Cohen, B.[Brian],
Sammut, C.[Claude],
Object recognition and concept learning with CONFUCIUS,
PR(15), No. 4, 1982, pp. 309-316.
Elsevier DOI
0309
BibRef
Soucke, B.[Branko],
Fast Learning and Invariant Object Recognition:
The Sixth Generation Breakthrough,
New York:
Wiley-Interscience1992.
ISBN 0-471-57430-9.
BibRef
9200
Chan, T.Y.T.[Tony Y.T.],
Goldfarb, L.[Lev],
Primitive pattern learning,
PR(25), No. 8, August 1992, pp. 883-889.
Elsevier DOI
0401
BibRef
Edelman, S.,
On Learning to Recognize 3-D Objects from Examples,
PAMI(15), No. 8, August 1993, pp. 833-837.
IEEE DOI
BibRef
9308
Edelman, S.,
Representation of Similarity in 3-Dimensional Object Discrimination,
NeurComp(7), No. 2, March 1995, pp. 408-423.
BibRef
9503
Edelman, S.[Shimon],
Representing 3D Objects by Sets of Activities of Receptive Fields,
BioCyber(70), 1993, pp. 37-45.
BibRef
9300
Edelman, S.[Shimon],
Viewpoint-specific Representations in Three-dimensional
Object Recognition,
MIT AI Memo-1239, August 1990.
BibRef
9008
Edelman, S.,
Class Similarity and Viewpoint Invariance in the Recognition
of 3D Objects,
BioCyber(72), No. 3, February 1995, pp. 207-220.
BibRef
9502
Edelman, S.[Shimon], and
Weinshall, D.[Daphna],
A Self-Organizing Multiple-View Representation of 3D objects,
BioCyber(64), 1991, pp. 209-219.
BibRef
9100
Edelman, S.[Shimon],
Bulthoff, H.H.[Heinrich H.],
Orientation Dependence in the Recognition of Familiar and Novel Views of
3D Objects,
Vision Research(32), 1992, pp. 2385-2400.
BibRef
9200
Cutzu, F.[Florin],
Edelman, S.[Shimon],
Canonical Views in Object Representation and Recognition,
Vision Research(34), 1994, pp. 3037-3056.
BibRef
9400
Poggio, T.[Tomaso], and
Sung, K.K.[Kah-Kay],
Networks that Learn for Image Understanding,
AIU96(226-240).
BibRef
9600
Sung, K.K.[Kah-Kay],
Learning and Example Selection for Object and Pattern Detection,
MIT AI-TR-1572, January 1996.
WWW Link.
BibRef
9601
Poggio, T.,
Edelman, S.,
A Network that Learns to Recognize 3D Objects,
Nature(343), No. 6255, 1990, pp. 263-266.
BibRef
9000
Edelman, S.,
Poggio, T.,
Representations in High-Level Vision:
Reassessing the Inverse Optics Paradigm,
DARPA89(944-949).
BibRef
8900
Maloof, M.A.,
Michalski, R.S.,
Learning Symbolic Descriptions of Shape for Object Recognition in
X-Ray Images,
ExSysApp(12), No. 1, 1997, pp. 11-20.
9701
BibRef
Lee, C.M.,
Pong, T.C.,
Esterline, A.,
Slagle, J.R.,
KOR: A Knowledge-Based Object Recognition System,
CVIP92(329-362).
BibRef
9200
Lee, C.M.[Chung-Mong],
Pong, T.C.[Ting-Chuen],
Slagle, J.R.[James R.],
Esterline, A.[Albert],
An Experimental-Study of an Object Recognition System That Learns,
PR(27), No. 1, January 1994, pp. 65-89.
Elsevier DOI
BibRef
9401
Epstein, R.,
Yuille, A.L.,
Belhumeur, P.N.,
Learning Object Representations from Lighting Variations,
ORCV96(179)
9611
BibRef
Sugihara, K.[Kokichi],
A graph-theoretical method for monitoring concept formation,
PR(28), No. 11, November 1995, pp. 1635-1643.
Elsevier DOI
0401
Human learning of concepts.
