Cohen, B.[Brian],
Sammut, C.[Claude],
Object recognition and concept learning with CONFUCIUS,
PR(15), No. 4, 1982, pp. 309-316.
Elsevier DOI
0309
BibRef
Soucke, B.[Branko],
Fast Learning and Invariant Object Recognition:
The Sixth Generation Breakthrough,
New York:
Wiley-Interscience1992.
ISBN 0-471-57430-9.
BibRef
9200
Chan, T.Y.T.[Tony Y.T.],
Goldfarb, L.[Lev],
Primitive pattern learning,
PR(25), No. 8, August 1992, pp. 883-889.
Elsevier DOI
0401
BibRef
Edelman, S.,
On Learning to Recognize 3-D Objects from Examples,
PAMI(15), No. 8, August 1993, pp. 833-837.
IEEE DOI
BibRef
9308
Edelman, S.,
Representation of Similarity in 3-Dimensional Object Discrimination,
NeurComp(7), No. 2, March 1995, pp. 408-423.
BibRef
9503
Edelman, S.[Shimon],
Representing 3D Objects by Sets of Activities of Receptive Fields,
BioCyber(70), 1993, pp. 37-45.
BibRef
9300
Edelman, S.[Shimon],
Viewpoint-specific Representations in Three-dimensional
Object Recognition,
MIT AI Memo-1239, August 1990.
BibRef
9008
Edelman, S.,
Class Similarity and Viewpoint Invariance in the Recognition
of 3D Objects,
BioCyber(72), No. 3, February 1995, pp. 207-220.
BibRef
9502
Edelman, S.[Shimon], and
Weinshall, D.[Daphna],
A Self-Organizing Multiple-View Representation of 3D objects,
BioCyber(64), 1991, pp. 209-219.
BibRef
9100
Edelman, S.[Shimon],
Bulthoff, H.H.[Heinrich H.],
Orientation Dependence in the Recognition of Familiar and Novel Views of
3D Objects,
Vision Research(32), 1992, pp. 2385-2400.
BibRef
9200
Cutzu, F.[Florin],
Edelman, S.[Shimon],
Canonical Views in Object Representation and Recognition,
Vision Research(34), 1994, pp. 3037-3056.
BibRef
9400
Poggio, T.[Tomaso], and
Sung, K.K.[Kah-Kay],
Networks that Learn for Image Understanding,
AIU96(226-240).
BibRef
9600
Sung, K.K.[Kah-Kay],
Learning and Example Selection for Object and Pattern Detection,
MIT AI-TR-1572, January 1996.
WWW Link.
BibRef
9601
Poggio, T.,
Edelman, S.,
A Network that Learns to Recognize 3D Objects,
Nature(343), No. 6255, 1990, pp. 263-266.
BibRef
9000
Edelman, S.,
Poggio, T.,
Representations in High-Level Vision:
Reassessing the Inverse Optics Paradigm,
DARPA89(944-949).
BibRef
8900
Maloof, M.A.,
Michalski, R.S.,
Learning Symbolic Descriptions of Shape for Object Recognition in
X-Ray Images,
ExSysApp(12), No. 1, 1997, pp. 11-20.
9701
BibRef
Lee, C.M.,
Pong, T.C.,
Esterline, A.,
Slagle, J.R.,
KOR: A Knowledge-Based Object Recognition System,
CVIP92(329-362).
BibRef
9200
Lee, C.M.[Chung-Mong],
Pong, T.C.[Ting-Chuen],
Slagle, J.R.[James R.],
Esterline, A.[Albert],
An Experimental-Study of an Object Recognition System That Learns,
PR(27), No. 1, January 1994, pp. 65-89.
Elsevier DOI
BibRef
9401
Epstein, R.,
Yuille, A.L.,
Belhumeur, P.N.,
Learning Object Representations from Lighting Variations,
ORCV96(179)
9611
BibRef
Sugihara, K.[Kokichi],
A graph-theoretical method for monitoring concept formation,
PR(28), No. 11, November 1995, pp. 1635-1643.
Elsevier DOI
0401
Human learning of concepts.
