung, C.R.[Claudio R.],
Lee, B.[Bowon],
Multiview image and video interpolation using weighted vector median
filters,
ICIP14(5387-5391)
IEEE DOI
1502
Cameras
BibRef
Babu, R.V.[R. Venkatesh],
Parate, P.[Priti],
Acharya K., Ä.[Äniruddha],
Robust tracking with interest points:
A sparse representation approach,
IVC(33), No. 1, 2015, pp. 44-56.
Elsevier DOI
1402
Visual tracking
BibRef
Babu, R.V.[R. Venkatesh],
Parate, P.[Priti],
Interest points based object tracking via sparse representation,
ICIP13(2963-2967)
IEEE DOI
1402
Harris corner
BibRef
Babu, R.V.[R. Venkatesh],
Real-time robust tracking via sparse representation:
A mode-seeking approach,
ICIP13(3919-3923)
IEEE DOI
1402
Likelihood Map
See also Online adaptive radial basis function networks for robust object tracking.
BibRef
Kumar, M.S.N.[M.S. Naresh],
Parate, P.[Priti],
Babu, R.V.[R. Venkatesh],
Fragment-based real-time object tracking:
A sparse representation approach,
ICIP12(433-436).
IEEE DOI
1302
BibRef
Rabbi, I.[Ihsan],
Ullah, S.[Sehat],
Javed, M.[Muhammad],
Zen, K.[Kartinah],
Analysing the attributes of fiducial markers for robust tracking in
augmented reality applications,
IJCVR(7), No. 1/2, 2017, pp. 68-82.
DOI Link
1701
BibRef
Roudot, P.,
Ding, L.,
Jaqaman, K.,
Kervrann, C.,
Danuser, G.,
Piecewise-Stationary Motion Modeling and Iterative Smoothing to Track
Heterogeneous Particle Motions in Dense Environments,
IP(26), No. 11, November 2017, pp. 5395-5410.
IEEE DOI
1709
Kalman filters, Optimization, Particle tracking,
Signal to noise ratio, Tracking, Trajectory,
Multiple particle tracking (MPT), adaptive gating, cell biology,
interacting multiple model, kalman smoothing
BibRef
Wang, J.[Jun],
Wang, Y.Y.[Yuan-Yun],
Wang, H.Z.[Han-Zi],
Adaptive Appearance Modeling With Point-to-Set Metric Learning for
Visual Tracking,
CirSysVideo(27), No. 9, September 2017, pp. 1987-2000.
IEEE DOI
1709
Robustness, Target tracking, Visualization, Affine hull (AH),
appearance model, metric learning.
BibRef
Wang, J.[Jun],
Yin, P.[Peng],
Wang, Y.Y.[Yuan-Yun],
Yang, W.H.[Wen-Hui],
CMAT: Integrating Convolution Mixer and Self-Attention for Visual
Tracking,
MultMed(26), 2024, pp. 326-338.
IEEE DOI
2401
BibRef
Jung, H.W.[Hye-Won],
Lee, S.H.[Sang-Heon],
Donnelley, M.[Martin],
Parsons, D.[David],
Stamatescu, V.[Victor],
Lee, I.[Ivan],
Multiple particle tracking in time-lapse synchrotron X-ray images
using discriminative appearance and neighbouring topology learning,
PR(93), 2019, pp. 485-497.
Elsevier DOI
1906
Convolutional neural network (CNN), LDA, Neighbuoring topology,
Multi-frame association, Particle tracking
BibRef
Zhang, S.,
Zhao, X.,
Fang, L.,
CAT: Corner Aided Tracking With Deep Regression Network,
MultMed(23), 2021, pp. 859-870.
IEEE DOI
2103
Target tracking, Shape, Estimation, Cats, Strain, Reliability, Training,
Corner aided tracker, deep regression tracking, visual object tracking
BibRef
Xu, Z.B.[Zhen-Bo],
Yang, W.[Wei],
Zhang, W.[Wei],
Tan, X.[Xiao],
Huang, H.[Huan],
Huang, L.S.[Liu-Sheng],
Segment as Points for Efficient and Effective Online Multi-Object
Tracking and Segmentation,
PAMI(44), No. 10, October 2022, pp. 6424-6437.