BibRef
Wallis, G.,
Baddeley, R.,
Optimal, Unsupervised Learning in Invariant Object Recognition,
NeurComp(9), No. 4, May 15 1997, pp. 883-894.
9706
BibRef
Peng, J.[Jing], and
Bhanu, B.[Bir],
Close-Loop Object Recognition Using Reinforcement Learning,
PAMI(20), No. 2, February 1998, pp. 139-154.
IEEE DOI
9803
BibRef
Earlier:
CVPR96(538-543).
IEEE DOI
BibRef
And: A2, A1:
ARPA94(I:777-780).
BibRef
Peng, J.[Jing],
Bhanu, B.[Bir],
Local discriminative learning for pattern recognition,
PR(34), No. 1, January 2001, pp. 139-150.
Elsevier DOI
0010
BibRef
And:
Local Reinforcement Learning for Object Recognition,
ICPR98(Vol I: 272-274).
IEEE DOI
9808
BibRef
Earlier:
Delayed Reinforcement Learning for Closed-Loop Object Recognition,
ICPR96(IV: 310-314).
IEEE DOI
9608
BibRef
And:
ARPA96(1429-1436).
(Univ. of California, Riverside, USA)
BibRef
Pauli, J.[Josef],
Learning to Recognize and Grasp Objects,
MachLearn(31), No. 1-3, Apr-Jun 1998, pp. 239-258.
9809
BibRef
Earlier:
Learning Operators for View-Independent Object Recognition,
BMVC96(Poster Session 1).
9608
Christian-Albrechts-Universitat, Germany
BibRef
Kervrann, C.[Charles],
Learning probabilistic deformation models from image sequences,
SP(71), No. 2, 15 December 1998, pp. 155-171.
BibRef
9812
Newman, R.A.[Rhys A.],
A New Model of Computation for Learning Vision Modules from Examples,
JMIV(11), No. 1, September 1999, pp. 45-63.
DOI Link
BibRef
9909
Newman, R.A.[Rhys A.],
Madura: A Language for Learning Vision Programs from Examples,
JMIV(11), No. 1, September 1999, pp. 65-90.
DOI Link
BibRef
9909
Pittore, M.[Massimiliano],
Campani, M.[Marco],
Verri, A.[Alessandro],
Learning to Recognize Visual Dynamic Events from Examples,
IJCV(38), No. 1, June 2000, pp. 35-44.
DOI Link
0006
BibRef
Baldoni, M.[Matteo],
Baroglio, C.[Cristina],
Cavagnino, D.[Davide],
Use of IFS Codes for Learning 2D Isolated-Object Classification Systems,
CVIU(77), No. 3, March 2000, pp. 371-387.
DOI Link
0004
BibRef
Guo, C.E.[Cheng-En],
Zhu, S.C.[Song-Chun],
Wu, Y.N.[Ying Nian],
Modeling Visual Patterns by Integrating Descriptive and Generative
Methods,
IJCV(53), No. 1, June 2003, pp. 5-29.
DOI Link
0304
BibRef
Earlier:
Visual Learning by Integrating Descriptive and Generative Methods,
ICCV01(I: 370-377).
IEEE DOI
0106
BibRef
Xu, Y.,
Duygulu, P.,
Saber, E.,
Tekalp, A.M.,
Yarman-Vural, F.T.,
Object-based image labeling through learning by example and multi-level
segmentation,
PR(36), No. 6, June 2003, pp. 1407-1423.
Elsevier DOI
0304
See also Object Formation by Learning in Visual Databases using Hierarchical Content Description.
BibRef
Xu, Y.W.[Yao-Wu],
Saber, E.[Eli],
Tekalp, A.M.[A. Murat],
Object segmentation and labeling by learning from examples,
IP(12), No. 6, June 2003, pp. 627-638.
IEEE DOI
0307
BibRef
Xu, Y.W.[Yao-Wu],
Saber, E.[Eli],
Tekalp, A.M.[A. Murat],
Dynamic learning from multiple examples for semantic object
segmentation and search,
CVIU(95), No. 3, September 2004, pp. 334-353.