BibRef
Wallis, G.,
Baddeley, R.,
Optimal, Unsupervised Learning in Invariant Object Recognition,
NeurComp(9), No. 4, May 15 1997, pp. 883-894.
9706
BibRef
Peng, J.[Jing], and
Bhanu, B.[Bir],
Close-Loop Object Recognition Using Reinforcement Learning,
PAMI(20), No. 2, February 1998, pp. 139-154.
IEEE DOI
9803
BibRef
Earlier:
CVPR96(538-543).
IEEE DOI
BibRef
And: A2, A1:
ARPA94(I:777-780).
BibRef
Peng, J.[Jing],
Bhanu, B.[Bir],
Local discriminative learning for pattern recognition,
PR(34), No. 1, January 2001, pp. 139-150.
Elsevier DOI
0010
BibRef
And:
Local Reinforcement Learning for Object Recognition,
ICPR98(Vol I: 272-274).
IEEE DOI
9808
BibRef
Earlier:
Delayed Reinforcement Learning for Closed-Loop Object Recognition,
ICPR96(IV: 310-314).
IEEE DOI
9608
BibRef
And:
ARPA96(1429-1436).
(Univ. of California, Riverside, USA)
BibRef
Pauli, J.[Josef],
Learning to Recognize and Grasp Objects,
MachLearn(31), No. 1-3, Apr-Jun 1998, pp. 239-258.
9809
BibRef
Earlier:
Learning Operators for View-Independent Object Recognition,
BMVC96(Poster Session 1).
9608
Christian-Albrechts-Universitat, Germany
BibRef
Kervrann, C.[Charles],
Learning probabilistic deformation models from image sequences,
SP(71), No. 2, 15 December 1998, pp. 155-171.
BibRef
9812
Newman, R.A.[Rhys A.],
A New Model of Computation for Learning Vision Modules from Examples,
JMIV(11), No. 1, September 1999, pp. 45-63.
DOI Link
BibRef
9909
Newman, R.A.[Rhys A.],
Madura: A Language for Learning Vision Programs from Examples,
JMIV(11), No. 1, September 1999, pp. 65-90.
DOI Link
BibRef
9909
Pittore, M.[Massimiliano],
Campani, M.[Marco],
Verri, A.[Alessandro],
Learning to Recognize Visual Dynamic Events from Examples,
IJCV(38), No. 1, June 2000, pp. 35-44.
DOI Link
0006
BibRef
Baldoni, M.[Matteo],
Baroglio, C.[Cristina],
Cavagnino, D.[Davide],
Use of IFS Codes for Learning 2D Isolated-Object Classification Systems,
CVIU(77), No. 3, March 2000, pp. 371-387.
DOI Link
0004
BibRef
Guo, C.E.[Cheng-En],
Zhu, S.C.[Song-Chun],
Wu, Y.N.[Ying Nian],
Modeling Visual Patterns by Integrating Descriptive and Generative
Methods,
IJCV(53), No. 1, June 2003, pp. 5-29.
DOI Link
0304
BibRef
Earlier:
Visual Learning by Integrating Descriptive and Generative Methods,
ICCV01(I: 370-377).
IEEE DOI
0106
BibRef
Tian, Q.[Qi],
Wu, Y.[Ying],
Yu, J.[Jie],
Huang, T.S.[Thomas S.],
Self-supervised learning based on discriminative nonlinear features for
image classification,
PR(38), No. 6, June 2005, pp. 903-917.
Elsevier DOI
0501
BibRef
Wu, Y.[Ying],
Huang, T.S.[Thomas S.],
Toyama, K.[Kentaro],
Self-Supervised Learning for Object Recognition based on Kernel
Discriminant-EM Algorithm,
ICCV01(I: 275-280).
IEEE DOI
0106
BibRef
Xu, Y.,
Duygulu, P.,
Saber, E.,
Tekalp, A.M.,
Yarman-Vural, F.T.,
Object-based image labeling through learning by example and multi-level
segmentation,
PR(36), No. 6, June 2003, pp. 1407-1423.