IEEE DOI
2209
Image color analysis, Feature extraction, Image segmentation,
Automobiles, Motion segmentation, Annotations, Object segmentation, tracking
BibRef
Xu, Z.B.[Zhen-Bo],
Zhang, W.[Wei],
Tan, X.[Xiao],
Yang, W.[Wei],
Huang, H.[Huan],
Wen, S.L.[Shi-Lei],
Ding, E.R.[Er-Rui],
Huang, L.S.[Liu-Sheng],
Segment as Points for Efficient Online Multi-object Tracking and
Segmentation,
ECCV20(I:264-281).
Springer DOI
2011
BibRef
Gao, Y.[Yan],
Xu, H.J.[Hao-Jun],
Zheng, Y.[Yu],
Li, J.[Jie],
Gao, X.B.[Xin-Bo],
An Object Point Set Inductive Tracker for Multi-Object Tracking and
Segmentation,
IP(31), 2022, pp. 6083-6096.
IEEE DOI
2210
Task analysis, Tracking, Image segmentation, Feature extraction,
Training, Multitasking, Multi-object tracking and segmentation,
multi-object tracking
BibRef
Liu, C.W.[Chong-Wei],
Li, H.J.[Hao-Jie],
Wang, Z.H.[Zhi-Hui],
Xu, R.[Rui],
Addressing Challenges of Incorporating Appearance Cues Into Heuristic
Multi-Object Tracker via a Novel Feature Paradigm,
IP(33), 2024, pp. 5727-5739.
IEEE DOI
2410
Feature extraction, Tracking, Costs, Trajectory, Training, Robustness, Runtime,
Computational modeling, Benchmark testing, Detectors, feature similarity
BibRef
Mohamed, S.A.S.[Sherif A. S.],
Yasin, J.N.[Jawad N.],
Haghbayan, M.H.[Mohammad-Hashem],
Miele, A.[Antonio],
Heikkonen, J.[Jukka],
Tenhunen, H.[Hannu],
Plosila, J.[Juha],
Asynchronous Corner Tracking Algorithm Based on Lifetime of Events for
Davis Cameras,
ISVC20(I:530-541).
Springer DOI
2103
BibRef
Vlaminck, M.,
Luong, H.,
Philips, W.,
A markerless 3D tracking approach for augmented reality applications,
IC3D17(1-7)
IEEE DOI
1804
SLAM (robots), augmented reality, cameras, image motion analysis,
object detection, object tracking, pose estimation, robot vision,
registration
BibRef
Zeng, X.,
Xu, L.,
Ma, L.,
Zhao, R.,
Interest points based collaborative tracking,
VCIP16(1-4)
IEEE DOI
1701
Collaboration
BibRef
Stylianou, A.,
Pless, R.[Robert],
SparkleGeometry: Glitter Imaging for 3D Point Tracking,
CCD16(919-926)
IEEE DOI
1612
BibRef
Dimitriou, N.,
Stavropoulos, G.,
Moustakas, K.,
Tzovaras, D.,
Multiple object tracking based on motion segmentation of point
trajectories,
AVSS16(200-206)
IEEE DOI
1611
Clustering algorithms
BibRef
Pancham, A.[Ardhisha],
Withey, D.[Daniel],
Bright, G.[Glen],
Tracking image features with PCA-SURF descriptors,
MVA15(365-368)
IEEE DOI
1507
Accuracy.
Which features to track.
BibRef
Kumar, K.A.S.[K.A. Shiva],
Ramakrishnan, K.R.,
Rathna, G.N.,
Distributed sigma point information filters for target tracking in
camera networks,
MVA15(373-377)
IEEE DOI
1507
Cameras
BibRef
Piccini, T.[Tommaso],
Persson, M.[Mikael],
Nordberg, K.[Klas],
Felsberg, M.[Michael],
Mester, R.[Rudolf],
Good Edgels to Track:
Beating the Aperture Problem with Epipolar Geometry,
CVRoads14(652-664).