Elsevier DOI
0409
BibRef
Agarwal, S.[Shivani],
Awan, A.[Aatif], and
Roth, D.[Dan],
Learning to Detect Objects in Images via a Sparse, Part-Based
Representation,
PAMI(26), No. 11, November 2004, pp. 1475-1490.
IEEE Abstract. Or:
PDF File.
WWW Link.
0410
Dataset, Vehicles. Detecting specific object classes (e.g. cars).
BibRef
Agarwal, S.,
Roth, D.,
Learning a Sparse Representation for Object Detection,
ECCV02(IV: 113 ff.).
Springer DOI Or:
PDF File.
0205
BibRef
Ferencz, A.[Andras],
Learned-Miller, E.G.[Erik G.],
Malik, J.[Jitendra],
Learning to Locate Informative Features for Visual Identification,
IJCV(77), No. 1-3, May 2008, pp. 3-24.
Springer DOI
0803
BibRef
Earlier:
Building a Classification Cascade for Visual Identification from One
Example,
ICCV05(I: 286-293).
IEEE DOI
0510
E.g. identify a particular car, given one example of the car.
Predict most discrimitive features.
BibRef
Weinman, J.J.[Jerod J.],
Learned-Miller, E.G.[Erik G.],
Improving Recognition of Novel Input with Similarity,
CVPR06(I: 308-315).
IEEE DOI
0606
BibRef
Jain, V.,
Ferencz, A.[Andras],
Learned-Miller, E.G.[Erik G.],
Discriminative Training of Hyper-feature Models for Object
Identification,
BMVC06(I:357).
PDF File.
0609
BibRef
Huang, G.B.[Gary B.],
Learned-Miller, E.G.[Erik G.],
Learning class-specific image transformations with higher-order
Boltzmann machines,
SMiCV10(25-32).
IEEE DOI
1006
E.g. faces as the first example.
BibRef
Vijayanarasimhan, S.[Sudheendra],
Jain, P.[Prateek],
Grauman, K.[Kristen],
Hashing Hyperplane Queries to Near Points with Applications to
Large-Scale Active Learning,
PAMI(36), No. 2, February 2014, pp. 276-288.
IEEE DOI
1402
BibRef
Earlier:
Far-sighted active learning on a budget for image and video recognition,
CVPR10(3035-3042).
IEEE DOI
1006
data analysis.
Select most informative instance first.
BibRef
Kovashka, A.[Adriana],
Vijayanarasimhan, S.[Sudheendra],
Grauman, K.[Kristen],
Actively selecting annotations among objects and attributes,
ICCV11(1403-1410).
IEEE DOI
1201
Select based on which will give the most information (from human labeling).
BibRef
Liu, Y.Z.[Ya-Zhuo],
Zayas-Castro, J.L.[José L.],
Fabri, P.[Peter],
Huang, S.[Shuai],
Learning high-dimensional networks with nonlinear interactions by a
novel tree-embedded graphical model,
PRL(49), No. 1, 2014, pp. 207-213.
Elsevier DOI
1410
High-dimensional network learning
with both linear and nonlinear interactions.
BibRef
Li, D.B.[De-Bang],
Zhang, J.G.[Jun-Ge],
Huang, K.Q.[Kai-Qi],
Universal adversarial perturbations against object detection,
PR(110), 2021, pp. 107584.
Elsevier DOI
2011
Adversarial examples, Object detection, Universal adversarial perturbation
BibRef
Zhou, C.S.[Chang-Sheng],
Zhang, J.S.[Jiang-She],
Liu, J.M.[Jun-Min],
Zhang, C.X.[Chun-Xia],
Shi, G.[Guang],
Hu, J.Y.[Jun-Ying],
Bayesian Transfer Learning for Object Detection in Optical Remote
Sensing Images,
GeoRS(58), No. 11, November 2020, pp. 7705-7719.