Elsevier DOI
0304
See also Object Formation by Learning in Visual Databases using Hierarchical Content Description.
BibRef
Xu, Y.W.[Yao-Wu],
Saber, E.[Eli],
Tekalp, A.M.[A. Murat],
Object segmentation and labeling by learning from examples,
IP(12), No. 6, June 2003, pp. 627-638.
IEEE DOI
0307
BibRef
Xu, Y.W.[Yao-Wu],
Saber, E.[Eli],
Tekalp, A.M.[A. Murat],
Dynamic learning from multiple examples for semantic object
segmentation and search,
CVIU(95), No. 3, September 2004, pp. 334-353.
Elsevier DOI
0409
BibRef
Agarwal, S.[Shivani],
Awan, A.[Aatif], and
Roth, D.[Dan],
Learning to Detect Objects in Images via a Sparse, Part-Based
Representation,
PAMI(26), No. 11, November 2004, pp. 1475-1490.
IEEE Abstract. Or:
PDF File.
WWW Link.
0410
Dataset, Vehicles. Detecting specific object classes (e.g. cars).
BibRef
Agarwal, S.,
Roth, D.,
Learning a Sparse Representation for Object Detection,
ECCV02(IV: 113 ff.).
Springer DOI Or:
PDF File.
0205
BibRef
Ferencz, A.[Andras],
Learned-Miller, E.G.[Erik G.],
Malik, J.[Jitendra],
Learning to Locate Informative Features for Visual Identification,
IJCV(77), No. 1-3, May 2008, pp. 3-24.
Springer DOI
0803
BibRef
Earlier:
Building a Classification Cascade for Visual Identification from One
Example,
ICCV05(I: 286-293).
IEEE DOI
0510
E.g. identify a particular car, given one example of the car.
Predict most discrimitive features.
BibRef
Weinman, J.J.[Jerod J.],
Learned-Miller, E.G.[Erik G.],
Improving Recognition of Novel Input with Similarity,
CVPR06(I: 308-315).
IEEE DOI
0606
BibRef
Jain, V.,
Ferencz, A.[Andras],
Learned-Miller, E.G.[Erik G.],
Discriminative Training of Hyper-feature Models for Object
Identification,
BMVC06(I:357).
PDF File.
0609
BibRef
Huang, G.B.[Gary B.],
Learned-Miller, E.G.[Erik G.],
Learning class-specific image transformations with higher-order
Boltzmann machines,
SMiCV10(25-32).
IEEE DOI
1006
E.g. faces as the first example.
BibRef
Vijayanarasimhan, S.[Sudheendra],
Jain, P.[Prateek],
Grauman, K.[Kristen],
Hashing Hyperplane Queries to Near Points with Applications to
Large-Scale Active Learning,
PAMI(36), No. 2, February 2014, pp. 276-288.
IEEE DOI
1402
BibRef
Earlier:
Far-sighted active learning on a budget for image and video recognition,
CVPR10(3035-3042).
IEEE DOI
1006
data analysis.
Select most informative instance first.
BibRef
Kovashka, A.[Adriana],
Vijayanarasimhan, S.[Sudheendra],
Grauman, K.[Kristen],
Actively selecting annotations among objects and attributes,
ICCV11(1403-1410).
IEEE DOI
1201
Select based on which will give the most information (from human labeling).
BibRef
Liu, Y.Z.[Ya-Zhuo],
Zayas-Castro, J.L.[José L.],
Fabri, P.[Peter],
Huang, S.[Shuai],
Learning high-dimensional networks with nonlinear interactions by a
novel tree-embedded graphical model,
PRL(49), No. 1, 2014, pp. 207-213.
Elsevier DOI
1410
High-dimensional network learning
with both linear and nonlinear interactions.
BibRef
Li, D.B.[De-Bang],
Zhang, J.G.[Jun-Ge],
Huang, K.Q.[Kai-Qi],
Universal adversarial perturbations against object detection,
PR(110), 2021, pp. 107584.
