Shvaytser, H.,
Learnable and Nonlearnable Visual Concepts,
PAMI(12), No. 5, May 1990, pp. 459-466.
IEEE DOI
BibRef
9005
Earlier:
ICCV88(264-268).
IEEE DOI
BibRef
Bradley, A.P.[Andrew P.],
The Use of the Area Under the ROC Curve in the
Evaluation of Machine Learning Algorithms,
PR(30), No. 7, July 1997, pp. 1145-1159.
Elsevier DOI
9707
BibRef
Bradley, A.P.[Andrew P.],
ROC curve equivalence using the Kolmogorov-Smirnov test,
PRL(34), No. 5, 1 April 2013, pp. 470-475.
Elsevier DOI
1303
ROC curves; KS-test; AUC; Specificity; Sensitivity; Coherence
BibRef
Bradley, A.P.,
Longstaff, I.D.,
Sample size estimation using the receiver operating characteristic
curve,
ICPR04(IV: 428-431).
IEEE DOI
0409
BibRef
Gu, H.Z.[Han-Zhong],
Takahashi, H.[Haruhisa],
How Bad May Learning Curves Be?,
PAMI(22), No. 10, October 2000, pp. 1155-1167.
IEEE DOI
0011
BibRef
Gifford, H.C.,
King, M.A.,
Pretorius, P.H.,
Wells, R.G.,
A Comparison of Human and Model Observers in Multislice LROC Studies,
MedImg(24), No. 2, February 2005, pp. 160-169.
IEEE Abstract.
0501
BibRef
Wang, F.,
Dobre, O.A.,
Chan, C.,
Zhang, J.,
Fold-based Kolmogorov-Smirnov Modulation Classifier,
SPLetters(23), No. 7, July 2016, pp. 1003-1007.
IEEE DOI
1608
modulation
BibRef
Bhaskaruni, D.[Dheeraj],
Moss, F.P.[Fiona Patricia],
Lan, C.[Chao],
Estimating Prediction Qualities without Ground Truth:
A Revisit of the Reverse Testing Framework,
ICPR18(49-54)
IEEE DOI
1812
Testing, Training, Predictive models, Measurement, Anomaly detection,
Task analysis
BibRef
Ramos-Pollán, R.[Raúl],
Guevara-López, M.Á.[Miguel Ángel],
Oliveira, E.[Eugénio],
Introducing ROC Curves as Error Measure Functions:
A New Approach to Train ANN-Based Biomedical Data Classifiers,
CIARP10(517-524).
Springer DOI
1011
BibRef
Pungprasertying, P.[Prasertsak],
Chatpatanasiri, R.[Ratthachat],
Kijsirikul, B.[Boonserm],
Migration Analysis: An Alternative Approach for Analyzing Learning
Performance,
ICPR06(II: 837-840).
IEEE DOI
0609
BibRef
Shimizu, S.,
Ohyama, W.,
Wakabayashi, T.,
Kimura, F.,
Mirror image learning for autoassociative neural networks,
ICDAR03(804-808).
IEEE DOI
0311
BibRef
Shi, M.[Meng],
Wakabayashi, T.,
Ohyama, W.,
Kimura, F.,
Comparative study on mirror image learning (MIL) and GLVQ,
ICPR02(II: 248-252).
IEEE DOI
0211
BibRef
Earlier: A2, A1, A3, A4:
A comparative study on mirror image learning and ALSM,
FHR02(151-156).
IEEE Top Reference.
0209
BibRef
Burege, M.J.,
Burger, W.,
Learning Visual Ideals,
CIAP97(II: 316-323).
Springer DOI
9709
Compares 24 different approaches for learning applied to object
recognition.
BibRef
Blackburn, M.R.[Michael R.], and
Nguyen, H.G.[Hoa G.],
Learning in Robot Vision Directed Reaching: A Comparison of Methods,
ARPA94(I:781-788).
BibRef
9400
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Learning Object Descriptions, Object Recognition .