IEEE DOI
2011
Training, Object detection, Bayes methods, Detectors,
Random access memory, Optical imaging, Optical sensors,
transfer learning
BibRef
Lin, Q.F.[Qi-Feng],
Long, C.J.[Cheng-Jiang],
Zhao, J.H.[Jian-Hui],
Fu, G.[Gang],
Yuan, Z.Y.[Zhi-Yong],
DDBN: Dual detection branch network for semantic diversity
predictions,
PR(122), 2022, pp. 108315.
Elsevier DOI
2112
Adjacent feature compensation, Dual detection branch network,
Diversity enhancement strategy, Object detection
BibRef
Cheng, B.[Bei],
Li, Z.Z.[Zheng-Zhou],
Li, H.[Hui],
Ding, Z.Q.[Zhi-Quan],
Qin, T.Q.[Tian-Qi],
Semi-Autonomous Learning Algorithm for Remote Image Object Detection
Based on Aggregation Area Instance Refinement,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Luo, D.P.[Da-Peng],
Lei, S.Y.[Si-Yuan],
Guo, P.[Peng],
Gao, C.X.[Chang-Xin],
Chen, Y.[Ying],
Li, J.S.[Jin-Sheng],
Wei, L.S.[Long-Sheng],
Learning scene-specific object detectors based on a
generative-discriminative model with minimal supervision,
PRL(159), 2022, pp. 108-115.
Elsevier DOI
2206
Object detection, Unsupervised learning, Generative-Discriminative model
BibRef
Chen, Y.K.[Yu-Kang],
Zhang, P.Z.[Pei-Zhen],
Kong, T.[Tao],
Li, Y.W.[Yan-Wei],
Zhang, X.Y.[Xiang-Yu],
Qi, L.[Lu],
Sun, J.[Jian],
Jia, J.Y.[Jia-Ya],
Scale-Aware Automatic Augmentations for Object Detection With Dynamic
Training,
PAMI(45), No. 2, February 2023, pp. 2367-2383.
IEEE DOI
2301
Training, Object detection, Task analysis, Adaptation models,
Image color analysis, Detectors, Optimization, Scale-aware, dynamic training
BibRef
Zhang, L.[Lu],
Yang, X.[Xu],
Qi, L.[Lu],
Zeng, S.F.[Shao-Feng],
Liu, Z.Y.[Zhi-Yong],
Incremental Few-Shot Object Detection with Scale- and
Centerness-Aware Weight Generation,
CVIU(235), 2023, pp. 103774.
Elsevier DOI
2310
Incremental learning, Few-shot learning, Object detection
BibRef
Chen, Y.K.[Yu-Kang],
Li, Y.W.[Yan-Wei],
Kong, T.[Tao],
Qi, L.[Lu],
Chu, R.H.[Rui-Hang],
Li, L.[Lei],
Jia, J.Y.[Jia-Ya],
Scale-aware Automatic Augmentation for Object Detection,
CVPR21(9558-9567)
IEEE DOI
2111
Training, Costs, Estimation, Object detection, Detectors, Search problems
BibRef
Peng, C.[Can],
Zhao, K.[Kun],
Maksoud, S.[Sam],
Wang, T.[Tianren],
Lovell, B.C.[Brian C.],
DIODE: Dilatable Incremental Object Detection,
PR(136), 2023, pp. 109244.
Elsevier DOI
2301
Incremental learning, Object detection
BibRef
Yang, K.Q.[Ke-Quan],
Li, J.D.[Ji-De],
Dai, S.M.[Song-Min],
Li, X.Q.[Xiao-Qiang],
Multiscale features integration based multiple-in-single-out network
for object detection,
IVC(135), 2023, pp. 104714.
Elsevier DOI
2306
Object detection, Objects of different scales,
Single-level feature map, Receptive fields
BibRef
Costa, D.[Dinis],
Silva, C.[Catarina],
Costa, J.[Joana],
Ribeiro, B.[Bernardete],
Optimizing Object Detection Models via Active Learning,
IbPRIA23(82-93).