Elsevier DOI
2011
Adversarial examples, Object detection, Universal adversarial perturbation
BibRef
Zhou, C.,
Zhang, J.,
Liu, J.,
Zhang, C.,
Shi, G.,
Hu, J.,
Bayesian Transfer Learning for Object Detection in Optical Remote
Sensing Images,
GeoRS(58), No. 11, November 2020, pp. 7705-7719.
IEEE DOI
2011
Training, Object detection, Bayes methods, Detectors,
Random access memory, Optical imaging, Optical sensors,
transfer learning
BibRef
Li, Y.D.[Yan-Dong],
Huang, D.[Di],
Qin, D.F.[Dan-Feng],
Wang, L.Q.[Li-Qiang],
Gong, B.Q.[Bo-Qing],
Improving Object Detection with Selective Self-supervised Self-training,
ECCV20(XXIX: 589-607).
Springer DOI
2010
BibRef
Cheng, M.[Miao],
Su, J.P.[Jin-Peng],
Li, L.Y.[Lu-Yi],
Zhou, X.M.[Xiang-Ming],
A-DFPN: Adversarial Learning and Deformation Feature Pyramid Networks
for Object Detection,
ICIVC20(11-18)
IEEE DOI
2009
Feature extraction, Object detection, Detectors, Convolution,
Semantics, Strain, Deconvolution, Deformation feature pyramid,
adversarial learning
BibRef
Ma, L.[Lin],
Lu, Z.D.[Zheng-Dong],
Shang, L.F.[Li-Feng],
Li, H.[Hang],
Multimodal Convolutional Neural Networks for Matching Image and
Sentence,
ICCV15(2623-2631)
IEEE DOI
1602
match image and text
BibRef
Mao, J.H.[Jun-Hua],
Wei, X.[Xu],
Yang, Y.[Yi],
Wang, J.[Jiang],
Huang, Z.H.[Zhi-Heng],
Yuille, A.L.[Alan L.],
Learning Like a Child: Fast Novel Visual Concept Learning from
Sentence Descriptions of Images,
ICCV15(2533-2541)
IEEE DOI
1602
Adaptation models. Learning novel concepts.
BibRef
Weng, J.Y.[Ju-Yang],
Luciw, M.[Matthew],
Online learning for attention, recognition, and tracking by a single
developmental framework,
OLCV10(7-14).
IEEE DOI
1006
Self-Aware and Self-Effecting. Human learning model.
BibRef
Kveton, B.[Branislav],
Valko, M.[Michal],
Learning from a single labeled face and a stream of unlabeled data,
FG13(1-8)
IEEE DOI
1309
face recognition
BibRef
Kveton, B.[Branislav],
Philipose, M.[Matthai],
Valko, M.[Michal],
Huang, L.[Ling],
Online semi-supervised perception:
Real-time learning without explicit feedback,
OLCV10(15-21).
IEEE DOI
1006
BibRef
Li, Y.N.[Yuan-Ning],
Wang, W.Q.[Wei-Qiang],
Gao, W.[Wen],
Object Recognition Based on Dependent Pachinko Allocation Model,
ICIP07(V: 337-340).
IEEE DOI
0709
Pachinko Allocation Model: Learning using graph structures.
(From the learning community)
BibRef
Wu, Y.[Yang],
Yuan, Z.J.[Ze-Jian],
Liu, Y.L.[Yuan-Liu],
Zheng, N.N.[Nan-Ning],
Discriminative structured outputs prediction model and its efficient
online learning algorithm,
Emergent09(2087-2094).
IEEE DOI
0910
Deal with the explosion of data and requirement for detailed analysis
of scenes. Not just class, but structured labelling.
BibRef
Wu, Y.[Yang],
Zheng, N.N.[Nan-Ning],
You, Q.B.[Qu-Bo],
Du, S.Y.[Shao-Yi],
Object Recognition by Learning Informative, Biologically Inspired
Visual Features,
ICIP07(I: 181-184).
IEEE DOI
0709
BibRef
Xu, W.J.[Wen-Jie],
Wu, J.K.[Jian-Kang],
Huang, Z.Y.[Zhi-Yong],
A maximum margin discriminative learning algorithm for temporal signals,
ICPR06(II: 460-463).