Springer DOI
1504
Sparsity of the matched key-points in multi-view stereo, motion.
Edgels that can be used with motion constraints.
BibRef
Maresca, M.E.[Mario Edoardo],
Petrosino, A.[Alfredo],
Clustering Local Motion Estimates for Robust and Efficient Object
Tracking,
VOT14(244-253).
Springer DOI
1504
BibRef
And:
The Matrioska Tracking Algorithm on LTDT2014 Dataset,
LTDT14(720-725)
IEEE DOI
1409
BibRef
Earlier:
MATRIOSKA: A Multi-level Approach to Fast Tracking by Learning,
CIAP13(II:419-428).
Springer DOI
1309
Video tracking using multiple keypoint extraction methods.
BibRef
Lourenço, M.[Miguel],
Barreto, J.P.[João Pedro],
Tracking Feature Points in Uncalibrated Images with Radial Distortion,
ECCV12(IV: 1-14).
Springer DOI
1210
BibRef
Zheng, H.[Hong],
Sui, Q.Q.[Qiang-Qiang],
Wasfy, W.,
Chen, L.[Lei],
A New Method for the Discerning of Point Moving Targets' Tracks,
CISP09(1-5).
IEEE DOI
0910
BibRef
Tian, Y.X.[Yi-Xiang],
Gerke, M.[Markus],
Vosselman, G.[George],
Zhu, Q.[Qing],
Automatic Edge Matching Across an Image Sequence Based on Reliable
Points,
ISPRS08(B3b: 657 ff).
PDF File.
0807
BibRef
Buchanan, A.[Aeron],
Fitzgibbon, A.W.[Andrew W.],
Combining local and global motion models for feature point tracking,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Hernandez, S.[Sergio],
Teal, P.[Paul],
Multi-target Tracking with Poisson Processes Observations,
PSIVT07(474-483).
Springer DOI
0712
BibRef
Tsin, Y.H.[Yang-Hai],
Genc, Y.[Yakup],
Zhu, Y.[Ying],
Ramesh, V.[Visvanathan],
Learn to Track Edges,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Domae, Y.,
Takauji, H.,
Stier, H.,
Kaneko, S.,
Tanaka, T.,
Extraction and tracking of orientation coded features being robust
against illumination changes,
IEVM06(xx-yy).
PDF File.
0609
BibRef
Šegvic, S.[Siniša],
Remazeilles, A.[Anthony],
Chaumette, F.[François],
Enhancing the Point Feature Tracker by Adaptive Modelling of the
Feature Support,
ECCV06(II: 112-124).
Springer DOI
0608
BibRef
Fiala, M.,
Using Normalized Interest Point Trajectories Over Scale for Image
Search,
CRV06(58-58).
IEEE DOI
0607
Track interest points (corners).
BibRef
Mohanna, F.,
Mokhtarian, F.,
Robust corner tracking for multimedia applications,
ICIP02(III: 945-948).
IEEE DOI
0210
BibRef
And:
A Multi-Scale Approach to Corner Tracking,
WSCG02(SH-74).
HTML Version.
0209
See also Performance evaluation of corner detectors using consistency and accuracy measures.
BibRef
Brantner, S.[Stefan],
Auer, T.[Thomas],
Pinz, A.[Axel],
Real-Time Optical Edge and Corner Tracking at Subpixel Accuracy,
CAIP99(534-541).
Springer DOI
9909
BibRef
Gu, H.,
Asada, M., and
Shirai, Y.,
The Optimal Partition of Moving Edge Segments,
CVPR93(367-372).
IEEE DOI
See also MDL-Based Segmentation and Motion Modeling in a Long Image Sequence of Scene with Multiple Independently Moving-Objects. Using MDL coding, find moving edges.
BibRef
9300
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Target Tracking, Multi-Object Tracking, Occlusions .