Springer DOI
2307
BibRef
Li, Y.[Yang],
Fang, Y.Q.[Yu-Qiang],
Li, W.[Wanyun],
Jiang, B.[Bitao],
Wang, S.J.[Sheng-Jin],
Li, Z.[Zhi],
Learning Adversarially Robust Object Detector with Consistency
Regularization in Remote Sensing Images,
RS(15), No. 16, 2023, pp. 3997.
DOI Link
2309
BibRef
Sakuma, Y.[Yuiko],
Ishii, M.[Masato],
Narihira, T.[Takuya],
DetOFA: Efficient Training of Once-for-All Networks for Object
Detection using Path Filter,
REDLCV23(1325-1334)
IEEE DOI
2401
BibRef
Vidit, V.[Vidit],
Engilberge, M.[Martin],
Salzmann, M.[Mathieu],
Learning Transformations to Reduce the Geometric Shift in Object
Detection,
CVPR23(17441-17450)
IEEE DOI
2309
BibRef
Lindell, D.B.[David B.],
van Veen, D.[Dave],
Park, J.J.[Jeong Joon],
Wetzstein, G.[Gordon],
Bacon: Band-Limited Coordinate Networks for Multiscale Scene
Representation,
CVPR22(16231-16241)
IEEE DOI
2210
Time-frequency analysis, Fitting, Bandwidth, Network architecture,
Rendering (computer graphics), Behavioral sciences,
Deep learning architectures and techniques
BibRef
Hafeez, M.A.[Muhammad Abdullah],
Ul-Hasan, A.[Adnan],
Shafait, F.[Faisal],
Incremental Learning of Object Detector with Limited Training Data,
DICTA21(01-08)
IEEE DOI
2201
Deep learning, Training, Knowledge engineering,
Philosophical considerations, Digital images, Transfer learning,
Transfer Learning
BibRef
Resnick, C.[Cinjon],
Litany, O.[Or],
Kar, A.[Amlan],
Kreis, K.[Karsten],
Lucas, J.[James],
Cho, K.[Kyunghyun],
Fidler, S.[Sanja],
Causal BERT:
Improving object detection by searching for challenging groups,
AVVision21(2972-2981)
IEEE DOI
2112
Training, Neural networks,
Object detection, Search problems, Robustness
BibRef
Wang, C.Y.[Chien-Yao],
Bochkovskiy, A.[Alexey],
Liao, H.Y.M.[Hong-Yuan Mark],
Scaled-YOLOv4: Scaling Cross Stage Partial Network,
CVPR21(13024-13033)
IEEE DOI
2111
Computational modeling, Neural networks,
Object detection
BibRef
Chen, Q.[Qiang],
Wang, Y.M.[Ying-Ming],
Yang, T.[Tong],
Zhang, X.Y.[Xiang-Yu],
Cheng, J.[Jian],
Sun, J.[Jian],
You Only Look One-level Feature,
CVPR21(13034-13043)
IEEE DOI
2111
Training, Memory management, Detectors, Object detection,
Feature extraction, Transformers, Solids
BibRef
Chen, X.N.[Xiang-Ning],
Xie, C.H.[Ci-Hang],
Tan, M.X.[Ming-Xing],
Zhang, L.[Li],
Hsieh, C.J.[Cho-Jui],
Gong, B.Q.[Bo-Qing],
Robust and Accurate Object Detection via Adversarial Learning,
CVPR21(16617-16626)
IEEE DOI
2111
Training, Location awareness, Detectors, Object detection,
Performance gain, Distortion, Search problems
BibRef
Bu, X.Y.[Xing-Yuan],
Peng, J.[Junran],
Yan, J.J.[Jun-Jie],
Tan, T.N.[Tie-Niu],
Zhang, Z.X.[Zhao-Xiang],
GAIA: A Transfer Learning System of Object Detection that Fits Your
Needs,
CVPR21(274-283)
IEEE DOI
2111
Transfer learning, Object detection,
Natural language processing, Data models
BibRef
Li, K.D.[Kai-Dong],
Wang, N.Y.[Nina Y.],
Yang, Y.[Yiju],
Wang, G.H.[Guang-Hui],
SGNet: A Super-class Guided Network for Image Classification and
Object Detection,
CRV21(127-134)
IEEE DOI
2108
Knowledge engineering, Annotations, Semantics, Object detection,
Predictive models, Robots, Image classification, Deep learning,
super-class
BibRef
Albaba, B.M.[Berat Mert],
Ozer, S.[Sedat],
SyNet: An Ensemble Network for Object Detection in UAV Images,
ICPR21(10227-10234)
IEEE DOI
2105
Deep learning, Shape, Object detection, Detectors,
Prediction algorithms, Feature extraction,
UAV images
BibRef
Hao, M.[Miao],
Liu, Y.T.[Yi-Tao],
Zhang, X.Y.[Xiang-Yu],
Sun, J.[Jian],
LabelEnc: A New Intermediate Supervision Method for Object Detection,
ECCV20(XXV:529-545).