IEEE DOI
0609
BibRef
Forssen, P.E.[Per-Erik],
Moe, A.[Anders],
Autonomous Learning of Object Appearances using Colour Contour Frames,
CRV06(3-3).
IEEE DOI
0607
Texture patch model.
BibRef
Jojic, N.[Nebojsa],
Winn, J.[John],
Zitnick, L.[Larry],
Escaping local minima through hierarchical model selection:
Automatic object discovery, segmentation, and tracking in video,
CVPR06(I: 117-124).
IEEE DOI
0606
In learning models the main structure comes out early, fine detail
is later.
BibRef
Cai, X.C.[Xiong-Cai],
Sowmya, A.[Arcot],
Trinder, J.[John],
Learning Parameter Tuning for Object Extraction,
ACCV06(I:868-877).
Springer DOI
0601
BibRef
Hadsell, R.[Raia],
Chopra, S.[Sumit],
Le Cun, Y.L.[Yann L.],
Dimensionality Reduction by Learning an Invariant Mapping,
CVPR06(II: 1735-1742).
IEEE DOI
0606
BibRef
Chopra, S.[Sumit],
Hadsell, R.[Raia],
Le Cun, Y.L.[Yann L.],
Learning a Similarity Metric Discriminatively, with Application to Face
Verification,
CVPR05(I: 539-546).
IEEE DOI
0507
BibRef
Edelman, S.[Shimon],
Intrator, N.[Nathan],
Jacobson, J.S.[Judah S.],
Unsupervised Learning of Visual Structure,
BMCV02(629 ff.).
Springer DOI
0303
BibRef
Loos, H.S.[Hartmut S.],
von der Malsburg, C.[Christoph],
1-Click Learning of Object Models for Recognition,
BMCV02(377 ff.).
Springer DOI
0303
BibRef
Lömker, F.,
Sagerer, G.,
A Multimodal System for Object Learning,
DAGM02(490 ff.).
Springer DOI
0303
BibRef
Lashkia, G.V.,
Learning with relevant features and examples,
ICPR02(II: 68-71).
IEEE DOI
0211
BibRef
Roobaert, D.[Danny],
Zillich, M.[Michael],
Eklundh, J.O.[Jan-Olof],
A Pure Learning Approach to Background-Invariant Object Recognition
Using Pedagogical Support Vector Learning,
CVPR01(II:351-357).
IEEE DOI
0110
BibRef
Caelli, T.M.,
Learning Image Feature Extraction:
Modeling, Tracking and Predicting Human Performance,
ICPR00(Vol II: 215-218).
IEEE DOI
0009
BibRef
Duta, N.[Nicolae],
Jain, A.K.[Anil K.],
Dubuisson-Jolly, M.P.[Marie-Pierre],
Learning-based Object Detection in Cardiac MR Images,
ICCV99(1210-1216).
IEEE DOI
BibRef
9900
Duta, N.[Nicolae],
Jain, A.K.[Anil K.],
Dubuisson-Jolly, M.P.[Marie-Pierre],
Learning 2D Shape Models,
CVPR99(II: 8-14).
IEEE DOI Clustering training shapes.
BibRef
9900
Kato, T.,
Ninomiya, Y.,
An Approach to Vehicle Recognition Using Supervised Learning,
MVA98(xx-yy).
BibRef
9800
Vetter, T.[Thomas],
Jones, M.J.[Michael J.],
Poggio, T.[Tomaso],
A Bootstrapping Algorithm for Learning Linear Models of Object Classes,
CVPR97(40-46).
IEEE DOI
9704
BibRef
And:
DARPA97(1373-1378).
Faces and digits.
BibRef
Shu, D.B.[David B.], and
Li, C.C.,
Reordering of Surface Feature Vectors in Training for
3-D Object Recognition,
ICPR86(111-115).
BibRef
8600
Tomita, F.,
A Learning Vision System for 2D Object Recognition,
IJCAI83(1132-1135).
BibRef
8300
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Multiple Instance Learning .