Springer DOI
2011
BibRef
Cheng, M.[Miao],
Su, J.P.[Jin-Peng],
Li, L.Y.[Lu-Yi],
Zhou, X.M.[Xiang-Ming],
A-DFPN: Adversarial Learning and Deformation Feature Pyramid Networks
for Object Detection,
ICIVC20(11-18)
IEEE DOI
2009
Feature extraction, Object detection, Detectors, Convolution,
Semantics, Strain, Deconvolution, Deformation feature pyramid,
adversarial learning
BibRef
Ma, L.[Lin],
Lu, Z.D.[Zheng-Dong],
Shang, L.F.[Li-Feng],
Li, H.[Hang],
Multimodal Convolutional Neural Networks for Matching Image and
Sentence,
ICCV15(2623-2631)
IEEE DOI
1602
match image and text
BibRef
Mao, J.H.[Jun-Hua],
Wei, X.[Xu],
Yang, Y.[Yi],
Wang, J.[Jiang],
Huang, Z.H.[Zhi-Heng],
Yuille, A.L.[Alan L.],
Learning Like a Child: Fast Novel Visual Concept Learning from
Sentence Descriptions of Images,
ICCV15(2533-2541)
IEEE DOI
1602
Adaptation models. Learning novel concepts.
BibRef
Weng, J.Y.[Ju-Yang],
Luciw, M.[Matthew],
Online learning for attention, recognition, and tracking by a single
developmental framework,
OLCV10(7-14).
IEEE DOI
1006
Self-Aware and Self-Effecting. Human learning model.
BibRef
Kveton, B.[Branislav],
Valko, M.[Michal],
Learning from a single labeled face and a stream of unlabeled data,
FG13(1-8)
IEEE DOI
1309
face recognition
BibRef
Kveton, B.[Branislav],
Philipose, M.[Matthai],
Valko, M.[Michal],
Huang, L.[Ling],
Online semi-supervised perception:
Real-time learning without explicit feedback,
OLCV10(15-21).
IEEE DOI
1006
BibRef
Li, Y.N.[Yuan-Ning],
Wang, W.Q.[Wei-Qiang],
Gao, W.[Wen],
Object Recognition Based on Dependent Pachinko Allocation Model,
ICIP07(V: 337-340).
IEEE DOI
0709
Pachinko Allocation Model: Learning using graph structures.
(From the learning community)
BibRef
Wu, Y.[Yang],
Yuan, Z.J.[Ze-Jian],
Liu, Y.L.[Yuan-Liu],
Zheng, N.N.[Nan-Ning],
Discriminative structured outputs prediction model and its efficient
online learning algorithm,
Emergent09(2087-2094).
IEEE DOI
0910
Deal with the explosion of data and requirement for detailed analysis
of scenes. Not just class, but structured labelling.
BibRef
Wu, Y.[Yang],
Zheng, N.N.[Nan-Ning],
You, Q.B.[Qu-Bo],
Du, S.Y.[Shao-Yi],
Object Recognition by Learning Informative, Biologically Inspired
Visual Features,
ICIP07(I: 181-184).
IEEE DOI
0709
BibRef
Xu, W.J.[Wen-Jie],
Wu, J.K.[Jian-Kang],
Huang, Z.Y.[Zhi-Yong],
A maximum margin discriminative learning algorithm for temporal signals,
ICPR06(II: 460-463).
IEEE DOI
0609
BibRef
Forssen, P.E.[Per-Erik],
Moe, A.[Anders],
Autonomous Learning of Object Appearances using Colour Contour Frames,
CRV06(3-3).
IEEE DOI
0607
Texture patch model.
BibRef
Jojic, N.[Nebojsa],
Winn, J.[John],
Zitnick, L.[Larry],
Escaping local minima through hierarchical model selection:
Automatic object discovery, segmentation, and tracking in video,
CVPR06(I: 117-124).
IEEE DOI
0606
In learning models the main structure comes out early, fine detail
is later.
BibRef
Cai, X.C.[Xiong-Cai],
Sowmya, A.[Arcot],
Trinder, J.[John],
Learning Parameter Tuning for Object Extraction,
ACCV06(I:868-877).
Springer DOI
0601
BibRef
Hadsell, R.[Raia],
Chopra, S.[Sumit],
Le Cun, Y.L.[Yann L.],
Dimensionality Reduction by Learning an Invariant Mapping,
CVPR06(II: 1735-1742).
IEEE DOI
0606
BibRef
Chopra, S.[Sumit],
Hadsell, R.[Raia],
Le Cun, Y.L.[Yann L.],
Learning a Similarity Metric Discriminatively, with Application to Face
Verification,
CVPR05(I: 539-546).
IEEE DOI
0507
BibRef
Edelman, S.[Shimon],
Intrator, N.[Nathan],
Jacobson, J.S.[Judah S.],
Unsupervised Learning of Visual Structure,
BMCV02(629 ff.).
Springer DOI
0303
BibRef
Loos, H.S.[Hartmut S.],
von der Malsburg, C.[Christoph],
1-Click Learning of Object Models for Recognition,
BMCV02(377 ff.).
Springer DOI
0303
BibRef
Lömker, F.,
Sagerer, G.,
A Multimodal System for Object Learning,
DAGM02(490 ff.).
Springer DOI
0303
BibRef
Lashkia, G.V.,
Learning with relevant features and examples,
ICPR02(II: 68-71).
IEEE DOI
0211
BibRef
Roobaert, D.[Danny],
Zillich, M.[Michael],
Eklundh, J.O.[Jan-Olof],
A Pure Learning Approach to Background-Invariant Object Recognition
Using Pedagogical Support Vector Learning,
CVPR01(II:351-357).
IEEE DOI
0110
BibRef
Caelli, T.M.,
Learning Image Feature Extraction:
Modeling, Tracking and Predicting Human Performance,
ICPR00(Vol II: 215-218).
IEEE DOI
0009
BibRef
Duta, N.[Nicolae],
Jain, A.K.[Anil K.],
Dubuisson-Jolly, M.P.[Marie-Pierre],
Learning-based Object Detection in Cardiac MR Images,
ICCV99(1210-1216).
IEEE DOI
BibRef
9900
Duta, N.[Nicolae],
Jain, A.K.[Anil K.],
Dubuisson-Jolly, M.P.[Marie-Pierre],
Learning 2D Shape Models,
CVPR99(II: 8-14).
IEEE DOI Clustering training shapes.
BibRef
9900
Kato, T.,
Ninomiya, Y.,
An Approach to Vehicle Recognition Using Supervised Learning,
MVA98(xx-yy).
BibRef
9800
Vetter, T.[Thomas],
Jones, M.J.[Michael J.],
Poggio, T.[Tomaso],
A Bootstrapping Algorithm for Learning Linear Models of Object Classes,
CVPR97(40-46).
IEEE DOI
9704
BibRef
And:
DARPA97(1373-1378).
Faces and digits.
BibRef
Shu, D.B.[David B.], and
Li, C.C.,
Reordering of Surface Feature Vectors in Training for
3-D Object Recognition,
ICPR86(111-115).
BibRef
8600
Tomita, F.,
A Learning Vision System for 2D Object Recognition,
IJCAI83(1132-1135).
BibRef
8300
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Self-Supervised Learning .